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Radio and video-based electronic performance and tracking systems (EPTS) for position
detection are widely used in a variety of sports. In this paper, the authors introduce an
innovative approach to video-based tracking that uses a single camera attached to a drone
to capture an area of interest from a bird’s eye view. This pilot validation study showcases
several applications of this novel approach for the analysis of game and racket sports. To
this end, the authors compared positional data retrieved from video footage recorded
using a drone with positional data obtained from established radio-based systems in three
different setups: a tennis match during training with the drone hovering at a height of 27 m,
a small-sided soccer game with the drone at a height of 50 m, and an Ultimate Frisbee
match with the drone at a height of 85 m. For each type of playing surface, clay (tennis) and
grass (soccer and Ultimate), the drone-based system demonstrated acceptable static
accuracy with root mean square errors of 0.02 m (clay) and 0.15 m (grass). The total
distance measured using the drone-based system showed an absolute difference of
2.78% in Ultimate and 2.36% in soccer, when compared to an established GPS system
and an absolute difference of 2.68% in tennis, when compared to a state-of-the-art LPS.
The overall ICC value for consistency was 0.998. Further applications of a drone-based
EPTS and the collected positional data in the context of performance analysis are
discussed. Based on the findings of this pilot validation study, we conclude that
drone-based position detection could serve as a promising alternative to existing EPTS
but would benefit from further comparisons in dynamic settings and across different
sports.

Keywords: drone, video based, position detection, game sport, validation

1 INTRODUCTION

Metrics generated by the different position detection technologies are already commonplace for fans
of elite sports such as soccer, rugby, basketball, and American football (Barbon Junior et al., 2021;
Schmid et al., 2021; Blair et al., 2022; Charamis et al., 2022). Currently, video-based systems that use
image recognition are popular for live sports broadcasts and rely on several fixed cameras set up
around the field of play. However, there are a number of constraints regarding the location of these
systems. For example, the cameras must be placed at a sufficient height, which is often only possible
in stadia and other well-equipped training facilities (Siegle et al., 2013; Torres-Ronda et al., 2022).

Besides, previous studies have found that video-based electronic performance and tracking
systems (EPTS) for outdoor sports share some limitations, like occlusion during corner kicks in
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soccer (Iwase and Saito, 2004; Qi et al., 2004; Baysal and Duygulu,
2016; Kim et al., 2018), that can only be overcome by human
corrections or the use of more cameras, consequently increasing
the cost. Another point is associated with the use of fixed cameras
versus moving cameras, as this can vary the complexity of the
player tracking process (Chen et al., 2013; Hanzra and Rossi,
2013). Although it is possible, in principle, to use moving (tilting,
swaying, zooming) cameras, almost all commercial systems work
with fixed cameras.

With position detection becoming increasingly popular,
many sport clubs have adopted sensor-based EPTS [e.g
(Global position system (GPS)/Global Navigation Satellite
System (GNSS)- or radio-based systems/local based system
(LPS)], since most training facilities are not suitable for the
installation of video-based EPTS. Sensor-based systems are
also less costly than video-based systems, which would make
it possible for amateur or minor league sports to use this
technology. It is important to notice that the use of sensor
based EPTS in training is not always possible in stadia as
pointed by Shergill et al. (2021), that analyzed the quality of
the signal during professional football matches and found out
that the position of the players affected the quality of the
GNSS signal and therefore their performance measurements.

Nevertheless, the diversity of EPTS available on the market
poses a challenge for game analysts, as these different sources of
data are typically incompatible. Consequently, comparisons of
the players’ performances between these different systems, is
difficult. This issue has been reported in the literature (Varley
et al., 2012; Buchheit et al., 2014; Ellens et al., 2021). This
incompatibility and the lack of interchangeability between
systems creates a need for a single system capable of providing
position detection data in both competition and training settings.

It would be a unique and worthwhile advancement for
performance analysis if there was an affordable and reliable
EPTS for teams and sport associations with small budgets that
could collect data independent from setting, different stadia, or
training sites. Unmanned aerial vehicles (UAV), commonly
known as drones, could be the solution. Drones are widely
available in the consumer market and have been used for
several different applications so far, such as agriculture,
surveillance, cinematography, and in some cases, during sports
events to enhance the spectator experience (Ayranci, 2017). In
recent years, drone technology for consumers has advanced so
much that relatively inexpensive devices with decent flight
characteristics are available and from which high-quality video
recordings can be made. So, potentially, drones could play an
important role in future in performance analysis. Compared to
fixed cameras, these devices are portable and versatile, offer an
aerial perspective of the playing field, and produce high quality
videos that are suitable for broadcasting, position detection, and
tactical analysis. With the ability to analyze the playing field with
a single camera and without the need to install any equipment,
performance analysts could consider using drones as an
alternative to the existing video-based and sensor-based
position detection technologies.

Regarding the positional data that can be obtained from drone
footage, a review of the literature shows that several different

methods based on image processing and computer vision have
been used to automatically track players in a variety of sports (Cai
and Aggarwal, 1996; Araki et al., 2000; Pers and Kovačič, 2000;
Needham and Boyle, 2001; Iwase and Saito, 2004; Di Salvo et al.,
2006; Figueroa et al., 2006; Barris and Button, 2008; Barros et al.,
2011). More recently, new methods based on deep learning
approaches, like convolutional neural networks, have improved
the recognition and tracking of players in field sports, reducing
the need of an operator to correct the tracking of players (Stein
et al., 2017; Thomas et al., 2017; Cust et al., 2018; Renò et al.,
2018). However, these methods all rely on multiple fixed cameras,
and none have yet made use of a single drone camera. Concerning
the use of drones in sports, Ferreira et al. (2015) and Karungaru
et al. (2019) report that it is possible to detect and track players
using a drone, but neither of these studies investigated its use for
performance analysis. These studies also failed to validate the
accuracy and reliability of the positional data obtained from the
drone footage. Consequently, we believe that the current state of
the art in computer vision and deep learning allows for tracking
players automatically and provide positional data to derive
performance indicators based on drone-based video
technology (Thomas et al., 2017; Cust et al., 2018; Liang et al.,
2019; Lee et al., 2020).

Thus, this study aims to describe a new method for position
detection using a drone-based video system. We believe that
the recent advancements in computer vision and deep learning
can be used to reliably and automatically track players in a
variety of sports settings. This study will be the first to provide
validation of positional data obtained from drone footage in
three different sports: tennis, Ultimate Frisbee, and soccer.
This data will also be used to derive relevant performance
indicators for each of these sports based on the drone-based
video technology.

2 MATERIALS AND METHODS

2.1 Sample
To collect representative, real-world data for tracking and for the
validation of our drone-based video tracking system, we acquired
three different samples with varying field sizes, field colors,
number of players, and levels of expertise in three different
sports: tennis, Ultimate Frisbee and soccer. GPS-and LPS-
based technologies were used for the validation of our drone-
based video tracking system. For tennis, the sample was
represented by two 14-year-old male tennis players with eight
and 9 years of experience, respectively. For Ultimate Frisbee, the
sample data was collected during a trial match (n = 14), including
current or former players from the German national team (age:
28.35 ± 2.46 years). For soccer, eight female amateur soccer
players (age:20.80 ± 0.83 years) participated in a small-sided
game (4 vs 4).

All of the participants voluntarily gave informed consent to
participate in the collection of spatiotemporal tracking data via
drone technology. The data was anonymized to ensure
confidentiality. All procedures performed in the study were in
accordance with the Declaration of Helsinki.
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2.2 Drones
An unmanned aerial vehicle is an aircraft without any human
pilot, crew, or passengers on board. UAVs are a type of an
unmanned aircraft system (UAS), which consist of an
additional ground-based controller and a system of
communication with the UAV (Abhishek et al., 2020). The
drone used in this study was a Mavic Air 2 Model (SZ DJI
Technology Co., Ltd. DJI) with Obstacle Sensing, Advanced Pilot
Assistance 3.0, a fully stabilized 3-axis gimbal and 1/2″ sensor
camera. Video frequency was set to 24 Hz with 4K resolution of
3.840 × 2.160 pixels. As the flight duration of this drone is around
34 min, we used a second drone of the same model to replace the
first one and to ensure continuous data acquisition in case we
exceeded this duration. The chosen height during stationary flight
was determined based on the size of the field, weather conditions
and was in accordance with the legal regulations for UAV, in our
case the German regulations (www.gesetze-im-internet.de/
luftvo_2015/). All of these variables were set to optimize the
safety of the participants and the quality of the video footage
through the unique bird’s-eye view perspective.

2.3 Data Acquisition
The data was collected in three different setups: on a tennis court
(23.77 m × 8.23 m) with the drone hovering at a height of 27 m,
on an Ultimate Frisbee field (97.11 m × 36.25 m) with the drone
at a height of 85 m, and on a small-sided soccer field (39 m ×
29 m) with the drone at height of 50 m. All three sports were
recorded from a bird’s eye view with the drone positioned at the
center of the court/field, enabling a full view of the field and the
players, including the surrounding areas of interest, as shown in
Figure 1.

Before each data acquisition, eight red cones (Ø = 0.15 m)
were placed on the field, four of which were placed at the corners
and the other four at the intersection lines (control points). For
the Ultimate Frisbee setup, the control points were located where
the end lines intersect with the side-lines in the intersections of

the end line with the side lines. For the Tennis setup, the control
points were located where the service lines intersect with the
single side lines. The 2D locations of these cones (real-world
coordinates) were measured using the tachymeter Trimble M3
Total Station with the Trimble Access software (Version:
2012.10). This system was used to measure the distance
between a fixed point and the measurement device in X, Y,
and Z coordinates. A reflective marker was placed according
to the cones’ 2D center of mass (COM), which identified the
target point with 0.002 m of accuracy.

The cones’ corresponding projections on the image (image
plane coordinates) were digitized using our developed
software (section 2.4). Thus, the homographic parameters
of the mathematical image-object transformation were
calculated, allowing for 2D kinematic analysis. This method
for obtaining the transformation from 2D image coordinates
to 2D object coordinates was based on 2D homography
(Corke, 2017). Subsequently, both X and Y coordinates
represent the transformed coordinates relative to the court/
field coordinate system with origin in the bottom right of the
field/court.

2.4 Tracking Algorithm
Tracking was done using a flexible software interface developed in
the Python programming language (Python Software
Foundation, https://www.python.org/). Figure 2 presents the
block diagram of the tracking system, in which multiple object
tracking was performed (Bewley et al., 2016; Milan et al., 2016).
This was conducted with a 2 phase System. A Faster-RCNN
object detection neural network was trained to recognize players
from a bird’s eye view (Ren et al., 2015). Next, we tracked the
initial players’ bounding boxes with a generic object tracker called
Atom (Danelljan et al., 2019), which performs at the top of
specific tracking benchmarks such as UAV123 and TrackingNet.

Errors in the tracking process of the bounding boxes were
edited manually through a GUI written with QT (www.qt.io).

FIGURE 1 | Drone perspective from a bird’s eye view for tennis (27 m height), Ultimate Frisbee (85 m height) and soccer (50 m height).

Frontiers in Physiology | www.frontiersin.org March 2022 | Volume 13 | Article 8505123

Russomanno et al. Drone-Based Position Detection in Sports

http://www.gesetze-im-internet.de/luftvo_2015/
http://www.gesetze-im-internet.de/luftvo_2015/
https://www.python.org/
http://www.qt.io
https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


To transform the player coordinates from frame coordinates
to real-world coordinates, we extracted multiple corners of the
different game environments using template matching strategies.
A personal computer (Intel(R) Core (TM) i7-7700HQ, CPU
2.80GHz, 16 GB RAM, Ubuntu) was used to track the players.
All of the coordinates contained the X and Y coordinates of the
players, and the corners were saved as a CSV file.

The X and Y positions of the players were defined as the center
point of the bounding box enclosing the respective player’s
outline. Following the tracking procedure, the X and Y
positions of the players were reconstructed based on the four
corner points extracted for calibration in MATLAB (R2020b, The
MathWorks Inc., Natick, MA, United States) using 2D
homography (Corke, 2017). Due to slight movements of the
drone, the calibration was performed frame by frame to
reduce errors.

2.5 Validation
To validate the drone-based video EPTS system developed in this
work, two different tests were conducted. First, a static validation
was performed using specific known and measured points on the
court/field that were measured with the gold standard
(tachymeter). Secondly, we conducted a dynamic validation.
Ideally, this type of validation is conducted using 3D
kinematic analysis like Vicon or Qualisys (Luteberget and
Gilgien, 2020), but this is challenging and costly to do in field
settings (Linke et al., 2018) and actually cannot be done in large

environments like an Ultimate Frisbee field. The alternative is an
approximation, which involves comparing the measurements the
drone-based video system with other systems that have been
reported in the literature (Frencken et al., 2010; Randers et al.,
2010; Ogris et al., 2012; Varley et al., 2012; Buchheit et al., 2014;
Ellens et al., 2021). In this case, we used a GPS system and a LPS
system, described in Table 1.

All participants in this study were equipped with at least one
transponder for the GPS system (GPSports Sports Performance
Indicator (SPI) Pro X, Canberra, Australia). For tennis, an
additional transponder was attached for the LPS system
(KINEXON Precision Technologies, Munich, Germany). The
transponders were placed on the upper thoracic spine between
the scapulae.

The GPS transponders were activated 15 min prior to data
collection to allow for the acquisition of satellite signals, as only
GPS signals that meet the internal quality thresholds established
by the manufacturer are recorded (Shergill et al., 2021). The LPS
transponders were activated at the same time to reduce contact
between the investigators and the athletes in accordance with the
COVID-19 guidelines at the time. Just before the start of a match,
the drone was positioned above the center of the court/field and
set to remain in a stationary position (see Figure 1).

2.5.1 Static Validation
For the static validation measurements, the real-world
coordinates of four cones on the field/pitch (Ø = 0.15 m) were

FIGURE 2 | Block diagram showing the main steps of the proposed tracking method using a drone-based video system.

TABLE 1 | Description of the experimental design for tennis, Ultimate Frisbee and soccer, including the number of participants, gender, duration, match type, and tracking
devices used.

\Sport N Gender Overall duration (min) Validation intervals Exercise type GPS LPS Drone

Tennis 2 Male 29 4 sessions match ✓ ✓ ✓
Ultimate Frisbee 14 Mixed 34 3 sessions match ✓ ✓
Soccer 8 Female 5 1session small-sided game ✓ ✓
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measured with a tachymeter, which served as the gold standard.
For the sake of comparison, 5 minutes of video were acquired at
frequency of 24 Hz, just before the data collection session to
compare the drone measurements with the tachymeter
measurements on the tennis court and on the Ultimate
Frisbee field.

Previous studies used a limited number of timepoints for one
position to estimate the static measurement, for example by fixing
a transponder to the ground for 2 minutes or by measuring the
court/field manually before data acquisition (Lara et al., 2018;
Linke et al., 2018).

2.5.2 Dynamic Validation
Raw XY-positions from each of the EPTS were exported using the
respective software (see Figure 2). The raw speed data was
synchronized for speed using cross correlation. Which allowed
for the calculation of the deviation between the GPS system and
the drone system for each point in time and for each setting. Data
from the systems was sampled at different frequencies: 15 Hz
(GPS), 20 Hz (LPS) and 24 Hz (drone). All of the remaining data
analysis steps were executed in MATLAB (R2020b, The
MathWorks Inc., Natick, MA, United States). The data from
the LPS system and the drone systemwas down-sampled to 15 Hz
using a linear interpolation of the initial values. All positional data
was filtered using a fourth-order Butterworth low pass frequency
filter (Linke et al., 2018).

The dynamic validation was performed with two kinds of
analysis. First, the cumulative distance measured by the drone
system was compared to the distance from the LPS system for
tennis and from the GPS system for all sports. Secondly, the
distance covered across different speed zones was also compared:
stationary walking (0–3.9 km/h), jogging (4.0–7.9 km/h), and
quick running (above 8 km/h), mostly because the sample
hardly reached speeds above 14 km/h. These speed zones were
adapted from Krustrup and Mohr (2015).

Speed and acceleration data from the drone and LPS systems
were derived from filtered positional data. The GPS system
assesses speed data by the rate of change (Doppler) in the
satellites’ electromagnetic signal frequency (Schutz and Herren,
2000). Therefore, the manufacturer’s speed variable was used and
served as the basis to calculate acceleration.

2.6 Statistical Analysis
The accuracy of the static XY-position data was estimated by
means of the root mean square error (RMSE) as seen in .

RMSE �
�����������∑n

i�1(xi − yi)
n

√
(1)

where yi are the observations, xi predicted values of a variable, and
n the number of observations available for analysis.

Descriptive statistics are provided as means, standard
deviations (SD) and coefficient of variation (CV). A Shapiro-
Wilk test was used to test the normality of the data. In cases where
the data failed the normality test, non-parametric test procedures
were used to analyze the data (Wilcoxon signed-rank test).

To evaluate the performance of drone tracking compared to
GPS and LPS systems in the three different sports contexts
(tennis, Ultimate Frisbee, and soccer), a Bland-Altman plot
was drawn to assess the level of systematic difference between
measurements of the total distance covered by the players.
Pearson’s correlations coefficients were classified as (small
effect<0.3; medium <0.5; large >0.5). Reliability of total
distance covered was assessed calculating intra-class
correlation coefficients (ICC). ICC coefficients were classified
according to Koo and Li (2016) into poor (ICC ≤0.5), moderate
(ICC ≤0.75), good (ICC ≤0.9), and excellent (ICC >0.9).
Statistical analyses were conducted in MATLAB R2020b (The
MathWorks, Massachusetts, United States) and SPSS (v27.0.1.0).

3 RESULTS

3.1 Static Validation
Table 2 shows the RMSE of the distances between the observed
and expected positions on the court/field for the four control
points used in the tennis match and in the Ultimate Frisbee
match. It is important to reiterate that the four control points
were placed in specific positions based on the different court/field
sizes for tennis and Ultimate Frisbee.

The mean RMSE for a static position on the tennis court was
0.02 m, 0.08% of the court’s length and 0.24% of the court’s width.
For the Ultimate Frisbee field, the mean RMSE for a static
position on the field was 0.15 m, 0.15% of the court’s length
and 0.41% of the court’s width. The maximum RMSEs found in
static positions on the tennis court and the Ultimate Frisbee field
for a 5-min testing interval was 0.04 and 0.20 m, respectively.

3.2 Dynamic Validation
The regression analysis for the total distance between the drone
and the GPS/LPS systems showed a significant linear regression
(p < 0.05) for all three sports. For tennis, the R2 value was 0.980
with a RMSE of 21.8 m, RMSE% of 5.78% for GPS, with an ICC
value for consistency of 0.974 and the ICC for absolute agreement
of 0.923 (p < 0.001); for LPS, the R2 value was 0.999 with a RMSE
of 5.1 m, RMSE% of 1.21%, with an ICC value for consistency of
0.999 and the ICC for absolute agreement of 0.998 (p < 0.001). For
Ultimate Frisbee, the R2 value was 0.996 with a RMSE of 10.7 m,
RMSE% of 1.01%, with an ICC value for consistency of 0.998 and
the ICC for absolute agreement of 0.984 (p < 0.001). For soccer,
the R2 value was 0.926 with a RMSE of 12.9 m, RMSE% of 3.11%,

TABLE 2 | RMSE values for the four control points used to evaluate the static
accuracy during the calibration procedure on the tennis court and on the
Ultimate Frisbee field. Means and standard deviations are shown for both settings.

Control points RMSE values (tennis) RMSE values (Ultimate frisbee)

Number 1 0.04 m 0.20 m
Number 2 0.01 m 0.16 m
Number 3 0.04 m 0.11 m
Number 4 0.02 m 0.13 m
Mean ± sd 0.02 ± 0.01 m 0.15 ± 0.03 m
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with an ICC value for consistency of 0.956 and the ICC for
absolute agreement of 0.942 (p < 0.001).

Table 3 shows the descriptive statistics (means, standard
deviations anc coefficient of variation) for the different
tracking devices (Drone/GPS/LPS) regarding total distance
covered and total distance covered in the three different
speeds: stationary walking (0–3.9 km/h), jogging (4.0–7.9 km/
h), quick running (above 8.0 km/h) in Tennis, Ultimate
Frisbee (UF) and soccer small-sided game.

Figures 3–5 show Bland-Altman plots with the mean values
between the measurements and the lower and upper limits of
agreement for the total distance in all three sports (tennis,
Ultimate Frisbee, and soccer).

Regarding the total distance covered, an absolute difference of
13.67% was calculated for tennis, 2.78% for the Ultimate Frisbee,
and 2.36% for soccer between the drone and the GPS. The error
between GPS and LPS was 9.42% in the tennis match. The total
distance covered between the drone and LPS had an absolute
difference of 2.68% in the tennis match.

Figures 6, 7 show the deviation in the covered distances in total
and at different speeds, as illustrated by box plots. For Ultimate
Frisbee and soccer, Figure 6 shows the measurements from the
drone andGPS. For tennis,Figure 7 shows themeasurements from
the drone, GPS, and LPS. Since the players in this sample hardly
ever reached speeds above 14 km/h, the distances covered in each
speed zones were presented as follows: up to 4 km/h, from 4 to
8 km/h and greater than 8 km/h.

TABLE 3 | Descriptive statistics for the different tracking devices (Drone/GPS/LPS) regarding total distance covered and total distance covered in the three different speeds:
stationary walking (0–3.9 km/h), jogging (4.0–7.9 km/h), quick running (above 8.0 km/h) in Tennis, Ultimate Frisbee (UF) and Soccer small-sided game. Means, standard
deviations and coefficient of variance are shown for all the settings.

Device Tennis UF Soccer

Mean ±SD CV% Mean ±SD CV% Mean ±SD CV%

TOTAL DISTANCE (M) Drone 430.6 168.6 39.15 1022.2 166.9 16.32 404.2 49.0 12.12
GPS 377.1 141.0 37.39 1050.9 167.9 15.97 413.5 43.8 10.59
LPS 420.0 166.2 39.57 — — — — — —

DISTANCE IN SPEED Drone 143.5 60.9 42.43 148.6 28.0 18.84 90.5 15.7 17.34
0–3.9 kM/H (M) GPS 205.7 87.7 42.63 143.2 25.3 17.66 85.2 12.9 15.14

LPS 128.17 57.1 44.55 — — — — — —

DISTANCE IN SPEED Drone 217.8 104.0 47.75 297.2 54.0 18.16 168.4 35.9 21.31
4.0–7.9 kM/H (M) GPS 143.4 60.9 42.46 303.3 56.8 18.72 161.4 27.6 17.10

LPS 220.4 101.3 45.96 — — — — — —

DISTANCE IN SPEED Drone 69.3 31.1 44.87 576.4 180.0 31.22 145.2 47.2 32.50
>8.0 kM/H (M) GPS 27.9 13.8 49.46 684.37 183.0 26.73 166.9 57.3 34.33

LPS 71.4 34.6 48.45 — — — — — —

FIGURE 3 | Bland-Altman plot for the total distance covered in a tennis
match measured by the drone, GPS, and LPS. Dashed blue lines show the
limits of agreement (111.10 m and -25.36 m), and the continuous line shows
the mean (42.89 m) between GPS and LPS. Dashed black lines show
the limits of agreement (−0.20 m and −21.05 m), and the continuous line
shows the mean (−10.63 m) between the drone and LPS.

FIGURE 4 | Bland-Altman plot for the total distance covered in an
Ultimate Frisbee match measured by the drone and GPS. Dashed lines show
the limits of agreement (7.93 and 49.41), and the continuous line shows the
mean 28.87 m.
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3.3 Exemplary Results in Sports
Figures 8–10 show exemplary results in the three different sports
that can be obtained from a drone-based video EPTS system.
Figure 8 shows the typical movements of players (n = 14) during
the pull in an Ultimate Frisbee game, showing that the drone
system can deliver not only X and Y positions of the players, but
also allows for new insights about tactical displacement using the
bird’s eye view. Figure 9 illustrates the X and Y positions of tennis
players on the court during a match. Figure 10 is a direct

application of tracking data for game analysis in small-sided
soccer games based on heatmaps.

4 DISCUSSION

This study is the first to demonstrate the application of a drone-
based video system for the performance analysis of three different
sports: tennis, Ultimate Frisbee, and soccer. The results not only

FIGURE 5 | Bland-Altman plot for the total distance covered in a small-
sided game soccer match measured by the drone and GPS. Dashed lines
show the limits of agreement (36.42 m and −17.64 m), and the continuous line
shows the mean (9.39 m).

FIGURE 6 | Percentage deviation of the total distance measurements
between the drone-based video system and GPS in Ultimate and soccer for
different speed zones. Boxplots show the respective median (red line); the
bottom and top edges of the box indicate the 25th and 75th percentiles
(blue box). The whiskers extend to the most extreme data points without
considering any outliers (“+” symbol). UF (Ultimate Frisbee), So (soccer small-
sided game).

FIGURE 7 | Percentage deviation of the total distance measurements
between the drone-based video system and LPS and drone-based video
system and GPS in tennis for different speed zones. Boxplots show the
respective median (red line); the bottom and top edges of the box
indicate the 25th and 75th percentiles (blue box). The whiskers extend to the
most extreme data points without considering any outliers (“+” symbol).

FIGURE 8 | Tracking data recorded with a drone from an Ultimate
Frisbee game during the pull and 7 s afterwards. Team 2 (red square) has the
frisbee (upper field). Frisbee was not tracked; blue dashed line represents the
vector from starting to end position of the passe.
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show the system’s ability to detect and track players from a bird’s
eye view (Ferreira et al., 2015; Karungaru et al., 2019), but also to
collect and generate position detection data. Furthermore, the
results from this study are validated against some of the existing
position detection technologies (GPS and LPS) that are currently
used in performance analysis.

The mean measurement error found for the static
validation was less than 0.41% of the size of the court/field
for all three sport settings. The maximum difference found
between the known and measured positions on the tennis
court and on the Ultimate Frisbee field was 0.04 and 0.20 m,
respectively. These values are lower than the ones reported by
Alcock et al. (2009), who reported mean errors of 1.5% of the
width and 2.5% of the length of a soccer field. The results from
the static validation support the accuracy of the drone-based
video system for the measurement of static positions on the
court/field when compared to the gold standard (the
tachymeter). This improved accuracy may be explained by
the fact that every frame from the drone footage is calibrated
individually since the drone is subjected to small movements
during flight.

For the dynamic validation, the measurements of the total
distance covered, and the distances covered in different speed
zones were compared between the drone system and commercial
GPS and LPS systems. The total distance covered measured by the
drone had a high correlation with both the GPS and LPS systems,
with Pearson correlation coefficients of 0.96 and 0.99,
respectively. It is important to clarify that correlation, in this
case, does not mean that all of the systems came to the same
measurement, but that the systems are related to each other. A
better way to evaluate the agreement between the different
methods might be a regression analysis. In this way, we would
need to determine a formula that best predicts the magnitude of a
value obtained from the drone as it relates to another measuring
device (GPS or LPS).

Regression analysis shows a R2 value higher than 0.90, and ICC
results showed excellent consistency and absolute agreement in
the measurement of the total distance covered. Buchheit et al.
(2014) report small differences (5.4%) between GPS and optical
tracking systems in relation to total distance covered. In this
study, the differences in the total distance covered between the

drone and GPS systems are around 3% for Ultimate Frisbee and
soccer small-sided game.

However, at this time, there is no gold standard used for
dynamic validation of drone-based position detection. The
authors chose to present Bland–Altman plots that illustrate
some qualitative data, such as the mean bias (how much does
the drone deviate from the measurements obtained by the GPS
and/or LPS) and the confidence intervals, that may be used to
explain some of the systematic and random deviations observed
between the different tracking technologies in this study.

The limits of agreement in the Bland-Altmann plot for total
distances are 49.41 and 7.99 m for Ultimate Frisbee (drone vs
GPS; see Figure 4), 36.52 m and −17.64 m for soccer (drone vs
GPS; see Figure 5), 15.74 m and −122 m for tennis (drone vs GPS)
and −0.26 m and −21 m for tennis (drone vs LPS; see Figure 6).
The limits of agreement for the drone vs LPS in tennis look better
compared to the results for GPS, as the size of the field may have
hindered the precision of the GPS measurements.

Overall, there was excellent agreement in the measured
distances covered in different speed zones during the tennis
match between the drone and LPS systems. However, there
were some noteworthy differences between these two systems at
higher speeds (above 8 km/h), which suggests there might have
been a systematic error during data collection. For validation
purposes, it would be ideal to compare the drone system to an
accepted gold standard as the reference system to confirm the
accuracy of instantaneous position, speed, and acceleration values.
This type of validation should be conducted in the near future for
the drone-based video system, especially using regression analysis
to compare the results against other EPTS or gold standards like
Vicon or Qualisys (Luteberget and Gilgien, 2020).

Based on the findings of this study, the application of a drone-
based video system resulted in more accurate static positions and
dynamic trajectories (with less deviation) compared to LPS- and

FIGURE 9 | Example of X and Y positions obtained by the drone system
for two players during 1-min of gameplay in a tennis match.

FIGURE 10 | Heatmap representation of the two teams (4 vs 4) during
5 min of gameplay in a small-sided soccer game.
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GPS-based systems. This finding is in line with previous studies
that compared traditional video-based systems with GPS-based
systems (Buchheit et al., 2014; Linke et al., 2018). While it appears
that video-based systems generate more accurate and
representative results for multi-player tracking compared to
sensor-based systems, the process still requires supervision by
an experienced operator, as the player trajectories can be
unpredictable. Nevertheless, the advantages of a drone-based
video system also include video footage from a bird’s eye view,
which allows for a unique perspective for tactical analysis of both
one’s own team and the opposing team. The drone’s main
advantage is its versatility, as it can be used in training or
during competitions without the need to install any additional
equipment (traditional video-based systems) or attach any
devices to the players (sensor-based systems). A drone-based
video system also provides a different vantage point than
traditional video-based systems, as the drone can fly above the
court/field and be maneuvered to remain in a stationary position.
Lastly, drones are accessible and less costly than other EPTS,
facilitating the ability to use position detection methods for
performance analysis at all levels.

It is worth mentioning that the current work presents some
limitations regarding its validation at higher speeds, greater than
8 km/h, given that the study sample did not reach such speeds.
Nevertheless, the results found in this study are of sufficient
validity for Ultimate Frisbee, tennis, and small-sided games in
soccer, where other authors have also reported that higher speeds
are rarely reached (Linke et al., 2018; Linke et al., 2020).

5 CONCLUSION

To the best of our knowledge, this is the first study to demonstrate
and validate the use of drones for performance analysis, as well as
present examples of their application in several different game
sports (tennis, Ultimate Frisbee, and soccer). The drone-based
video system not only detects and tracks players’ positions and
trajectories, but also provides performance analysis metrics in
competition and training settings. The results were validated
against known position detection technologies on the market
(GPS and LPS). By implementing a drone-based video system,
coaches and performance analysts will be able to visualize and
quantify the X and Y positions of all players on the court/field.
Furthermore, the drone footage will allow for conclusions about
the physical demands and tactical behaviors observed in training

and in competition across a variety of game sports. Future
research can build upon the findings of this work by further
testing the drone-based video system in different sport contexts
and environments, such as indoor use. In the meantime, this
study has shown that drone-based video position detection is
both feasible and reliable; this technology has the potential to
enhance performance analysis in sports and facilitate access to
position detection methods.
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