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Abstract— Obstacle avoidance is a key feature for safe Un-
manned Aerial Vehicle (UAV) navigation. While solutions have
been proposed for static obstacle avoidance, systems enabling
avoidance of dynamic objects, such as drones, are hard to
implement due to the detection range and field-of-view (FOV)
requirements, as well as the constraints for integrating such
systems on-board small UAVs. In this work, a dataset of 6k
synthetic depth maps of drones has been generated and used
to train a state-of-the-art deep learning-based drone detection
model. While many sensing technologies can only provide
relative altitude and azimuth of an obstacle, our depth map-
based approach enables full 3D localization of the obstacle. This
is extremely useful for collision avoidance, as 3D localization of
detected drones is key to perform efficient collision-free path
planning. The proposed detection technique has been validated
in several real depth map sequences, with multiple types of
drones flying at up to 2 m/s, achieving an average precision
of 98.7%, an average recall of 74.7% and a record detection
range of 9.5 meters.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), or drones, are a popular

choice for robotic applications given their advantages such as

small size, agility and ability to navigate through remote or

cluttered environments. Drones are currently being widely

used for surveying, mapping with many more applications

being researched such as reconnaissance, disaster manage-

ment, etc. and therefore, the ability of a system to detect

drones has multiple applications. Such technologies can be

deployed in security systems to prevent drone attacks in

critical infrastructures (e.g. government buildings, nuclear

plants) or to provide enhanced security in large scale venues,

such as stadiums. At the same time, this technology can

be used on-board drones themselves to avoid drone-to-drone

collisions. As an exteroceptive sensing mechanism, electro-

optical sensors provide a small, passive, low-cost and low-

weight solution for drone detection and are therefore suitable

for this specific application. Additionally, drone detection

typically requires large detection ranges and wide FOVs, as

they provide more time for effective reaction.

In the literature, drone detection using image sensors

has been proposed mainly in the visible spectrum [1]–

[3]. Thermal infrared imaging has also been proposed for

drone detection [4]. Thermal images typically have lower
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resolutions than those in visible spectrum cameras, but they

have the advantage that they can operate at night.

Several other sensing technologies have been applied for

drone detection (radar [5] and other RF-based sensors [6],

acoustic sensors [7] and LIDAR [8]). Hybrid approaches

have as well been proposed [9]. However, some of these

technologies have limitations for being integrated on-board

small drones, mainly their high power consumption, weight

and size requirements and cost.

Image-based detection systems typically rely either on

background subtraction methods [10], or on the extraction

of visual features, either manually, using morphological op-

erations to extract background contrast features [11] or auto-

matically using deep learning methods [12], [13]. Rozantsev

et al. [1] present a comparison between the performance of

various of these methods. The aforementioned detection tech-

niques rely on the assumption that there is enough contrast

between the drone and the background. Depth maps, which

can be obtained from different sensors (stereo cameras,

RGB-D sensors or LIDAR), do not have these requirements.

3D point clouds have been recently proposed for obstacle

avoidance onboard drones using an RGB-D camera [14], but

focusing on the detection of static obstacles. An alternative

representation for point clouds are depth maps, which have

been proposed for general object detection [15] and human

detection [16], providing better detection performance as

compared to RGB images. In the context of drone detection,

a key concept that explains the usefulness of depth maps is

that any flying object in a depth map appears with depth

contrast with respect to the background. This happens as

there are typically no objects with consistently the same

depth around it. In other words, a flying object should

generate a discontinuity in the depth map, which can be

used as a distinct visual feature for drone detection. This

concept is depicted in Fig. 1. An additional advantage of

detecting using depth maps is that, while data from other

sensing technologies can generally provide relative altitude

and azimuth of the object only, depth maps can provide full

3D relative localization of the objects. This is particularly

useful in the case of obstacle avoidance for drones, since

the 3D position of the drone can be exploited to perform

effective collision-free path planning.

In this paper, we present a dataset of synthetic, annotated

depth maps for drone detection. Furthermore, we propose

a novel method for drone detection using deep neural net-

works, which relies only on depth maps and provides 3D

localization of the detected drone. To the best of the authors’

knowledge, this is the first time that depth maps are used for

drone detection. The proposed detection method has been
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Fig. 1. The above images, RGB (left) and depth map (right), captured simultaneously, intuitively illustrate how the concept of depth contrast, as opposed
to visual contrast, can be a better choice for drone detection. Based on this concept, we propose a novel, alternative method for drone detection only using
depth maps.

evaluated in a series of real experiments in which different

types of drones fly towards a stereo camera. The reason to

choose a stereo camera as the depth sensor for this work is

the trade-off they provide in terms of detection range, FOV,

lightweight and small size.

The remainder of this paper is as follows. Firstly, in

section II, we present our drone detection method. Secondly,

in section III, details about the synthetic drone depth map

dataset are presented. Thirdly, in section IV, we describe the

implementation details. In section V, we present the results

of the proposed method and finally, in section VI, we present

the conclusions and future work.

II. DETECTION AND LOCALIZATION METHOD

The proposed method for drone detection relies only on

depth maps. Given a depth map, first, a trained deep neural

network is used to predict the bounding boxes containing

a drone and a confidence value for each bounding box. In

order to localize the drone with respect to the camera, as

the next step, a 2D point in each bounding box is chosen

as actually belonging to the drone. The chosen point is then

reprojected to 3D to get the actual drone relative position.

A. Deep Neural Network

YOLOv2 [17] is currently one of the fastest object

detection algorithms, having obtained one of the highest

performances in both speed and precision reported for the

VOC 2007 challenge (see Fig.2). It is also a very versatile

model, as the input image size can be modified even after

the model has been trained, allowing for an easy tradeoff

between speed and precision.

In YOLOv2, a single convolutional neural network pre-

dicts bounding boxes and class probabilities directly from

full images in a single forward pass. This model has also

been proposed for drone detection using RGB images [13].

B. 2D position of the drone in the depth image

The bounding boxes predicted by the model do not always

accurately indicate the actual position of the drone in the

depth image. In the case of stereo vision, this happens mainly

Fig. 2. Accuracy and speed of different object detection models on VOC
2007. The blue dots correspond to arbitrary input image sizes at which the
YOLOv2 model can operate, even after it has been trained with a different
input image size. In this way, the model provides a customizable trade-off
between speed and accuracy.

due to noise or errors in the stereo matching process. We

propose the following method as a means to handle these

potential inaccuracies.

Let P = {P1, P2, ...Pn} be the set of 2D points within

the bounding box and Z = {Z1, Z2, ...Zn} a set with their

associated depths. We wish to choose a point Pi ∈ P in the

depth map which best indicates the position of the drone. We

do this by choosing Pi such that i = argmin(|Zi − Zref |).
Let Q1 be the first quartile of Z.

Three different methods for choosing Zref are proposed:

• Method 1 simply consists of choosing the 2D point

with the minimum depth within the bounding box, or

equivalently:

Zref = min(Zi) (1)

• Method 2 picks the 2D point with the closest depth

to the mean of the 25% smallest depths within the

bounding box.



Zref = mean(Zi)∀Zi < Q1 (2)

• Method 3 picks the 2D point with the closest depth

to the median of the 25% smallest depths within the

bounding box.

Zref = median(Zi)∀Zi < Q1 (3)

In these methods, points that are further away are dis-

carded, as the object to be detected should be closer to the

camera than the background. Method 1 is the simplest, but

also the most sensitive to spurious depth measurements as it

relies on a single measurement. Methods 2 and 3 are intended

to be robustified versions of method 1.

C. 3D localization

In the case of a stereo camera, it is possible to estimate the

3D coordinates corresponding to the previously designated

point Pi(u, v) with disparity d using Eq. 4.
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where Cl(clx, c
l
y) is the principal point and f l is the focal

length of the left camera and Cr(crx, c
r
y) is the principal point

of the right camera.

III. DATASET

In order to train a deep neural network for successful

drone detection and evaluate it, we create a synthetic dataset

of depth and segmentation maps for several sample drone

platforms1. We utilize the UAV simulator Microsoft AirSim

to construct simulated environments inside which drones are

instantiated. Microsoft AirSim [18] is a recently released

simulator for unmanned aerial vehicles which is built upon

Unreal Engine: a popular videogame engine that provides

capabilities such as high fidelity and high resolution textures,

realistic post-processing, soft shadows, photometric lighting

etc. These features make the combination of AirSim and Un-

real Engine a particularly good choice for modeling cameras

onboard drones and obtain the resultant images. Over the

base functionality of Unreal Engine, AirSim provides flight

models for drones as well as basic flight control features.

To create our synthetic dataset, we enhance the cur-

rent functionality of AirSim by adding multiple models

of drones. AirSim provides a base model for a quadrotor

which resembles a Parrot AR Drone. For a more diverse

representation of the appearance of drones, we create two

additional models: one, a hexrotor platform resembling the

DJI S800 and another quadrotor platform resembling a 3DR

Solo. In Fig 3, we show images of the three models used

in AirSim that are included in the released dataset. AirSim

contains an internal camera model, which we replicate to

create stereo camera functionality for the drones. Through

1The dataset can be found at: https://vision4uav.com/

Datasets

(a) (b)

(c)

Fig. 3. Figures of the three drone models that are part of the training dataset.
(a) Quadrotor, resembling a Parrot AR Drone. (b) Quadrotor, resembling a
3DR Solo. (c) Hexrotor, resembling a DJI S800.

(a) (b)

Fig. 4. Environments created within Unreal Engine simulate an urban
outdoor environment (left) and an indoor environment (right), within which
we instantiate multiple drones and obtain depth maps for training images

this functionality, we have generated more than 6k images

of the three aforementioned types of drones, in various

types of environments. For this purpose, we build and use

custom environments within Unreal Engine. In particular,

our dataset includes three different environments: an indoor

office space environment, and outdoor environment with

trees, buildings, etc. and a simple environment containing

only a table with two chairs. In all the scenes, one of the

drones is considered to be a ‘host’, from which depth maps

are obtained: and the other drone(s) that are visible in the

depth maps are considered to be ‘target’ drones, which are

being observed. Figure 4 shows pictures of the indoor and

outdoor environments used.

In our dataset, we include at least two types of images.

First, we render and record the disparity image obtained

from the drone’s viewpoint as per the preset baseline and

resolution. Secondly, we include a segmentation image in

which the drone(s) being observed is isolated. As Unreal

Engine has the ability to keep track of all object materials in a

scene, we identify only the materials that create the drone and

isolate them to create the corresponding segmentation image.

The location of the drone in the segmentation image is used

later in order to create bounding boxes for the target drone,

which are subsequently used for training the deep neural

network. For the indoor and the outdoor environments we

also include the RGB images. We record these images of the

target drone from various distances, viewpoints and angles

https://vision4uav.com/Datasets
https://vision4uav.com/Datasets
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Fig. 5. Sample images from the dataset. In (a), the RGB image from the ‘host’ drone’s perspective is shown for reference, where it views a ‘target’
drone, a hexrotor. The corresponding depth map is shown in (b), and (c) shows the segmentation image that isolates only the target drone.

in three dimensions, attempting to simulate the observation

of a drone hovering as well as in motion. In Fig. 5, we

show sample depth and segmentation images generated from

AirSim for the hexrotor model in an outdoor environment,

along with the corresponding RGB image for reference.

IV. EXPERIMENTAL SETUP

A. Hardware

Once the deep neural network was trained with images

from the synthetic depth map dataset, our experiments were

aimed at using this model to detect real drones, assuming

deployment onboard a mini UAV. Hardware for the exper-

iments was selected trying to minimize size, weight and

power demands, considering the limitations of applications

onboard small drones.

The StereoLabs ZED stereo camera [19] was selected as

our imaging sensor due to its excellent features: high FOV

(110◦ diagonal), low size and weight (175 x 30 x 33 mm,

159g) and acquisition speed (16 fps with HD1080 images).

HD1080 video mode was selected in order to improve the

detection of smaller/more distant objects. An NVIDIA Jetson

TX2 module (85 grams) was used for the image acquisition

and processing.

B. Model and Inference

For compatibility reasons with the ZED stereo camera

API, Darkflow [20], a python implementation of YOLO

based in Tensorflow was used. By doing this, images can

be acquired with the ZED camera and passed directly to the

model for inference.

A smaller version of the YOLOv2 model called Tiny

YOLOv2 was chosen to obtain faster performance. This

model was reported to have 57.1% mean average precision

(mAP) in the VOC 2007 dataset running at 207 fps in a

NVIDIA Titan X GPU. The model runs at 20 fps in a

Jetson TX2. In our implementation, we modify the model

configuration to perform single object detection and increase

the input image size from its original value of 416x416 to

672x672, in other to improve the detection of smaller or

more distant objects.

Input depth maps were codified as 8-bit, 3-channel images.

For this, we downsample the resolution of the single-channel

depth maps provided by the camera from 32-bit to 8-bit and

store the same information in each of the three channels.

This was done for simplicity of the implementation, as the

objective was to explore the feasibility of drone detection

with depth maps.

V. RESULTS

A. Training results

From the dataset presented in Section III, a subset of 3263

images containing depth maps corresponding only to the

Parrot AR Drone model were extracted. This was done in a

effort to evaluate the generalization capability of the model,

as it would be later evaluated on depth maps containing

different drones.

The Tiny YOLOv2 model was trained on these images

using a desktop computer equipped with an NVIDIA GTX

1080Ti. 80% of the images were used for training and 20%

for validation. After 420k iterations (about 4-5 days) the

model achieved a validation IOU of 86.41% and a recall

rate of 99.85%.

B. Precision and recall

In order to obtain live measurements of the precision and

recall of the model in real flights, a Parrot AR Drone and a

DJI Matrice 100 were flown in an indoor space. The drones

were manually flown at up to 2 m/s towards the camera,

which was kept static. The live video stream obtained from

the ZED camera was processed using a Jetson TX2 devel-

opment board. The average processing time measured was

about 200 ms per frame. For a drone flying at 2 m/s, this

is equivalent to a detection every 0.4m, which should be

acceptable for collision avoidance as long as the detector

can also provide a large enough detection range. The low

framerate is caused by the GPU being simultaneously used

by the ZED camera for stereo matching and by Darkflow for

inference of the detection model. An optimized version of

the detection software is currently under development.

We use precision and recall as evaluation metrics for the

detector. Precision here indicates the number of frames with

correct drone detections with respect to the number of frames

for which the model predicted a drone, while recall here

indicates the number of frames with correct detections with

respect to the number of frames containing drones.

The detection results using a threshold of 0.7 for the detec-

tion confidence are shown in Table I. The model successfully

generalizes from AR Drone depth maps, on which it was



TABLE I

PRECISION AND RECALL IN ONLINE DETECTION

Video
sequence

No. of
frames

Drone
model

Precision
(%)

Recall
(%)

1 77 AR Drone 96.6 74.0
2 48 AR Drone 95.3 85.4
3 39 AR Drone 100.0 66.6
4 33 AR Drone 100.0 66.6
5 27 AR Drone 100.0 77.7
6 64 DJI Matrice 100.0 67.1
7 35 DJI Matrice 100.0 77.1

Averaged precision and recall 98.7 74.7

TABLE II

COMPARISON OF DEPTH ESTIMATION METHODS

Averaged depth RMS error (mm)
Hovering

distance (mm)
Method 1 Method 2 Method 3

1555 56 101 89
2303 235 315 171
2750 149 213 184
3265 30 1436 1356
4513 151 118 126
5022 401 230 239
5990 69 823 616
7618 292 147 139
8113 108 760 610
9510 254 937 1042

Average per method 175 508 457

trained, to depth maps generated by other types of drones.

While processing a live stream of depth maps, it achieves an

average precision of 98.7% and an average recall of 74.7%2.

C. Depth range

For assessing the depth range and its reliability, frames

were acquired with the camera in a static position while a

Parrot AR Drone hovered at different distances, ranging from

1.5 to almost 10 m. For each of those hovering positions, 10

image detections were registered and the depth of the drone

was measured using a laser ranger with ±3 mm accuracy,

which was recorded as the ground truth. The averaged depth

error for those 10 detections was computed using each of

the 3 methods proposed in Section II. While the proposed

method has been proven valid to detect the drone while flying

at up to 2 m/s, here it was put in a hovering position only to

enable accurate depth assessment and never to increase its

observability. The results are shown in Table II.

The best method is the one that assigns to the drone the

2D point with the minimum depth in the bounding box (i.e.

Method 1). It appears to be robust enough for the application,

with a maximum error of 401 mm. The failure of other

methods can be explained by the fact that in many cases,

the points belonging to the drone are less than 25% of the

points with depth in the bounding box.

Accurate drone detections at a distance of up to 9510

mm have been achieved using this method. At this record

distance, depth measurements using the minimum distance

method had a minimum error of 143 mm and a maximum

2A video showing some detection results can be found at the following
link: https://vimeo.com/259441646

error of 388 mm. This depth range greatly exceeds the one re-

cently reported for collision avoidance onboard small drones

using point clouds in [14]. In their work, a max indoor range

of 4000 mm was obtained using the Intel®RealSenseTM

R200 RGB-D sensor.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel drone detection approach using depth

maps has been successfully validated for obstacle avoidance.

A rich dataset of 6k synthetic depth maps using 3 different

drone models has been generated using AirSim and released

to the public, in order to enable further exploration of this

technique.

A subset of these depth maps, generated only using a

model resembling an AR Drone, were used to train YOLOv2,

a deep learning model for real-time object detection. Exper-

iments in a real scenario show that the model achieves high

precision and recall not only when detecting using depth

maps from a real Parrot AR Drone, but also from a DJI

Matrice 100. In other words, the model generalizes well for

different types of drones.

An advantage of depth sensing versus other detection

methods is that a depth map is able to provide 3D relative

localization of the detected objects. This is particularly useful

for collision avoidance onboard drones, as the localization

of the drone can be useful for effective collision-free path

planning. The quality of this localization method has been

assessed through a series of depth measurements with a

Parrot AR Drone hovering at different positions while it was

being detected. A record max depth range of 9510 mm was

achieved, with an average error of 254 mm. To the best of

our knowledge, this is the first time that depth maps are

proposed for drone detection and subsequent localization.

As for future work, our immediate objective is to test the

system onboard a flying drone. A C++ implementation of the

model and inference will be explored in order to increase

the execution speed. Additionally, a multi-object tracking

approach using joint probabilistic data association will be

implemented to provide continuous, real-time detection.
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