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Abstract

Background

Honey bee (Apis mellifera) drones and workers show differences in morphology, physiol-

ogy, and behavior. Because the functions of drones are more related to colony reproduc-

tion, and those of workers relate to both survival and reproduction, we hypothesize that the

microclimate for worker brood is more precisely regulated than that of drone brood.

Methodology/Principal Findings

We assessed temperature and relative humidity (RH) inside honey bee colonies for both

drone and worker brood throughout the three-stage development period, using digital

HOBO1 Data Loggers. The major findings of this study are that 1) both drone and worker

castes show the highest temperature for eggs, followed by larvae and then pupae; 2) tem-

perature in drones are maintained at higher precision (smaller variance) in drone eggs and

larvae, but at a lower precision in pupae than the corresponding stages of workers; 3) RH

regulation showed higher variance in drone than workers across all brood stages; and 4)

RH regulation seems largely due to regulation by workers, as the contribution from empty

honey combs are much smaller compared to that from adult workers.

Conclusions/Significance

We conclude that honey bee colonies maintain both temperature and humidity actively; that

the microclimate for sealed drone brood is less precisely regulated than worker brood; and

that combs with honey contribute very little to the increase of RH in honey bee colonies.

These findings increase our understanding of microclimate regulation in honey bees and

may have implications for beekeeping practices.
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Introduction

Ambient environmental conditions fluctuate widely due to day/night and change of seasons.

Yet many social insects are able to regulate environmental conditions, such as temperature (T),

relative humidity (RH), and carbon dioxide levels within their nests [1, 2]. Colonies of western

honey bee, Apis mellifera, maintain their brood nest temperature around 34–36°C, which is

optimal for brood development [3–5]. The stable temperature is maintained by honey bees

through various control mechanisms. Honey bees increase colony temperature by isometric

contraction of thoracic muscles to produce heat [6]. Workers increase heat transfer efficiency

by pressing their heated thoraces against the caps and walls of brood cells [7, 8]. The heating is

performed by young bees (nurses) who have higher thoracic temperatures [9]. Besides provid-

ing optimal temperature for brood development, elevated temperatures can also defend against

fungal infections [10] and varroa mites [11]. But temperatures above 36°C for extended times

are harmful to the brood and may result in developmental abnormalities or death [12, 13]. To

decrease temperature, workers fan their wings to cool the colony [14], and at the same time

spread water or diluted nectar to induce evaporative cooling [15]. Honey bee workers can also

shield the comb from external heat sources to prevent brood from overheating [16].

Drones and workers have different roles in a colony. This is reflected in many physiological,

morphological and behavioral differences [17]. Workers perform many different tasks, yet the

only function of drones is to produce sperm and mate with a queen [18]. Drone production

thus is regulated and not produced all the time [19, 20]. Drones are also more costly to produce

compared to workers due to their larger size [17, 21, 22]. Because the functions of drones are

more related to colony reproduction, and those of workers relate to both colony survival and

reproduction, we hypothesized that the environment for worker brood is more precisely regu-

lated than that of drone brood.

Thermoregulation has been the most extensively studied aspect of nest homeostasis [23].

Different stages of brood may have different optimal temperatures. Büdel [24] first noticed that

worker pupae had higher temperatures than either eggs or larvae. There might also be caste-

specific differences in temperature and/or humidity requirement by worker and drone brood.

Levin and Collison [25] determined that worker brood is maintained at a significantly higher

temperature than drone brood, when both are in the central brood nest of frame, but this dif-

ference is not maintained when brood is placed in the outer brood nest region.

In contrast, humidity regulation in honey bee colonies is only sparsely studied [26–28].

There is a controversy whether RH in a bee colony is actively regulated: some thought that

humidity inside colonies varies passively [29, 30], while Ellis et al. [31] concluded that humidity

in colonies is actively controlled by workers. Human et al. [27] indicated workers can only con-

trol humidity in the colony within sub-optimal limits. Brood comb has been shown to be able

to function as a humidity buffer in nests [28].

In this study we measured temperature and humidity in both worker and drone brood,

including the developmental stages of eggs, larvae, and pupae. We intended to test four differ-

ent hypotheses. 1). Are there different temperature and humidity requirements among the dif-

ferent development stages, namely, eggs, larvae and pupae? 2). Are there differences in

temperature and humidity requirements for worker and drone brood? 3). Are worker brood

temperature and humidity regulated more precisely than that of drone brood? And 4). Do

honey combs act as a buffer for humidity regulation?
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Materials and Methods

Honey bees

In May and June 2012, six honey bee colonies (A.mellifera), located at the Jilin Institute of Api-

cultural Research (GPS coordinates: 43.72° N, 126.66° E), were used for Experiment I in this

study. Bees were housed in Langstroth hives, each with six frames of bees. Another nine 6-frame

A.mellifera colonies were used for Experiment II in the same apiary during April 2013.

Experiment I. Differences of T and RH in drone and worker brood across
three developmental stages

The aim of the experiment is to determine if there are differences across the eggs, larvae and

pupae within each caste (worker or drone brood) and also if there are differences between

worker and drone brood.

Six colonies were randomly divided into two groups, one group with brood and one brood-

less. In the brood-right colonies, six frames were arranged as food, worker, worker, drone,

drone and food. The worker and drone frames were eggs (~1,700) laid within 24 hours, from 4

different strong source colonies. All the frames were located in the central part of the 10-frame

hive box; each side of the six frames group ended with wooden “following boards” (shaped like

a frame) to help bees maintain their cluster as is commonly practiced in China. The queen was

caged between the two center-most frames (one worker and one drone frame) during the

whole experiment. For broodless colonies, six frames with honey, pollen and empty cells were

used with the queen caged between the two central frames.

T and RH were measured to the nearest 0.01°C or 0.01% RH using HOBO1 T/RH Data

Logger-U10-003 (USA, Onset Computer Corporation) which were factory calibrated. To reduce

the volume of the instrument (59×44×19mm), the plastic enclosure was removed and the circuit

board (54×39×10mm) was put into a plastic bag which had eighteen small holes distributed on

both sides. One logger was put between two drone brood frames and one between two worker

brood frames to record T and RH, both loggers were at the center of the frames. For T and RH of

broodless colonies, one logger was placed between the 2nd and 3rd frame. Ambient T and RH

were provided by a logger installed in an instrument shelter in the apiary. All HOBO1 loggers

were programmed to sample at 30 minutes intervals. Ten loggers were used simultaneously

(2 × 3 for worker and drone brood, 3 for broodless colonies, and 1 for ambient).

In this experiment, 3 colonies of bees (equipped with sensors to measure relative humidity

and temperature every 30 minutes) were considered with 2 castes of bees (drone and worker),

studied through 3 stages of development (egg, larva and pupa).

Experiment 2: Effect of honey combs on regulation of humidity

The aim of the experiment is to study the effect of honey comb on the regulation of relative

humidity. The experiment consisted of three treatments, with “Box-only” (no comb and no

bees), “Box+frames” (6 honey frames with honey, pollen and empty cells located in the middle

part of each hive, no bees) and “Broodless” (six frames with honey, pollen, and empty cells,

plus approximately 15,000 workers and one queen caged between the two central frames).

Each treatment consisted of 3 hives. The experiment was conducted over a span of 5 days with

measures being taken every 30 minutes.

Data conversion and statistics

Because RH increases as temperature decreases, even when there is no change in the actual

moisture, we standardized RH at a constant 35°C. Mathematically this is similar to using
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absolute humidity as was done in [27]. The calculations for standardized RH (sRH) were as fol-

lows:

sRH ¼ pws
� RH = 5560:94;

where 5560.94 is the saturation pressure (Pa) of water vapor at 35°C.

pws at each temperature was calculated as

pws ¼ exp ð77:3450 þ 0:0057 � T� 7235 = TÞ= T 8̂:2

For Experiment 1, a repeated measures nested analysis of variance (ANOVA) design was

implemented separately for each of the 2 outcomes measures (relative humidity and tempera-

ture) [32]. Since colonies were intrinsically different, the effect of colony is considered a fixed

effect, with the caste (worker or drone) being a nested effect within colony. Finally, stage of

development is nested within both stage and colony. The egg stage was measured for 3 days,

followed by 6 days of larva and 12 days of pupa development. We assume that the repeated

measures of the outcomes taken every 30 minutes were homogenous within each day, and

model this with a compound symmetric repeated measures structure. This design was imple-

mented in SAS version 9.4 (SAS Institute, Cary NC).

For Experiment 2, a repeated measures ANOVA design was implemented, with the treat-

ment considered to have a fixed effect [32]. We assume that the repeated measures of the out-

come taken every 30 minutes were homogenous within each day, and model this with a

compound symmetric repeated measures structure.

Results

Experiment I. Differences of T and RH in drone and worker brood across
three developmental stages

Experiment 1: Temperature. Colony, caste nested within colony and stage nested within

caste and colony, all had a significant effect on temperature (Fig 1, Table 1). Due to a significant

colony effect, suggesting that each colony behaved differently, we could not make generaliza-

tions about differences between castes or among the three stages of each caste, across all three

colonies. Instead, we made all preplanned comparisons between worker and drones across

each brood stage inside each colony. For different brood stages, the general trend is for both

drones and workers to show brood temperature as eggs> larvae> pupae, but this was resolved

only in colony 1 (both drone and worker) and colony 2 (worker only). Other data showed at

least eggs with a higher temperature than pupae (drone: colony 2 and 3, worker: colony 3, Fig

1, S3 Table). Worker brood always showed a different temperature than drone brood, regard-

less of stages, across all three colonies. However, drones had lower temperatures than workers

in their eggs, larvae, and pupae stages in colony 1 and 2 but this trend is reversed in colony 3,

with drones showing higher temperatures across all three stages (S3 Table).

Experiment 1: Relative Humidity. Colony, caste nested within colony and stage nested

within caste and colony, all had a significant effect on relative humidity (Fig 2, Table 2). Due to

a significant colony effect, suggesting that each colony behaved differently, we could not make

generalizations about differences between castes or among the three stages of each caste, across

all three colonies. Instead, we made all preplanned comparisons between worker and drones

across each brood stage inside each colony. sRH differences among the three brood stages in

colony 1 and 2 were consistent across both castes, but colony 3 behaved slightly differently. For

drone brood, pupae showed a lower sRH than eggs or larvae, except in Colony 3, where pupae

showed the same sRH as eggs but lower sRH than larvae. For worker brood, sRH were
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eggs> larvae> pupae for Colonies 1 and 2 but the three stages remained the same in Colony 3

(Fig 2). Worker brood always showed a different sRH than drone brood, regardless of stages,

across all three colonies (S6 Table). However, there is no general trend as to which one is

higher. For example, sRH of drone eggs, larvae and pupae were all significantly lower than

worker counterparts in Colony 1; but in Colony 2, this is reversed, with drone brood sRH being

higher than worker brood in all three stages. In colony 3, drone eggs and pupae were lower but

drone larvae were higher in their sRH compared to that of workers (S6 Table).

Experiment 1: Variability of T and sRH. We determined the variation of both T and sRH

by calculating their variance (VAR) and then F values of various pairwise comparisons. For T,

the general trend of VAR was broodless colonies> worker brood> drone brood (Table 3).

The only exception is that worker pupae showed a lower variability than drone pupae

(F = 1.29, P< 0.05). For sRH, the general trend of VAR was drone brood> broodless

colonies = worker brood (Table 4). The only exception was that during pupae stage, worker

brood VAR of sRH was lower than broodless colonies.

Experiment II. Contribution of honey combs to RH regulation

In this experiment, the treatments had a significant effect on sRH (Fig 3). Specifically, brood-

less sRH was significantly higher from all other treatments; ambient sRH was significantly

lower than all others, but box+frames were not different from box-only treatments.

Discussion

The major findings of this study are that 1) both drone and worker castes show the highest

temperature for eggs, followed by larvae and pupae (Fig 1); 2) temperature in drones are main-

tained at higher precision (smaller variance) in drone eggs and larvae, but at a lower precision

in pupae than the corresponding stages of workers (Table 3); 3) RH regulation showed higher

variance in drone than workers across all brood stages (Table 4); and 4) RH regulation seems

largely due to regulation by workers, as the contribution from empty honey combs are much

smaller compared to adult workers (sRH Box+frames << sRH Broodless) (Fig 3).

We used a standardized RH assuming a constant of 35°C to remove the effects a changing

temperature on RH, because the normal inverse relationship between the two will create mis-

leading results without this standardization. Statistically this is equivalent of using absolute

humidity, as it was done in another study [27]. However, the advantage of using this “standard-

ized RH” (instead of absolute humidity) is that we have a better “feel” of the humidity levels.

Instead of something like 0.08% of absolute humidity, we have a familiar range of RH (e.g. 30–

80%) when temperature is fixed at the brood nest temperature at 35°C.

Fig 1. Temperature of drone (A) and worker (B) brood during eggs, larvae and pupae stages. Bars with different letters on top of them indicate
significant differences (P<0.05) within each colony by Least Square Means after analysis of variance showed a significant effect.

doi:10.1371/journal.pone.0148740.g001

Table 1. Tests of fixed effects for honeybee brood temperature.

Effect Num DF Den DF F Value Pr > F

Colony 2 40 421.80 < .0001

Caste 3 48 680.96 < .0001

Stage 12 48 47.01 < .0001

doi:10.1371/journal.pone.0148740.t001
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Fig 2. sRH of drone (A) and worker (B) brood during eggs, larvae and pupae stages. Bars with different letters on top of them indicate significant
differences (P<0.05) within each colony by Least Square Means after analysis of variance showed a significant effect.

doi:10.1371/journal.pone.0148740.g002

Temperature and Humidity in Bee Brood Nests

PLOS ONE | DOI:10.1371/journal.pone.0148740 February 16, 2016 7 / 12



Pupae required the lowest temperature in both worker and drone brood

Different stages of brood may have different optimal temperatures. Our study showed that in

both worker and drone brood, eggs had the highest temperature, followed by larvae and pupae

(Fig 1). This is not consistent with previous finding that pupae showing higher temperatures

than either eggs or larvae [24]. It is possible that our measuring device is more sensitive and

records more accurately than the technology used in the 50s. However higher temperature is

known to inhibit fungal pathogens such as chalkbrood [33], which typically attack brood at the

larval stage or newly capped brood. More studies are needed to see how robust this pattern is,

since we only used three colonies.

Brood temperatures are different between worker and drone brood

We found that there are temperatures differences across all three development stages, with

worker brood temperature slightly higher than drone brood (Colonies 1 and 2, Fig 1). These

data are consistent with the findings of Levin and Collison [24]. They concluded that worker

brood is maintained at a significantly higher temperature than drone brood in the center of

brood nest, but this difference is not maintained in the outer brood nest regions. In our study

both worker brood and drone brood were placed near the center in a symmetrical way, and we

observed such a difference in 2 out of 3 colonies.

Caste difference in RH regulation show a different pattern compared to
temperature regulation

Our hypothesis was that microenvironment for worker brood might be more tightly regulated

than for drone brood. This is not totally supported by our data. For temperature, both eggs and

larvae of drones show a lower variance than that of workers, but this pattern is reversed in

pupae (Table 3). However, for sRH, drone brood showed a higher variance than worker brood

Table 2. Tests of fixed effects for honeybee brood sRH.

Effect Num DF Den DF F Value Pr > F

Colony 2 40 3279.76 < .0001

Caste 3 48 1003.2 < .0001

Stage 12 48 46.77 < .0001

doi:10.1371/journal.pone.0148740.t002

Table 3. Variance of temperature in different developmental stages of workers and drones. Numbers
in parenthesis indicate sample size. Numbers in [] denote the ratio was reversed (e.g. FWorker brood-Drone brood,

for pupae stage, [1.29] denotes the original F value was 1/1.29).

Eggs Larvae Pupae

Worker brood 0.18 (287) 0.23 (863) 0.09 (1727)

Drone brood 0.04 (287) 0.07(935) 0.12 (2087)

Broodless 0.63 (287) 2.82 (935) 3.84 (2087)

Ambient 17.52 (95) 16.21 (287) 17.55 (575)

FWorker brood-Drone brood 4.40* 3.38* [1.29]*

FDrone brood-Broodless 15.75* 41.41* 33.12*

FDrone brood-Ambient 438.0* 231.57* 146.25*

FBroodless-Ambient 27.81* 5.75* 4.57*

* indicates significant difference (P<0.05) of the F value.

doi:10.1371/journal.pone.0148740.t003
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at all three stages (eggs, larvae and pupae, Table 4). sRH in drone brood therefore is not regu-

lated as precisely as that in worker brood. It is not clear which one is more important for brood

development, T or sRH. It is possible that sRH regulation might be more costly (requires the

foraging for water, for example) compared to T which only consumes more energy. If this

assumption is true, then our hypothesis was supported for better humidity control in worker

brood compared to drone brood. In other words, bees might regulate humidity more tightly for

worker brood, which is important for both survival and reproduction. However, the fact that

broodless colonies show similar variance to worker eggs and larvae suggest tight regulation of

humidity might not be important for eggs and larvae.

Honey combs contribute little to humidity regulation

We originally hypothesized that honey comb should be able to passively regulate RH due to

honey’s hygroscopic properties. Theoretically, it is possible that combs with honey will be able

to absorb moisture when ambient RH is high and then release the moisture when RH is low.

However, Box+frames (these frames had honey, but no bees) had 11.70% sRH, which is not sig-

nificantly higher than the 11.25% for Box-only; while ambient had sRH of 8.18%. We interpret

that a single hive body contributed as much moisture as the box with frames (~3%). RH started

to climb around 6:30 am in the Box-only and 7:00 am in the Box+frames, with Box+frames

showing a delayed climb (max near 15 hrs, instead of at 12 noon for Box-only) as well as more

attenuated peak (20.90% max instead of 26.49% max) (Fig 3).

Humidity in colony is largely due to regulation by honey bee adult
workers

RH regulation by workers seems largely due to active regulation, as the contributions from hive

box (3%) and empty honey combs (0.45%) are much smaller compared to those from adult

workers (55.08% - 11.70% = 43.38% due to worker effort) (Fig 3). Prior to our study, whether

RH in a bee colony was actively regulated remained controversial: some thought that humidity

inside colonies varies passively [29, 30], while Ellis et al. [31] concluded that humidity in colo-

nies is actively controlled by workers. Human et al. [27] indicated workers can only control

humidity in the hive within sub-optimal limits. Based on our Experiment II, honey bee adult

workers not only actively regulated humidity in the bee hive, but also played the most

Table 4. Variance of relative humidity in different developmental stages of workers and drones. Num-
bers in parenthesis indicate sample size. Numbers in [] denote the ratio was reversed (e.g. FWorker brood-Drone

brood, for pupae stage, [4.53] denotes the original F value was 1/4.53).

Eggs Larvae Pupae

Worker brood 0.42 (287) 0.46 (863) 0.30 (1727)

Drone brood 1.06 (287) 1.32 (935) 1.36 (2087)

Broodless 0.46 (287) 0.50 (935) 0.79 (2087)

Ambient 0.05 (95) 0.13 (287) 0.18 (575)

FWorker brood-Drone brood [2.51]* [2.86]* [4.53]*

FWorker brood-Broodless 1.09 ns 1.09 ns 2.62*

FDrone brood-Broodless 2.29* 2.62* 1.73*

FDrone brood-Ambient 21.56* 9.56* 7.37*

FBroodless-Ambient 9.40* 3.80* 4.27*

* indicates significant difference (P<0.05) of the F value. ns: not significant.

doi:10.1371/journal.pone.0148740.t004
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important role in the increase of sRH in the hive (11.70 ± 0.13% and 55.08 ± 0.19% for Box+

frames and Broodless respectively, P<0.01).

The mechanisms of microclimate regulation inside a honey bee colony are complex [34,

35]. Our study shows that drone brood might be treated differently from worker brood inside a

colony. This makes ecological sense because not only are there physiological differences

between the two castes, but the two castes also play different roles inside a colony. Drones are

perhaps more “disposable” because they are not needed for survival, only for reproduction.

Our data for less tight RH regulation for drone brood supports this hypothesis.

Supporting Information

S1 Table. Least squares means for honeybee brood temperature.

(XLS)

S2 Table. Stage temperature differences of least squares means within caste and colony of

honeybee brood.

(XLS)

Fig 3. Changes in sRH inside hive boxes when they are Box-only, Box+frames, or Broodless. Data presented as average of three colonies, during one
24-hour period, the third day of experiment. All other days followed the same pattern. Box-only: no frames nor bees; Box+frames: six honey frames with
honey, pollen and empty cells located at the middle part of each hive; Broodless: six honey frames and 15,000 workers and one caged queen; Ambient:
relative humidity measured in a standard instrument shelter box. Different letters on the right side of the mean indicate the significant differences (P<0.05) by
Least Square Means.

doi:10.1371/journal.pone.0148740.g003
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