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Abstract

Drones used for illegal purposes is a growing problem and a way to detect these
is needed. This thesis has evaluated the possibility of using sound analysis as the
detection mechanism. A solution using linear predictive coding, the slope of the
frequency spectrum and the zero crossing rate was evaluated. The results showed
that a solution using linear predictive coding and the slope of the frequency spec-
trum give a good result for the distance it is calibrated for. The zero crossing rate
on the other hand does not improve the result and was not part of the final solu-
tion. The amount of false positives increases when calibrating for longer distances,
and a compromise between detecting drones at long distances and the number of
false positives need to be made in the implemented solution. It was concluded
that drone detection using audio analysis is possible, and that the implemented
solution, with linear predictive coding and slope of the frequency spectrum, could
with further improvements become a useable product.
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Chapter 1

Introduction

In the last few years the use of small drones have increased dramatically. Illegal
activity with the assistance of these drones has increased as well, or at least become
more obvious than before. There have lately been reports of drones being used to
transport drugs across borders, transport contraband into prisons and take aerial
footage of secure facilities. [1–3] To help protect from these activities, a product
for detecting drones could warn about a security breach in time to take action.
This thesis concerns the creation of a drone detector which uses audio analysis in
the detection process.

1.1 Problem Definition

The goal of the thesis is to create a drone detector based on audio analysis. Ques-
tions to answer are

• Is it possible to detect drones using audio analysis?

• Which characteristics of sounds are interesting to compare with?

• Will other sounds be detected if all drones are detected?

• How much better does the detector get with added characteristics in the
detection?

• Can multiple microphones give any benefits?

A database of drone sounds has to be created to compare the observed sound
against. The solution should be implemented on a DSP and tested with drone
sounds and other sounds to evaluate the quality of the detector.

To decide on suitable parameters two drones were used, one WLtoys V262
Cyclone Quadcopter (a large quadcopter of 52 × 52 cm) and one Hubsan X4 (a
small quadcopter of 11×11 cm) as of now called Cyclone and X4 respectively, seen
in figure 1.1. They were chosen to see if the characteristics were similar despite
the size difference. 50% of the drones’ throttle level was chosen as the focus since
that is approximately when the drones start to hover.
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2 Introduction

Figure 1.1: The drones used in the project, WLtoys V262 Cyclone

Quadcopter on the left and Hubsan X4 on the right.

1.2 Related Work

No research on detection of drones using audio as the only source of detection has
been found. However a number of articles trying to detect other sounds using audio
analysis have been encountered, the most related concerning speech detection since
they use similar techniques. Detection of vehicles have also been a popular subject
among searched articles [4][5]. Articles about drone detection have been found
when other attributes than sound have been used in the detection.

Although no articles on the subject have been found, there are products on the
market that market themselves as drone detectors and claim to use sound as the
only source of detection, such as DroneShield [6] and DRONE-DETECTOR [7].
The product Drone Detector [8] use multiple factors, including sound, to detect
drones.

1.3 Disposition

Chapter 2 introduces the background needed for the remainder of the report.

Chapter 3 discusses how the authors chose which parameters to use for the pro-
cessing of the signal before performing linear predictive coding.

Chapter 4 introduces the considered additions to the detector.

Chapter 5 describes how the database is created and how the comparison is
done.

Chapter 6 presents how the final solution was implemented on the DSP.
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Chapter 7 describes the test procedure and presents the results.

Chapter 8 discusses the results and possible further improvements.

Chapter 9 summarizes the thesis.

Appendix A describes how the recordings used in the thesis were carried out.

Appendix B contains the limits used in the database.

Appendix C presents the hardware used in the implementation.
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Chapter 2
Scientific Background

The goal of the thesis is to create a drone detector which can detect drones using
audio analysis. Detection is performed by comparing the similarities on selected
parameters between the incoming sound and values in a database. Multiple dif-
ferent techniques exist in finding parameters of sound to compare. The focus of
the thesis became coefficients gained from speech recognition methods. When de-
tecting human speech the three most used techniques are linear predictive coding
(LPC), mel-frequency cepstrum coefficients (MFCC) and perceptual linear predic-
tive (PLP) analysis. MFCC and PLP analysis are both based on how humans
perceive sound. The methods could therefore be unsuitable for detecting drones
as the detector should not interpret the sound it receives [9]. LPC requires the
analyzed sounds to have spikes in the spectral envelop as human speech does.
Studied drone sounds showed similarities to human speech, which made LPC a
possibility, consequently LPC was chosen. The thesis will also consider the slope
of the frequency spectrum and the zero crossing rate (ZCR) as additions to the
detection.

2.1 Linear Predictive Coding

Linear predictive coding is mostly used when analyzing speech, the name comes
from that at a given time n the speech signal s(n) can be approximated as a linear
combination of the past p speech samples and an excitation term, Gu(n). The
equation is given by

s(n) =

p
∑

i=1

ais(n− i) +Gu(n) (2.1)

where ai are the LPC coefficients which are assumed constant over the frame being
analyzed. From (2.1) the transfer function for the speech signal can be derived:

H(z) =
S(z)

GU(z)
=

1

1−
∑p

i=1 aiz
−i

.

(2.2)

Linear predictive coding gives the possibility of estimating the sound using past
samples. The estimation of the signal is given by

s̃(n) =

p
∑

i=1

ais(n− i). (2.3)

5



6 Scientific Background

From the exact relation and the estimation of the signal, the prediction error, e(n),
can be defined as [10, pp.100-102] [11, pp.115,117]

e(n) = s(n)− s̃(n) = s(n)−

p
∑

i=1

ais(n− i). (2.4)

The problem in linear prediction analysis is to find predictor coefficients, ai,
that minimize the mean square error signal,

∑

n

(s(n)− s̃(n))2. (2.5)

These coefficients need to be estimated from sufficiently short segments since the
characteristics only are stationary during short periods of time. When minimizing
the mean square error with respect to ai, a system of p equations to solve for the
coefficients is obtained. This system can be solved using different methods. The
LPC coefficients give an accurate representation of the signal when the method is
used on stationary signals. Since the input signal is seldom stationary, it is divided
into smaller frames that are quasi-stationary to improve the result.

The covariance method and the autocorrelation method are two common ap-
proaches to calculate ai, their difference lies in the estimation of the autocorrelation
rn(i). The covariance method does not always give a solution. The autocorrelation
method on the other hand always does, and for that reason the autocorrelation
method was chosen. [10, pp.102] [11, pp.117]

2.1.1 Autocorrelation Method

The most common technique to calculate the LPC coefficients is the autocorrela-
tion method. This method needs to window the signal to obtain a good result.
The signal is divided into frames by multiplying it by a windowing signal that is
zero outside the interval of interest:

sn(m) =

{

s(m+ n) ∗ w(m), 0 ≤ m ≤ N − 1
0, otherwise

(2.6)

where N is the desired window length in samples. The windowing is also supposed
to taper the signal at the ends of the desired interval to avoid smearing in the
frequency domain and minimize the error at section boundaries. A hamming
window is often used as the windowing function:

w(n) =

{

0.54− 0.46 cos( 2πn
N

), 0 ≤ n ≤ N − 1
0, otherwise

(2.7)

where N is the desired window length in samples. There are other windowing
functions that satisfy these requirements. The hamming window was selected
because of its frequent use in LPC. [10, pp.103,105][11, pp.115-116]

The autocorrelation of a signal for the autocorrelation method is calculated
by

rn(i) = rn(−i) =

N−i−1
∑

k=0

s(k)s(k + i) (2.8)
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Figure 2.1: Hamming window of length 3000 in the time domain.

where i is a value greater than or equal to one. The autocorrelation equation for
linear predictive coding is derived from the attempt at minimization of the mean
square error signal in (2.5). Since the autocorrelation is symmetric the resulting
equations to be solved for ai can be written as

rn(i) =

p
∑

k=1

akrn(| i− k |) 1 ≤ i ≤ p (2.9)

which in matrix form becomes











rn(0) rn(1) rn(2) · · · rn(p− 1)
rn(1) rn(0) rn(1) · · · rn(p− 2)

...
...

...
. . .

...
rn(p− 1) rn(p− 2) rn(p− 3) · · · rn(0)





















a1
a2
...
ap











=











rn(1)
rn(2)

...
rn(p)











(2.10)

or

R · a = r. (2.11)

The R matrix is a Toeplitz matrix, a matrix with identical elements in its diagonals.
This type of matrix always has an inverse, therefore the coefficients can always be
calculated by

a = R−1 · r. (2.12)

The Toeplitz matrix also makes it possible to use fast methods for the computation,
for example the Durbin recursion which can solve (2.12) in O(p2) instead of O(p3)
which is the complexity of the Gaussian method. [10, pp.106][11, pp.117-119]
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2.1.2 Durbin Algorithm

The filter coefficients can be computed recursively by the following equations:

E(0) = r(0) (2.13)

ki =







r(i)−

i−1
∑

j=1

α
(i−1)
j r(i− j)







/E(i−1), 1 ≤ i ≤ p (2.14)

α
(i)
i = ki (2.15)

α
(i)
j = α

(i−1)
j − kiα

(i−1)
i−j , 1 ≤ j ≤ i− 1 (2.16)

E(i) = (1− k2i )E
(i−1), (2.17)

where r(i) is the ith autocorrelation for frame l (frame index left out of the equa-
tions) and E(i) is the prediction error for a predictor of order i. E(i) can be
used to decide on the number of coefficients to use. The above equations results

in LPC coefficients, am = α
(p)
m , and reflection coefficients, km, for 1 ≤ m ≤ p.

[10, pp.115,412][11, pp.121]

2.1.3 Different Coefficients

From LPC different coefficients can be derived. All of them are equivalent to
each other, but they have some different characteristics which makes them more
suitable to different areas of usage. Two of the most common are LPC coefficients
and reflection coefficients.

LPC Coefficients

The LPC coefficients are the ai from the Durbin recursion. All ai depend on each
other, which means that all calculations must be redone if a different number of
coefficients are required.

Reflection Coefficients

The reflection coefficients are the ki from the Durbin recursion. They are also
called PARCOR (PARtial CORrelation) coefficients and Lattice coefficients. The
reflection coefficients are ordered from most important to least important. The
first coefficient holds the most information and the second then holds some of the
information that is left in the signal and so forth. When the coefficients are close
to zero, there is nothing more to predict and increasing the number of coefficients
will not improve the result.

All reflection coefficients will always have the same values for the same record-
ing independent of the number of coefficients used, therefore one coefficient at a
time can be calculated without affecting the result. The reflection coefficients are
a variant of more robust LPC coefficients.
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2.2 Power Spectral Density

This thesis has used power spectral density (PSD) for analyzing signals. The
contents of a signal can be represented as the frequencies it is composed of by
transforming the time-domain signal into the frequency domain. A higher spike
for a frequency means that it is more prominent in the signal than a lower spike.
The power spectral density can be used for finding periodicity or observing which
frequencies are present in the signal.

2.3 Simple Linear Regression

Simple linear regression is used to find the line with the least amount of distance
to all data points under consideration. The result of the regression is a trend line
for the points. The line is calculated by considering,

yi = α+ βxi + ǫi (2.18)

where ǫi is the least square error, that minimizes

n
∑

i=1

ǫ̂2 =
n
∑

i=1

(yi − α− βxi)
2. (2.19)

From (2.19) β can be derived as

β̂ =

∑n

i=1(xi − x)(yi − y)
∑n

i=1(xi − x)2
(2.20)

where

x =
1

n

n
∑

i=1

xi (2.21)

and

y =
1

n

n
∑

i=1

yi. (2.22)

After a signal has been transformed with FFT from the time domain to the
frequency domain, simple linear regression can be used to calculate the trend of
the frequency spectrum. The trend varies depending on which frequencies are
more significant in the signal.



10 Scientific Background

2.4 Zero Crossing Rate

Zero crossing rate (ZCR) is the rate a sampled sound, s(n), switches sign as given
by [12, pp.127]

ZCR =
1

2N

N
∑

n=1

| sign[s(n)]− sign[s(n− 1)] |

(2.23)

where

sign[s(n)] =

{

= 1, s(n) ≥ 0
= −1, s(n) < 0.

(2.24)



Chapter 3
Base of the Detection

The first step in creating a drone detector was to study audio from different drones
to find what differentiate them from other types of sound. Since the power spec-
tral density had similarities to that of speech, the LPC method which is mostly
used for speech recognition was considered. LPC is only dependent on spikes in
the frequency spectrum which audio from drones contain, for that reason coeffi-
cients gained from LPC were chosen as the base of the detection. The reflection
coefficients were chosen instead of the LPC coefficients because of their robustness.

3.1 Recordings Used

Sounds of Cyclone and X4 recorded in an anechoic chamber at 30%, 40%, 50%,
60%, 70%, 80% and 90% throttle level, were used to decide on which parameters
to use for the LPC analysis. See appendix A.1 for more information about the
recordings.

3.2 Deciding Parameters

The sampling frequency, filter, frame size and the number of reflection coefficients
to use were decided in parallel. Therefore the figures shown use the decided values
for the other parameters for clarity. In addition to these parameters the hamming
window needs the frames to overlap as it taper the signal at the ends, otherwise
information in the signal is lost. The overlap was chosen to be one third of a frame
size to counter the effect of the necessary tapering.

3.2.1 Sampling Frequency

The PSD of the drones were analyzed to decide which frequencies were necessary
to keep in order to not loose needed information from the signal. Another concern
was that the sampling frequency should be suitable for both of the drones. The
similarity of the drones’ PSD can be seen in figure 3.1.

There are spikes at frequencies near 0 Hz which is considered to be noise. From
the PSD it can be seen that there are interesting frequencies from 400 Hz and after
8 kHz there are less information, except for the X4 which have spikes around 12
kHz as well.

11



12 Base of the Detection

kHz

0 8 16 24

d
B

-240
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Cyclone
X4

Figure 3.1: Power spectral density of Cyclone and X4 created from

the recordings in the anechoic chamber at 50% throttle level.

Created with Matlab’s pwelch method.

The sampling frequency was decided by checking the prediction error and how
the coefficients varies for seemingly constant drone sound. From the PSD in figure
3.1 it could be seen that the lowest sampling frequency should be at least 16 kHz.
A high sampling frequency would require the detection algorithm to be faster,
therefore the highest limit was set to 48 kHz.

The variance was studied per coefficient and the variance of the lower co-
efficients was considered more important than that of the higher, because the
reflection coefficients have more information in the lower coefficients. It can be
seen in figure 3.2 that the variance for all the coefficients gets lower as the sam-
pling frequency gets higher. After 32 kHz the overall variance gets stable but the
variance of coefficient one and two decreases all the way to 48 kHz. In table 3.1
the mean prediction error for five coefficients is shown. Similar to the variance the
mean prediction error decreases as the sampling frequency increase. From these
figures and corresponding figures for other throttle levels, a sampling frequency of
48 kHz was selected. These results were independent of the frame size.

3.2.2 Filter

The incoming sound to the detector could need filtering to get rid of unwanted
frequencies. On the other hand the filter should not affect the reflection coefficients
and therefore needs to be tested.

At first a Butterworth filter was considered in order to get more similar reflec-
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Sampling frequency (kHz)
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Figure 3.2: How the variance of the coefficients changes based on

the sampling frequency for the drones in the anechoic chamber

at 50% throttle level. A frame size of 3000 samples and an

overlap of 1000 samples were used.
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Sampling Frequency (kHz)
16 20 24 28 32 36 40 44 48

Cyclone 8.86 7.72 7.21 7.97 7.42 5.49 4.03 3.34 3.09
X4 0.18 0.15 0.15 0.17 0.15 0.11 0.09 0.07 0.05

Table 3.1: The mean prediction error for Cyclone and X4 in the

anechoic chamber at 50% throttle level for different sampling

frequencies in kHz. Five reflection coefficients, a frame size of

3000 samples and an overlap 1000 samples were used.

Coefficient
1 2 3 4 5

Cyclone Unfiltered 0.0026 0.0022 0.0018 0.0022 0.0017
Filtered 0.0008 0.0014 0.0011 0.0016 0.0015

X4 Unfiltered 0.0009 0.0015 0.0019 0.0014 0.0015
Filtered 0.0009 0.0010 0.0015 0.0011 0.0011

Table 3.2: The variance of the coefficient values with and without

the notch filter (3.1) of Cyclone and X4 in the anechoic chamber

at 50% throttle level.

tion coefficients for different frames by removing unwanted frequencies. It turned
out that the coefficients were affected by the filter and became almost identical to
the filter’s transfer function. This gave coefficients from all types of sound a similar
look which means that no significant filtering could be applied. Some filtering still
seemed appropriate and therefore a check against white noise was introduced to
control the effect of using a filter. White noise receives values close to zero for all
reflection coefficients and should after being filtered also have coefficients close to
zero. Otherwise the filter have affected the coefficients and any coefficients gained
using the filter are not reliable.

Since the lower frequencies in the figure 3.1 seems to be noise, a filter to
remove them seemed appropriate. A notch filter with limiting frequency at zero
to only remove the lowest frequencies was tested. The check against white noise
showed that a notch filter which cut off a small frequency band did not affect the
coefficients negatively. After some tests a notch filter with transfer function

H(z) =
1− z−1

1− 0.99z−1
(3.1)

was selected. This filter only filters out the very lowest frequencies, its response
can be seen in figure 3.3. It lowers the variance of the coefficients as can be seen in
table 3.2 but the prediction error is only lowered for the Cyclone, as seen in table
3.3.
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Figure 3.3: The magnitude and phase response for the notch filter

given in (3.1).

Number of Coefficients
1 2 3 4 5

Cyclone Unfiltered 2.4 2.0 1.6 1.6 1.4
Filtered 2.3 1.7 1.5 1.4 1.3

X4 Unfiltered 0.06 0.05 0.04 0.03 0.03
Filtered 0.06 0.05 0.04 0.03 0.03

Table 3.3: The mean prediction error for different number of coef-

ficients with and without the notch filter (3.1) of Cyclone and

X4 in the anechoic chamber at 50% throttle level.
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Frame size (samples)
1000 1400 1800 2200 2600 3000 3400 3800 4200 4600 5000

Cyclone 1.01 1.43 1.84 2.25 2.66 3.08 3.49 3.90 4.31 4.75 5.15
X4 0.0166 0.0234 0.0302 0.0369 0.0435 0.0504 0.0570 0.0638 0.0707 0.0775 0.0841

Table 3.4: The mean prediction error for Cyclone and X4 in the

anechoic chamber at 50% throttle level for different frame sizes.

Five reflection coefficients, a sampling frequency of 48 kHz and

an overlap of one third of the frame size were used.

3.2.3 Frame Size

A frame size that minimize both the prediction error and the variance of the reflec-
tion coefficients would be ideal. A small frame size decrease the prediction error
while a large frame size does the opposite as can be seen in table 3.4. The variance
of the coefficients behaves in the opposite way as can be seen in figure 3.4. It is
therefore a compromise between reliable coefficients and a good prediction, and a
difficult choice. The decision was based on the figures presented and correspond-
ing figures for other throttle levels which showed equivalent results. A frame size
of around 3000 samples was chosen because the variance and the prediction error
were low enough to give a good result.

3.2.4 Number of Reflection Coefficients

To decide the number of reflection coefficients of interest in the linear predictive
coding, the size of the prediction error was studied to see where the difference
between using n or n+1 coefficients made no significant difference on the prediction
error. There is no use in having coefficients that do not lower the error significantly
since it takes more computing power. The value of the coefficients should also be
considered. When the coefficients approaches zero there is nothing more to predict
in the signal that the previous coefficients have not already taken into account.
This comes from that the first reflection coefficient contains the most information
and then the next contains some of what is left in the signal and so forth.

In figure 3.5 it can be seen that after coefficient five for X4, and coefficient six
for Cyclone, there is less information. This can also be seen in figure 3.6. This
indicates that five or six coefficients are suitable. The evaluation was done for
both drones at 50% and 60% and the decision was to use the first five coefficients.

To add additional coefficients in order to rule out non-drone sounds was consid-
ered. The coefficient values after coefficient five are affected by surrounding noise
which made them unpredictable, and adding more coefficients to the detection risk
eliminating drones.

3.2.5 Computing Reflection Coefficients

One set of reflection coefficients are computed for each frame. The selected frame
size and sampling frequency make one frame 61 ms long. The mean value is taken
of the coefficients of eight subsequent frames. These frames have an overlap of
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1024 samples which results in that we get the coefficients for 214 samples (341 ms)
at a time during the comparison.

This method applied to incoming sound is also the method used to create the
values in the database because the comparison should be made against something
equivalent.



Chapter 4
Possible Additions to the Detection

By using the reflection coefficients as the single characteristic to compare the
incoming sounds against, the detector need to have quite large allowed coefficient
intervals to take into account that sounds outside of the anechoic chamber is
affected by their surroundings. This could mean that the amount of false positives
becomes relatively high. A solution to this problem would be to add characteristics
specific to drones to check against in order to minimize the false positives. The
proposed additions in this chapter deals with this possible problem.

4.1 Slope of the Frequency Spectrum

The shape of a power spectrum depends on the frequencies present in the consid-
ered sound. For this reason different sounds have different power spectra. The
difference in power spectra could be advantageous in distinguishing drones from
other similar sounding sounds as the overall trend could differ. Figure 4.1 shows
how four sounds that a human ear might consider similar to a drone has differing
trends.

At a frequency range of 0 to 12 kHz the frequencies for Cyclone in figure 4.1
are close to being equally distributed. Applying a simple linear regression to find
the slope would give a result close to zero. The other sounds, except for the white
noise which is there for comparison, have a steeper slope. This result applies to
X4 and other throttle levels as well. Based on these observations the slope of
the frequency spectrum up to 12 kHz was considered as an extra characteristic to
distinguish drones from other sounds.

4.2 Zero Crossing Rate

When reading about different aspects that may differ in sounds, the ZCR was found
and considered as a possible addition. After a brief analysis of one recording of
each drone, sound from a lawn mower, white noise and one file recorded outside
the results shown in table 4.1 were obtained.

These results indicate the possibility for removing false positives using the zero
crossing rate as an improvement to the detector. For that reason zero crossing rate
was added to the detector and tested to evaluate its effect.
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Figure 4.1: Power spectral density of sounds similar to drones cre-

ated with Matlab’s pwelch method. The recording of Cyclone

was created in the anechoic chamber at 50% throttle level.

Sound min ZCR max ZCR

Cyclone 0.203 0.272
X4 0.090 0.201
Lawn mower 0.023 0.055
White noise (randomly generated) 0.470 0.537
Outside (no particular sound) 0.009 0.074

Table 4.1: Minimum and maximum ZCR for a frame for different

recordings. A sampling frequency of 48 kHz, a frame size of

2048 samples and recordings of the drones at 50% throttle level

in the anechoic chamber were used.
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4.3 Source Localization

If the detector could calculate the angle the sound originates from, all sounds below
a certain angle could be eliminated. If this is possible it means that no previous
false positives that originated from the ground would be considered a drone, which
would improve the detector.

The only interesting angle to consider would be the angle between the horizon-
tal plane and the origin of the sound. To be able to obtain this angle, a minimum
of two microphones would have to be used. They should be placed straight above
each other in the vertical plane to be able to perform this calculation.
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Chapter 5
Database

The detector should work by containing a database with a set of parameter values
of known drones to compare incoming sound against. When the detector is up
and running it should create parameter values for a sound of a suitable length and
then these parameter values will be compared against the saved values. If they are
close enough, a match will be signaled, otherwise nothing will happen. Parameter
values are saved for both Cyclone and X4 for different throttle levels to be able to
detect them at all times.

5.1 Comparison with Reflection Coefficients

The database of reflection coefficients will be created from the recordings from
the anechoic chamber for each drone and throttle level, see appendix A.1. From
each recording, the mean values for the reflection coefficients for eight subsequent
frames are calculated, these values are then used to create the database. The
middle point of the mean values for one recording and the distance to the outer-
most value are saved for each coefficient, see figure 5.1. This equals two values per
coefficient and recording. The expectation is that most values during the detec-
tion should be within the interval created from the recordings from the anechoic
chamber. In reality there will be frames with coefficient values outside the interval
and for that reason the coefficients of the incoming sound are allowed to be a
specified distance from the interval, this distance is called the limit, see figure 5.1.
This limit is specified per coefficient, independent of drone and throttle level. To
decide this limit, recordings of the drones outside at different distances from the
microphones were used, see appendix A.2. The coefficient values of the frames of
these recordings were evaluated and the limits set in order for close to 100% of
the frames being detected. The limits were set large because the goal of using the
reflection coefficients is to detect the drones at all times. This could possibly mean
that detection is signaled for some non-drone sounds as well, but in that case it
will hopefully be removed by the suggested additions.

Cyclone was given more weight when deciding the limits because the size of
Cyclone is more likely to be the size of drones of interest. This conclusion was
drawn because X4 is sensitive to wind and have quite low signal to noise ratio,
which makes it hard to detect outside.

When the detector is running, a mean value of the reflection coefficients of
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Figure 5.1: An illustration of how the intervals in the database were

created from the values of the reflection coefficients.
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eight subsequent frames will be taken and compared against the saved values in
the database. If the values of all the coefficients fall within the allowed intervals
it is considered to be a drone.

5.2 Comparison with Slope of the Frequency Spectrum

There is only one value stored in the database related to the slope of the frequency
spectrum. The value is the lowest possible slope that the authors want to consider
to belong to a drone. Only frames with a slope between that value and zero will
be considered drones, this means that both the reflection coefficients and the slope
of the frequency spectrum must fall within the allowed intervals.

The value was chosen by studying the slope in table 5.1 of the recordings of
the drones outside at different distances from the microphones, see appendix A.2
for a description of the recordings.

5.3 Comparison with Zero Crossing Rate

Only one value is stored in the database for the ZCR addition. This value is used
to make sure that the ZCR is below the value to be considered a drone. The value
is set quite high in order to not reject any drone but hopefully it can still reject
some non-drones.

The value was decided by studying the ZCR in table 5.1 for the recordings of
the drones outside at different distances from the microphones, see appendix A.2
for a description of the recordings. A lower limit except for zero was impossible to
set as the ZCR varied too much. Because of the lack of a lower limit other than
zero, the table 4.1 showed less promise. The ZCR was still included in the testing.
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Distance Slope (min) Slope (max) ZCR (min) ZCR (max)

Cyclone

2m -0.0013 -0.0008 0.1839 0.2210
5m -0.0024 -0.0014 0.0037 0.0940
10m -0.0025 -0.0014 0.0083 0.1653
15m -0.0026 -0.0012 0.0020 0.1321
20m -0.0026 -0.0014 0.0044 0.1851
25m -0.0026 -0.0017 0.0022 0.1175
30m -0.0031 -0.0019 0.0005 0.1043
35m -0.0032 -0.0018 0.0015 0.1067
30m -0.0031 -0.0023 0.0024 0.0930

X4

2m -0.0023 -0.0012 0.0005 0.1197
5m -0.0023 -0.0018 0.0012 0.1079
10m -0.0028 -0.0021 0.0002 0.0777
15m -0.0033 -0.0017 0.0002 0.0381
20m -0.0033 -0.0023 0.0042 0.0444
25m -0.0039 -0.0021 0.0000 0.0359
30m -0.0033 -0.0014 0.0012 0.0735
35m -0.0031 -0.0011 0.0005 0.2232
40m -0.0038 -0.0011 0.0017 0.1087

Table 5.1: The minimum and maximum slope of the frequency

spectrum and ZCR for the drones at different distances from

the microphone.



Chapter 6
Implementation

The drone detector was implemented on a DSP from Analog Devices (ADSP-
21262) together with a audio codec from Texas Instruments (TLV320AIC32). The
specification for these can be seen in tables C.1 and C.2.

6.1 Software

The software is divided into four parts: the analog to digital converter, the buffer,
the calculation of values, and the actual decision of detection.

The audio codec samples the incoming sound, and when the chosen block size
of 960 samples is reached it signals the buffer interrupt that there are samples to
attend to. The buffer interrupt then filters the samples and copies them to the
buffer. When there are 1920 new samples, the number of samples needed for the
next frame, it signals the calculation interrupt to start calculation of the values.
The calculation interrupt calculates reflection coefficients from 2944 samples. Since
the overlap was chosen to be 1024 samples this means that reflection coefficients
are calculated at each calculation interrupt. The slope of the frequency spectrum
and the ZCR are calculated of 2048 samples, taken without an overlap. This
means that they are calculated every time a calculation interrupt occurs as well.
When eight frames have been calculated of reflection coefficients, slope, and ZCR,
a mean value of these calculated values are taken and the calculation interrupt
signals the detection interrupt to check the database for a match. If the detector
finds a match a simple sinus wave is sent to the DSP output. If no match is found
the detector is quiet.
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Chapter 7
Evaluation

The goal of the thesis was to have an implemented drone detector that runs on a
DSP. To evaluate how well the chosen method works the detector will be simulated
in Matlab on prerecorded sounds. The simulation during the tests is equivalent to
the code implemented on the DSP, and is done in Matlab to be able to analyze the
results and use the same recordings when the tests are repeated for the selected
additions.

The authors are aware that the testing is not extensive enough to clearly show
how well the detector will perform in a real setting, but believe that this testing
will show how much potential a solution based on these methods have for the
future. By using the same recordings for both the base with only the reflection
coefficients and later on, with the additions made, at least a measurement of how
much each addition improves the detector can be evaluated.

7.1 Recordings for Testing

The recordings used for the testing were of both Cyclone and X4 recorded as they
fly in different directions. More information about the recordings can be found in
appendix A.3.

7.2 Test Procedure

The program is run on each recording in Matlab. The values are calculated as
described in chapter 5. They are then compared against the values in the database,
and if they are within the acceptable interval, detection, called a hit, is signaled.
Otherwise no hit is signaled.

For each decision made there are four possible events that can occur:

A: A hit is signaled and there was something to detect

B: A hit is signaled but there was nothing to detect (false positive)

C: No hit is signaled and there was nothing to detect

D: No hit is signaled but there was something to detect (false negative)
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Where event A and C are positive outcomes since the detector made the correct
decision.

The results will be measured in the quantity of correct calls divided by the
number of calls made,

A+B

A+B + C +D
. (7.1)

This quotient will hereinafter be called correctness. A result close to 1 will mean
that the detector works well. For the recordings containing drone sound the cor-
rectness is equal to A

A+B+C+D
since they only contain drones, and for the other

recordings the correctness is equal to C
A+B+C+D

since they do not contain any
drones.

7.3 Test Results

The thought behind the detector was that when only using the reflection coeffi-
cients for the detection, close to all frames containing drones should be detected.
There is a large probability that quite a few of the frames not containing drones
will also be detected if the sounds are similar. The plan was to decrease the
number of false positives by introducing new characteristics to compare against
in addition to the LPC analysis. Note that these additions will never make the
detector find more drones than it did before, they will only remove false positives
and possibly also correct positives if the allowed intervals are too small.

The limits for the different characteristics were optimized for two different
distances. One version was made when drones should be detected up to 40 meters
from the detector at all times, and one version was made for up to 20 meters.
These different limits were created while prioritizing Cyclone because its size is
more likely for approaching drones, the limits can be seen in appendix B.1. The
result of the optimization for long distances can be seen in figure 7.1 and 7.3, and
for short distances in figure 7.2 and 7.4. A description of the recordings used can
be found in appendix A.3.
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Figure 7.1: The results of the detector for Cyclone and X4 when

optimized for long distances. The mean value and the variance

of the correctness are shown for the detector when using only

LPC, LPC and slope of the frequency spectrum, and LPC and

ZCR for the comparison.
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the frequency spectrum, and LPC and ZCR for the comparison.
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Chapter 8
Discussion

The reflection coefficient intervals let through Cyclone satisfactorily for the dis-
tance they are optimized for, X4 on the other hand get a quite low correctness.
The authors believed that X4 should not be considered as important as Cyclone
because of its small size and signal to noise ratio, and therefore the limits set were
more adapted for Cyclone, which makes these results explainable. Sadly the in-
tervals let through a substantial number of false positives. The difference between
choosing limits with respect to long distances compared to for short distances show
that fewer other sounds are detected with limits for short distances, as can be seen
in figures 7.3 and 7.4. This comes as no surprise since the allowed intervals are
somewhat smaller as can be seen in appendix B.

Sound that consist of a small electric motor and a fan will be hard to distinguish
from a drone as they share similar hardware, this could explain some of the results.
To allow less other sounds through, a different approach to the intervals for the
reflection coefficients could perhaps be used. At the moment the intervals are
symmetrical around the middle point which makes them quite large. It is possible
that all the drones’ reflection coefficients are shifted in some fixed direction from
the middle point since the database middle point has been calculated from sounds
from a different environment than the test environment.

The addition of the slope of the frequency spectrum to the detection did not
affect the drones results negatively within the desired distance from the micro-
phone, as can be seen in figures 7.1 and 7.2. The slope limit adapted for long
range did not remove a large amount of false positives which is not surprising as
the slope limit is large, but lowering it would possibly remove correct hits within
the desired distance. The slope of the frequency spectrum did however perform
well in removing more of the false positives when optimized for short distances. In
both optimizations slope improved the result for some unwanted sounds and more
importantly it did not worsen the result for the drones, except on one instance on
a distance it was not optimized for. Since only positive effects can be seen with
adding the slope of the frequency spectrum to the detection, the slope check was
implemented in the final detector.

Adding ZCR to the detection did affect some of the drone results negatively,
this should have stemmed from setting the limit for ZCR too low which means that
some of the recordings close to the microphone were affected. The ZCR addition
did not improve the results for the non-drone recordings either, and is therefore not
included in the final version of the implementation. Had it been possible to set a
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lower limit other than zero on the ZCR, the non-drone recordings should have been
affected. This was not done since the recordings used to set the database limits
showed that it could eliminate a substantial amount of correct hits for drones.

In the final version of the implementation the authors have chosen the limits
optimized for the shorter distance, since they consider 20 meters to be an accept-
able distance to discover the drones on for the first time. The coefficient limits for
the shorter distance also give a better result for other sounds, and let through a
substantial amount of drone sound even on the longer distances. The slope limit
used when optimizing for shorter distances remove more other sounds and close
to no correct hits, therefore it was chosen in the final solution.

8.1 Further improvements

To improve the drone detector in the future there are a number of different ad-
ditions that could be made. The authors suggest that source localization should
be implemented first as it should improve the results significantly. Another im-
provement that could possibly give a large effect is changing the structure of the
reflection coefficient intervals. At the moment the limits are the same on both
sides of the middle point, but limits that are different depending on the side of the
middle point could be introduced as a substitute. This could potentially exclude
some non-drone sounds that are close to the middle points.

One addition that could improve the detector as well would be to add another
type of identification as a complement, for example a camera that could check
if the there is something to detect on a signaled hit. If this was to be added,
multiple microphones for identifying the position in space would be beneficial for
positioning the camera. Since the microphones used gives the best result when
directed directly at the incoming sound, having a function that can direct the
microphones as well towards the incoming sound could make an improvement to
the correctness.

And lastly the authors feel that more extensive tests need to be performed on
more drones of different sizes to evaluate its performance. During this testing, to
add a measure of how certain the detector is of its decision and what it is matching
against in the database could help the evaluation of how well the detector performs.



Chapter 9
Conclusion

The authors consider it possible to detect drones using audio analysis. The reflec-
tion coefficients as a base give close to no false negatives for drones in the database
for optimized distances if the limits are chosen with enough care. If the database is
expanded with additional drone types, the authors believe that the detector could
find the drones contained in the database, with a high enough signal to noise ratio,
close to a 100 percent of the time.

The slope of the frequency spectrum improves the detector’s correctness and
is considered suitable for the detection. The variation in values for the slope of
the frequency spectrum for the drones was smaller than for the coefficients and
a limit easier to choose. The ZCR on the other hand vary to much to be of use
as a parameter in the detection. Had the drones had a more stable ZCR when
further away from the microphone, a lower limit could have been possible. This
should have improved the result for the non-drone sounds, but due to the reasons
mentioned it is not possible to use.

To be able to have a detector with nearly no false positives at all, another
improvement needs to be implemented. The authors would have implemented
source localization to distinguish the sound coming over a selected angle from
unwanted sounds. This should improve the detector’s correctness substantially
as most of the sounds coming from the ground could be filtered out. With some
additional work a detector that does not give false positives and detect drones
with a high enough signal to noise ratio, within the interval optimized for, could
be created.

The result of the thesis is a detector that detect drones of a larger size within
the optimized interval, and exclude similar sounding objects a portion of the time.
Among the sounds it gives false positives for are objects not often found just
outside secure facilities. This, together with the fact that mostly sounds similar
to drones have been tested, should mean that the percentage of time it would give
an incorrect result on-site is lower than what figures 7.3 and 7.4 implies. With
additional work the authors believe the drone detector could become a useful
product in the future.
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Appendix A
Recordings

All sound files were recorded with a TASCAM DR-680 audio recorder and SONY
ECM-VG1 condenser microphones.

A.1 Recordings for Database Coefficients

The recording took place in an anechoic chamber and all equipment on the floor
were padded with soft material underneath to affect the recordings as little as
possible. Cyclone and X4 were mounted one at a time to a metal pole between
two tripods, as can be seen in figure A.1 and figure A.2. They were mounted to be
able to operate them from outside the chamber without visual contact and to have
constant distance to the microphones. Three microphones were used, all three
directed towards the drone. Both the authors and the recorder were outside of the
chamber during the recordings. The recorder was connected to the microphones
by cables through a hole in the wall. The drones were operated with their regular
transmitters.

Seven different throttle levels were recorded for each drone, 30%, 40%, 50%,
60%, 70%, 80% and 90% as indicated on the transmitters. The recordings were
made with a sampling frequency of 48 kHz. They were made in the anechoic
chamber in order to avoid noise and reverberations from the surroundings to be
able to gain reliable insights about the characteristics of the drone sounds.

These recordings were used to create the allowed values of the reflection coef-
ficients in the database.

A.2 Recordings for Database Limits

During the recording of files to use to set the limits the weather varied some: small
amounts of rain and wind in different directions, and there were some traffic noise
in the background. On account of the wind the drones were held by one of the
authors in their surrounding shell to stabilize them during the recordings, this
should not affect the results.

One microphone, directed straight ahead onto the drones, was used. It was
attached to a large tripod approximately 1,5 meters above the ground. A total
of 9 and 7 different recordings were made for Cyclone and X4, respectively. The
recordings contained:
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Figure A.1: Cyclone in the anechoic chamber. Figure A.2: X4 in the anechoic chamber.
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• Drone at a distance of 2 meters from the microphone.

• Drone at a distance of 5 meters from the microphone.

• Drone at a distance of 10 meters from the microphone.

• Drone at a distance of 15 meters from the microphone.

• Drone at a distance of 20 meters from the microphone.

• Drone at a distance of 25 meters from the microphone.

• Drone at a distance of 30 meters from the microphone.

• Drone at a distance of 35 meters from the microphone (only for Cyclone).

• Drone at a distance of 40 meters from the microphone (only for Cyclone).

These recordings were used to calculate the limits for the reflection coefficients,
the slope of the frequency spectrum and the zero crossing rate.

A.3 Recordings for Final Testing

Recordings of drone sounds, other sounds that have similarities with drones and
some sounds that could be present in a future environment for a drone detector
were made. One microphone, directed straight ahead onto the object, was used.
It was attached to a large tripod approximately 1,5 meters above the ground. The
recordings contained:

• The drones flying from 50 meters away to the microphone and flying from
the microphone to 50 meters away.

• A hairdryer on low and high speed directed towards and away from the
microphone at a distance of 2 meters.

• Two different electric lawn mowers, one with blades underneath and one
with a cylinder for blades, moving towards and away from the microphone.

• An electric trimmer motor without a blade 2 meters from the microphone.

• A vacuum 3 meters from the microphone.

• Birds chirping.

• Sound recorded beside a freeway.

• Sound recorded outside without anything specific happening nearby.
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Appendix B
Database Values

The parameter limits used for the optimizations can be seen in table B.1.

C1 C2 C3 C4 C5 Slope ZCR

Optimized for long distances 0.20 0.35 0.35 0.30 0.30 -0.0033 0.25
Optimized for short distances 0.20 0.25 0.35 0.20 0.15 -0.0027 0.25

Table B.1: The limits used for the two optimizations.
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Appendix C
Hardware

C.1 Analog Devices ADSP-21262 DSP

The specification of the DSP used for the implementation can be seen in table C.1.
[13]

C.2 TI TLV320AIC32 Audio codec

An audio codec from Texas Instruments was used, its specification can be seen in
table C.2. [14]

C.3 SONY ECM-VG1 Condenser Microphone

The characteristics of the microphones used for all recordings can be seen in table
C.3 and figure C.1. [15]

Feature Analog Devices ADSP-21262 DSP

RAM 2Mbit
ROM 4Mbit
Clock speed 200MHz
FLOPs up to 1.2G FLOPs

Table C.1: Specification of the DSP.
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Feature TI TLV320AIC32 Audio codec

Sample rate From 8kHz to 96kHz
Chosen sample rate 48kHz
Block size 960

Table C.2: Specification of the audio codec.

Feature SONY ECM-VG1 Condenser Microphone

Frequency response 40 Hz to 20 kHz
Sensitivity (at 1 kHz) -33dB ± 3dB

Table C.3: Specification of the microphones.

Figure C.1: Directivity characteristics of the SONY ECM-VG1 con-

denser microphone
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