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One sentence summary 20 

Machine learning and Bayesian analyses of drone-mediated remote phenotyping data revealed two 21 

genetic loci regulating differential daily flowering time in lettuce (Lactuca spp.).  22 

Abstract 23 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.206953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 2 

Flower opening and closure are traits of reproductive importance in all angiosperms because they 24 

determine the success of self- and cross-pollination. The temporal nature of this phenotype 25 

rendered it a difficult target for genetic studies. Cultivated and wild lettuce, Lactuca spp., have 26 

composite inflorescences comprised of multiple florets that open only once. Different accessions 27 

were observed to flower at different times of day. An F6 recombinant inbred line population (RIL) 28 

had been derived from accessions of L. serriola x L. sativa that originated from different 29 

environments and differed markedly for daily floral opening time. This population was used to 30 

map the genetic determinants of this trait; the floral opening time of 236 RILs was scored over a 31 

seven-hour period using time-course image series obtained by drone-based remote phenotyping 32 

on two occasions, one week apart. Floral pixels were identified from the images using a support 33 

vector machine (SVM) machine learning algorithm with an accuracy above 99%. A Bayesian 34 

inference method was developed to extract the peak floral opening time for individual genotypes 35 

from the time-stamped image data. Two independent QTLs, qDFO2.1 (Daily Floral Opening 2.1) 36 

and qDFO8.1, were discovered. Together, they explained more than 30% of the phenotypic 37 

variation in floral opening time. Candidate genes with non-synonymous polymorphisms in coding 38 

sequences were identified within the QTLs. This study demonstrates the power of combining 39 

remote imaging, machine learning, Bayesian statistics, and genome-wide marker data for studying 40 

the genetics of recalcitrant phenotypes such as floral opening time.  41 

 42 

Keywords: flowering, flower opening, genetic mapping, QTL mapping, lettuce, drone, unmanned 43 

aerial vehicle (UAV), high-throughput phenotyping, remote sensing phenotyping, image analysis, 44 

machine learning, support vector machine (SVM), Bayesian inference 45 

 46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.16.206953doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.16.206953
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

 47 

Introduction 48 

Floral opening is a complex and dynamic process marked by rapid, drastic changes in the 49 

morphology of the reproductive organs of angiosperms. The time of floral opening marks the onset 50 

of the period during which cross pollination becomes possible, making this physiological process 51 

a critical phase in plant sexual reproduction. From an ecological perspective, different floral 52 

opening times within the day can play an important role in population divergence by contributing 53 

to temporal reproductive isolation (Matsumoto et al., 2013). Synchronizing floral opening time 54 

with peak activity of effective pollinators may help improve outcrossing and reproductive success 55 

(Sakamoto et al., 2012).  56 

 57 

Across different flowering species, successful floral opening is accomplished through a diverse set 58 

of events—petals may unfold, spiral outward, or spring open, depending on their particular 59 

anatomies, and the opening process may or may not be reversible. What usually underlies these 60 

impressive local movements is a high rate of cell expansion and/or abscission driven by changes 61 

in osmotic pressures. The timing of this process is regulated by external and internal factors. 62 

Environmental cues, such as humidity, temperature, and light, the internal circadian rhythm of the 63 

plant, and hormone signaling all modulate floral opening (van Doorn and van Meeteren, 2003; van 64 

Doorn and Kamdee, 2014). Different species show various levels of responsiveness to these 65 

internal and external cues. In extreme cases, the effect of the same signal can be completely 66 

opposite in different species. For instance, ethylene treatment is known to accelerate floral opening 67 

in some rose (Rosa spp.) cultivars, while inhibiting floral opening in others (Reid et al. 1989).  68 

 69 
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The molecular control of floral opening is incompletely understood. Past endeavors to probe 70 

regulation of floral opening have mainly taken four approaches: gene transcription, cellular 71 

signaling, mutant analysis, and forward genetics. Transcription-level events corresponding to the 72 

physiological process of floral opening have been detected in multiple studies. High accumulation 73 

of volatile-emission-related R2R3-MYB transcription factor EOBII was found in hybrid peas 74 

(Pisum x hybrida “Mitchell Diploid”) and Nicotiana attenuata prior to floral opening. RNAi 75 

knockdown of EOBII resulted in failure to enter anthesis and premature senescence (Colquhoun 76 

et al., 2011). Over-expression of fructan 1-exohydrolase was associated with flower opening in 77 

Campanula rapunculoides, presumably contributing to decreasing osmotic pressure in expanding 78 

petals by breaking down polysaccharide fructan (Vergauwen et al., 2000; Le Roy et al., 2007). 79 

Similarly, transcriptional upregulation of cell-wall-loosening expansin was associated with floral 80 

opening in carnation (Dianthus caryophyllus; Harada et al., 2010). Transcription-level fluctuation 81 

of ethylene receptors during flowering was reported in tree peony (Paeonia suffruticosa; Zhou et 82 

al., 2010). Phytochrome activity is also involved. Kaihara and Takimoto (1980) demonstrated that 83 

a flash of red light during the night before anticipated floral opening can alter the time of floral 84 

opening on the following day. The effect of red light was diminished by a subsequent exposure to 85 

far-red light. MicroRNA regulation of flower opening was proposed after comparing microRNA 86 

levels between buds and flowers in 5-year-old plum blossom trees (Prunus mume; Wang et al., 87 

2014). Nevertheless, the regulatory network that oversees transcription alteration remains unclear 88 

(van Doorn and Kamdee, 2014). Few mutants specific to floral opening have been identified in 89 

model plant systems (van Doorn and Kamdee, 2014); a mutation in a RINGv E3 ubiquitin ligase 90 

that causes reduced cutin biosynthesis or loading was found to cause a lack-of-opening phenotype 91 

in oilseed rape (Brassica napus), suggesting the critical role of cutin in successful floral opening 92 
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(Lu et al., 2012). Only one forward genetic study has investigated the genetic regulation of floral 93 

opening time (Nitta et al., 2010); the segregation of morning flowering versus evening flowering 94 

in an F2 population derived from a hybrid between daylily (Hemerocallis fulva) and night lily (H. 95 

citrina) suggested the presence of a major effect gene. This study also suggested independent 96 

regulation of floral opening and closure times in lily.  97 

 98 

In order to understand more about the genetic regulation of floral opening time, we analyzed 99 

natural variation in this phenotype in Lactuca serriola (wild lettuce) and L. sativa (lettuce). 100 

Lactuca spp. are members of the Compositae family with compound hermaphrodite inflorescences 101 

that only open once. L. serriola is the wild progenitor of modern cultivated lettuce and is fully 102 

reproductively compatible with L. sativa. We took advantage of a recombinant inbred line (RIL) 103 

population developed from a cross between accessions of L. serriola and L. sativa that differed for 104 

floral opening time by 3.5 hours. We overcame the challenge of studying floral opening time in a 105 

large, replicated RIL population by utilizing drones equipped with a multi-spectral camera to 106 

repeatedly image the entire experimental field. Effectiveness of drones in high-throughput crop 107 

phenotyping has been demonstrated in recent studies (Spindel et al., 2018; Xu et al., 2019). In our 108 

study, data from hourly drone flights were analyzed using an innovative combination of machine 109 

learning and Bayesian statistics to quantify the floral opening phenotype. Two significant 110 

quantitative trait loci (QTLs) collectively explained more than 30% of the phenotypic variation of 111 

floral opening time; these QTLs contained genes known to regulate circadian rhythms in 112 

Arabidopsis.  113 

 114 

 115 
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Results 116 

Most lettuces, including the oil seed type PI251246, start to flower early in the morning. In contrast, 117 

L. serriola accession Armenian999 does not flower until the afternoon. Two-hundred and thirty-118 

six F6 RILs that had been developed from crossing these two accessions were available for 119 

investigating the genetic basis of asynchronous floral opening phenotype. This phenotype is 120 

illustrated in a short video made using time lapse photography of two RILs from this population 121 

(https://www.youtube.com/watch?v=9w8iRTHXBxM) taken from an experimental field in Davis, 122 

CA, in June 2014, which corresponds to a 3-hour span in real time. In this video, flowers of one 123 

RIL begin to open approximately 55 minutes before the other. This segregating phenotype is also 124 

illustrated by photographs of individual flowers taken over an 8-hour time span of four RILs and 125 

the parents grown in a screenhouse in Davis, CA in June 2020 (Figure 1).  126 

 127 

Remote sensing phenotyping 128 

The 236 RILs, both parental lines, and two controls, L. sativa cv. Salinas and L. serriola accession 129 

US96UC23, were planted in two complete randomized replicates of eight plants in Davis, CA, 130 

during summer 2019. Multi-spectral images were captured at 9 am, 11 am, 1 pm, and 3 pm on July 131 

1st, 2019, and 10 am, 12 pm, 2 pm, and 4 pm on July 9th using a multispectral camera mounted on 132 

a drone. Each drone flight took an average of nine minutes. On average, 2,309 raw images with 133 

85% front- and side-overlap were generated per flight. The 2 pm drone flight did not generate any 134 

images due to technical errors and had to be discarded. A total of seven whole-field images at 1 135 

cm spatial resolution were generated by GPS-guided tiling of raw images. Yellow floral pixels are 136 

visible to the naked eye from whole-field images (Figure 2 and Supplementary Figure S1).  137 

 138 
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Machine learning classification of floral pixels 139 

A total of 4,807 floral, vegetative, and ground pixels were randomly sampled from the super-high-140 

resolution field images at all seven time points (Supplementary Table S1). Pairwise scatterplots of 141 

the Hue-Saturation-Value (HSV) values of the sample pixels indicated clear distinction between 142 

pixels belonging to different categories (Figure 3a). Images taken at different time points appeared 143 

to be largely homogeneous regarding pixel HSV (Figure 3b).  144 

 145 

Machine learning was used to classify pixels from whole-field images into “floral,” “vegetative,” 146 

or “ground” categories. The 4,807 labeled sample pixels were divided evenly into a training dataset 147 

(2,404 samples) and a testing dataset (2,403 samples). Five machine learning algorithms were 148 

trained using the training dataset. Ten-fold cross-validation test of pixel classification accuracy 149 

showed that the support vector machine (SVM) model outperformed all other models with a mean 150 

classification accuracy of 99.15%. When used to classify pixels in the testing dataset, the SVM 151 

model made predictions with 99.08% accuracy (Table 1 and Figure 4b). A final SVM model was 152 

trained using all sample pixels and tuning hyperparameters sigma = 1.102 and C = 0.5. The final 153 

model produced a total of 308 support vectors and had within-sample prediction accuracy of 154 

99.12%.  155 

 156 

The final SVM model was deployed to predict floral pixels in all field images. Plot-level floral 157 

pixel counts at all seven time points are listed in Supplementary Table S2. The total number of 158 

predicted floral pixels ranged from 2,730 at 4 pm to a daily maximum of 1,395,676 at 11 am. The 159 

change in the total number of floral pixels throughout the course of the day peaked in the late 160 
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morning, consistent with maximum floral opening on a population level being between 11 am and 161 

12 pm (Figure 5).  162 

 163 

Bayesian inference of peak floral opening time 164 

The peak floral opening time (FOT) of individual plots was inferred from the hourly floral pixel 165 

count for each plot. Figure 6 is a visualization of the output of SVM floral pixel classification. Plot 166 

“1” in the blue box clearly reached peak opening early in the day, near 10 am. Similarly, plot “2” 167 

in the green box had peak FOT near 11 am, plot “3” (yellow box) near 12 pm, and plot “4” (orange 168 

box) near 1 pm (Figure 6). The temporal increase and decrease of the floral pixel count throughout 169 

the course of a day within each plot can be described using a distinct bell-shaped curve, with 170 

parameter  characterizing the peak FOT of the plot, i.e., the mean and mode of the curve, and 171 

parameter δ2 characterizing the duration of the opening within the plot.  172 

 173 

A bell-shaped likelihood function with parameters {k, δk2} that best described the hourly floral 174 

pixel fluctuation of plot k (k = 1, 2, …, 480) was fitted to the time-series floral pixel data for each 175 

plot using Markov Chain Monte Carlo (MCMC). Divergent incidences were re-fitted by the 176 

MCMC to account for possible poor initialization. All plots converged after two iterations of 177 

sampling. The inferred peak FOT between the two blocks showed strong correlation (R2 = 0.485; 178 

Figure 7, Figure 8, and Supplementary Figure S2). Simple linear regression model reported no 179 

significant difference of peak FOT between the two blocks (p = 0.10). Therefore, the mean 180 

phenotype was calculated using the simple Euclidean mean between the two blocks.  181 

 182 
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Inferred peak FOT ranged from 09:17 am to 1:08 pm, following a slightly heavy-tailed normal 183 

distribution with a mean of 11:29 am (Figure 9; Supplementary table S3). The standard deviation 184 

of phenotypic distribution is 36.8 minutes. The inferred peak FOT of the early opening parent, 185 

PI251246, was 9:34 am, while that of the late opening parent, Armenian999, was 1:15 pm. No 186 

obvious transgressive segregation was found within the population. 187 

 188 

Genotyping 189 

A total of over 354 million 100 bp Illumina reads were obtained from all RILs. Mapping reads to 190 

version 8 of the lettuce reference genome (Reyes-Chin-Wo et al., 2017) yielded 422,418 single 191 

nucleotide polymorphism (SNP) markers, covering all nine chromosomes of the lettuce genome. 192 

After filtering against missing data and segregation distortion, 18,805 SNP markers remained. 193 

LepMap3 (Rastas, 2017) was used to produce a genetic map comprising 17,402 SNP markers in 194 

2,677 genetic bins, covering 1,883 cM in the nine chromosomal linkage groups (Supplementary 195 

Figure S3), which is similar to the previously reported genetic map size (Truco et al., 2013). The 196 

heterozygosity rate of selected SNPs was 3.25%, consistent with the expected heterozygosity rate 197 

for F6 populations, 3.13%. No regions exhibited severe segregation distortion. One SNP marker 198 

was selected from each genetic bin, resulting in 2,677 markers for QTL mapping. The mean 199 

distance between each pair of adjacent markers is 0.7 cM. Four gaps larger than 5 cM are present 200 

in this map; these gaps are located at 149.0–155.8 cM on linkage group 3, 155.8–166.2 cM on 201 

linkage group 3, 62.8–68.1 cM on linkage group 7, and 50.3–55.7 cM on linkage group 9. Four 202 

RILs were excluded from downstream analyses due to the large percentage of missing genotype 203 

data, resulting in a final set of 232 RILs for QTL mapping.  204 

 205 
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QTL analysis 206 

Genotype and peak FOT phenotype data for 232 RILs were used for QTL mapping. Mixed effect 207 

modeling estimated the narrow sense heritability of the phenotype to be 0.8765. The significance 208 

threshold of the permutation test was set at negative log of odds (LOD) = 3.14 for the type I error 209 

rate of 0.05. Two significant QTLs were identified for peak FOT on Chromosomes 2 (LOD = 10.3) 210 

and 8 (LOD = 7.7) (Figure 10). The physical location of flanking markers and summary statistics 211 

of the effects of the two QTLs are detailed in Table 2. In both QTLs, the allele from the late-212 

flowering parent, Armenian999, contributed to the later flowering phenotype (Figure 11). 213 

 214 

Candidate genes         215 

The two significant QTLs, qDFO2.1 (Daily Floral Opening on chromosome 2) and qDFO8.1, 216 

were investigated for candidate genes of known function in Arabidopsis. There are 309 gene 217 

models located within 1 LOD score on each side of the peak of qDFO2.1 and 123 gene models 218 

within qDFO8.1 in the reference annotation (Reyes-Chin-Wo et al., 2017). Among these 432 genes, 219 

199 had coding sequence variants between the parents (Supplementary Table S4). Of the 1,752 220 

orthologs of Arabidopsis genes involved in flowering time and/or circadian clock regulation, five 221 

were located within qDFO2.1; two of these genes exhibited coding sequence variants (Table 3). 222 

No orthologs involved in flowering time and/or circadian clock regulation were identified within 223 

qDFO8.1.  224 

 225 

Discussion 226 

Our study demonstrated the efficacy of using drones to detect quantitative temporal differences in 227 

floral opening events. We were able to collect multispectral data on a large number of plants 228 
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multiple times per day. Machine learning enabled fast, robust recognition of phenotypes. Bayesian 229 

approaches provided a summary statistic for flower opening time of each line that was used for 230 

QTL analysis. This revealed two significant genomic regions determining floral opening time. 231 

 232 

The machine learning algorithm predicted that the floral opening behavior of each single-genotype 233 

plot followed a Gaussian-like curve throughout the course of a day (Figure 5). The time-stamped 234 

floral pixel count data was then passed down to a Bayesian framework to extract summary statistics 235 

for floral opening time. The number of floral pixels captured by a drone image is a function of 236 

both the number of opening inflorescences and the degree of their opening (Figure 1). The peak 237 

floral opening time reflects the average opening time of all individual inflorescences within a plot. 238 

From an analytical standpoint, peak floral opening time is a better summary statistic for the floral 239 

opening process than the beginning or ending points because it is readily defined mathematically 240 

and is robust against detection errors. A Gaussian-like likelihood function was used to model the 241 

floral opening process and a MCMC sampler was used to estimate the peak timepoint. Each RIL 242 

had two independently inferred peak floral opening times, from the two blocks of the experiment. 243 

The high similarity between replicates verified the robustness of the Bayesian inference protocol.  244 

Our method is a hybrid workflow that processes time-stamped high-throughput phenotyping data 245 

by feeding raw image data through a machine learning module and a Bayesian inference module 246 

in a sequential manner. This modular approach harnesses the respective strengths of the two 247 

procedures independently and provides multiple advantages. This flexible workflow can be 248 

adapted to different experimental designs and phenotyping goals with only minor changes. Any 249 

phenotype that can be scored using time-stamped images could benefit from adopting this 250 

workflow with custom likelihood functions based on the biological nature of the phenotype. For 251 
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example, one could readily substitute with a sigmoid likelihood function for modeling for 252 

cumulative phenotypes such as plant height and canopy metrics. Another advantage this workflow 253 

has over exclusively-machine-learning-based procedures is that the addition of a specified 254 

likelihood function results in interpretable models with biologically meaningful parameters 255 

suitable for downstream analyses.  256 

 257 

The timepoint at which each RIL reaches peak floral opening varied from early morning to early 258 

afternoon in a continuous fashion during the days that the RILs were flowering (Figure 9). QTL 259 

mapping identified two loci significantly associated with floral opening time. Each allele from the 260 

late flowering parent Armenian999 on the two QTLs contributed additively to a later floral opening 261 

phenotype (Figure 11). In contrast to the extensively studied initiation of flowering, floral opening 262 

time has been little studied (van Doorn and van Meeteren, 2003; van Doorn and Kamdee, 2014) 263 

and not to the locus level (Nitta et al., 2010). This study reports the first genetic loci associated 264 

with the regulation of floral opening time.   265 

 266 

The largest effect QTL, qDFO2.1, collocates with a QTL that is associated with multiple bolting, 267 

budding and flowering time traits in lettuce (Lavelle, 2009). Two genes within qDFO2.1 with non-268 

synonymous variants between the parents have been shown to be involved in the regulation of the 269 

circadian clock and initiation of flowering in Arabidopsis (Table 3); these include an ortholog to 270 

Arabidopsis UBIQUITIN SPECIFIC PROTEASE 12 (UBP12) and UBP13. AtUBP13 and 271 

AtUBP12 are ubiquitin-specific proteases capable of rapid, posttranslational regulations of diverse 272 

cellular processes in Arabidopsis (Cui et al., 2013). The other candidate gene within qDFO2.1 is 273 

orthologous to Arabidopsis CHC1 (alternatively known as BAF60), which is involved in 274 
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transcriptional activation and repression of flowering regulation genes by chromatin remodeling 275 

(Jégu et al., 2014). The absence of floral initiation or circadian clock orthologs within qDFO8.1 276 

suggests that there are separate regulatory mechanisms for floral opening time besides these well 277 

studied pathways. The two loci identified in this study provides the foundation for future 278 

experiments focused on causal gene identification and functional validation.  279 

 280 

The timing of floral opening critically impacts a plant’s survival and reproduction in its community 281 

(Kehrberger and Holzschuh, 2019). Our study identified two genetic loci determining natural 282 

variation in the regulation of floral opening time in lettuce. This raises the question of the 283 

evolutionary pressures for diversity in the trait. Variation in floral opening time may be important 284 

in synchronizing floral opening with maximum activity of local pollinators. Thermal constraints 285 

on flight activity may limit the pollinating effectiveness of insects; each species of pollinating 286 

insect has a microclimatic window within which foraging flight can be sustained (Corbet et al., 287 

1993). The late-blooming parent of the mapping population, Armenian999, is an L. serriola 288 

accession collected from the cold, wet mountain area of Armenia. In contrast, the early-blooming 289 

parent, PI251246, is a landrace accession originating in Egypt. The differential floral opening 290 

habits might therefore have evolved in adaptation to different pollinator activities in their 291 

respective native environments as has been shown for Saxifraga oppofitifolia in alpine elevations 292 

(Gugerli, 1998). It would be interesting to investigate whether there is a correlation between floral 293 

opening time of diverse lettuce accessions and the climate of their native habitats.  294 

 295 

In this study, the combination of machine learning image processing and Bayesian modeling was 296 

proved to be highly effective in processing and analyzing time-series aerial images of the field 297 
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experiment. This versatile framework can be readily adapted to other projects aiming to take 298 

advantage of the speed and mobility of drone imaging technologies. Customization in our 299 

workflow in choosing suitable machine learning algorithms and Bayesian likelihood functions can 300 

enable detection and modeling of phenotypes on the time dimension in other areas such as ecology 301 

and population genetics.  302 

 303 

Methods 304 

Time lapse video and photography 305 

The video was generated with shots at 3 second intervals (3,600 intervals in total), taken with a 306 

Canon G15 camera using Canon Hack Development Kit intervalometer script 307 

(http://chdk.wikia.com/wiki/CHDK) on June 7th, 2014 in the field at Davis, CA. Individual photos 308 

were compiled into 30 fps movie clip using PhotoLapse 3 (Version 1.0, S. van der Palen; 309 

http://home.hccnet.nl/s.vd.palen/). Close-up photographs of flowers of four asynchronously 310 

flowering RILs of the Armenian999 x PI251246 RIL population and the parents were taken at 1-311 

hour intervals on June 7th, 2020 using a Canon EOS 50D DSLR Camera. The photographed plants 312 

were grown in a screenhouse in Davis, CA.  313 

 314 

Mapping population and field design 315 

Two-hundred and thirty-six F6 RILs had been developed from crossing the L. serriola accession 316 

Armenian999 with the L. sativa landrace PI251246 (M.-J. Truco, unpublished). The 236 RILs, 317 

both parental lines, and two controls, L. sativa cv. Salinas and L. serriola accession US96UC23, 318 

were grown in summer 2019 at the Department of Plant Sciences field facility in Davis, CA. The 319 

plants were seeded on May 6th, 2019 and transplanted into 40-inch-wide raised beds in the field on 320 
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June 5th, 2019. Each raised bed consisted of two rows; every other bed was left empty to allow 321 

field access throughout the growing season. The experiment had two complete randomized blocks, 322 

each consisting of 240 plots to accommodate the 240 genotypes. Within each block, eight 323 

individuals of each RIL or parent were planted into one 10 ft x 1 row plot. The blocks were 324 

arranged along the direction of the furrow irrigation system to control for variations attributable to 325 

water availability. 326 

 327 

Weather data 328 

Weather data for the dates of the drone flights were collected from the National Centers for 329 

Environmental Information website (https://www.ncdc.noaa.gov/) for the University Airport, CA 330 

weather station (Station ID WBAN:00174, GPS coordinates 38.533°, -121.783°). The weather 331 

station was less than 500 m away from the farthest corner of the experimental field.  332 

 333 

Phenotyping by remote sensing  334 

Seven ground control points were set up in the field, four near the corners and three along the 335 

field’s East–West centerline. GPS coordinates, with an accuracy within a few centimeters, were 336 

recorded using a handheld data collector (Trimble Geo 7x Series, Trimble Inc., Sunnyvale, CA). 337 

These coordinates were used in processing drone images to ensure that images collected at 338 

different times and dates aligned perfectly with one another.  339 

 340 

A MicaSense RedEdge multi-spectral camera was mounted on a DJI Matrice100 drone. The 341 

camera captured images at five wavelengths: blue (475 nm center, 20 nm bandwidth), green (560 342 

nm center, 20 nm bandwidth), red (668 nm center, 10 nm bandwidth), red edge (717 nm center, 10 343 
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nm bandwidth), and near-infrared (840 nm center, 40 nm bandwidth). In this study, only the blue, 344 

green, and red wavelengths were used for flower identification. The drone was flown over the 345 

experimental field at 9 am, 11 am, 1 pm and 3 pm on July 1st, 2019, and 10 am, 12 pm, 2 pm and 346 

4 pm on July 9th, 2019. The sky was cloudless on both days; daily minimum and maximum 347 

temperatures were 13.9C–31.1C and 13.9C–28.9C; sunrise was at 5:46 am and 5:50am, 348 

respectively. A DJI GS Pro app was used to plan and execute the flight. The drone flew at 15 m 349 

above ground, and images were taken at a frequency that ensured 85% front- and side-overlaps 350 

between each pair of adjacent images. A MicaSense calibration panel was used for automated 351 

adjustment of the reflectance spectra. Raw images from the camera were stitched and processed 352 

with the Pix4DMapper Pro photogrammetry software to generate orthomosaic maps of surface 353 

reflectance at 1 cm spatial resolution. On average, 2,309 raw images were generated per time point, 354 

and 2,181 raw images were used to assemble each five-spectrum field map. With the reconstructed 355 

maps, the borders of individual plots were manually determined using the software ArcMap.  356 

 357 

Machine learning classification of floral pixels 358 

In order to train a machine learning model that could accurately identify floral pixels from a field 359 

image, pixels of flowers, vegetative bodies, and bare ground were randomly sampled and manually 360 

labeled from all images based on visual interpretation. A total of 1,569 floral pixels, 1,681 361 

vegetative pixels, and 1,557 ground pixels were labeled (Supplementary Table S1). The HSV 362 

values of the sampled pixels were extracted. Half of the pixels (2,404) were randomly selected to 363 

be used to train five machine learning models, linear discriminant analysis, k-nearest neighbor, 364 

SVM, random forest, and classification and regression tree, using R package “caret” (Kuhn, 2008), 365 

for floral pixel identification. A 10-fold within-sample cross-validation test and an out-of-sample 366 
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validation test with the remaining half of the HSV dataset were performed to compare the 367 

prediction accuracy of the machine learning models. 368 

 369 

The best performing machine learning model, the SVM model, was trained using HSV values of 370 

all 4,807 sampled pixels and used to predict floral pixels for all field images. Once the coordinates 371 

of all predicted floral pixels were determined, field images were reconstructed to reflect the floral 372 

state of each pixel. A polygonal shapefile delineating the borders of all plots was superimposed on 373 

the reconstructed field images to extract the floral pixel counts within each of the 480 plots at each 374 

time point. Each plot’s daily maximum floral pixel count was calculated and the plot-level floral 375 

pixel counts were normalized by dividing the count number at each time point by the plot daily 376 

maximums.  377 

 378 

Bayesian inference of peak floral opening time 379 

A Gaussian-like likelihood function was used to describe the fluctuation of plot-level floral pixel 380 

counts of plot k (Yk,t, k = 1, 2, …, 480) at any given time point (t) throughout the course of a day: 381 

 382 

Yk,t = e−(𝑡−τk)22δk2 +  k,t 383 

εk,t ~ N(0, σ2) 384 

 385 

The function peaks at Y = 1 when t = τk. τk is the center of the symmetric, bell-shaped curve; it 386 

describes the time point at which plot k reaches its daily global maximum floral opening. Another 387 

parameter, δk2, determines the spread of the curve, and hence describes the duration of floral 388 

opening in plot k.  389 
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 390 

The following weakly regularizing priors were chosen: 391 

 392 

τk ~ N(12, 1) 393 

δk2 ~ exp(1) 394 

σ2~ exp(1). 395 

 396 

Four 2,000-iteration Markov Chain Monte Carlo (MCMC) were used to sample from the posterior 397 

distributions of τk, δk2, and σ2 using R package “rethinking” (McElreath, 2016). After 2,000 398 

sampling iterations, plots whose MCMC for τ had effective sample sizes below 50 were fed 399 

through the modeling pipeline for a second iteration to account for possible poor fitting due to 400 

suboptimal initialization. Point estimate of the posterior distribution of τk, τ̂k , was used as 401 

estimated peak FOT for plot k. Block effect was assessed using fixed effect simple linear regression.  402 

The Euclidian mean between the peak FOTs of the two replicates were used as the phenotypic 403 

values for genetic mapping.   404 

 405 

Genotyping and QTL analysis 406 

For DNA extraction, approximately 30 seeds per genotype were placed in a 2 mL Eppendorf Safe 407 

Lock tube along with one stainless steel bead (Qiagen Cat. No. 69989), frozen in liquid nitrogen, 408 

and ground to a powder in a Qiagen TissueLyser. Seven hundred microliters of 5 M guanidine 409 

thiocyanate in 20 mM Tris-HCL (pH 6.75) was added to tissue powder, vortexed until 410 

homogenized and spun in microcentrifuge (RT) for 5 min at 14,000–20,000 g. After centrifugation, 411 

600 L of clear lysate was transferred to DNA binding plates (Epoch Life Sciences EconoSpinTM 412 
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96 well) stacked over a 1 mL collection plate and centrifuged 5 minutes (RT) at 1,300 g. Flow 413 

through was discarded. DNA binding plate was incubated with 600 L of liquid for 4 minutes at 414 

RT and centrifuged at 1,300 g for 5 minutes sequentially with PB buffer (Qiagen Cat. No. 19066), 415 

followed by PE buffer (Qiagen Cat. No. 19065), and then with two 80% EtOH washes.  DNA plate 416 

was dried in centrifuge over paper towels for 5 minutes at 2,000 g. DNA was eluted from binding 417 

plate into new collection plate after 5-minute incubation in 60 L of 10 mM Tris-HCL (pH 8.0) at 418 

65C. DNA was quantified using Qubit. DNA from parental lines and segregating individuals was 419 

digested using AvaII to reduce the genome complexity of the samples (Sandoya et al., 2019). 420 

Individual samples were barcoded, pooled, and genotyped by sequencing using paired-end 100 bp 421 

Illumina HiSeq4000. The parental lines, Armenian999 and PI251246, were also whole-genome-422 

shotgun sequenced using paired-end 150 bp and 100 bp Illumina HiSeq4000 to 29x and 17x 423 

coverages, respectively. Sequencing results were de-multiplexed using GBSX software in the 424 

demultiplex mode (Herten et al., 2015). All reads were mapped to the L. sativa reference genome 425 

v8.0 (Reyes-Chin-Wo et al., 2017) using bwa-mem (Li, 2013) and variants were called using 426 

FreeBayes (Garrison and Marth, 2012). SNPs called against the reference that were polymorphic 427 

between the two parental lines with a quality score greater than 20 and with fewer than 20% 428 

missing data across all RILs were used to construct a genetic map using the software LepMap3 429 

with 20 cM as the cutoff threshold for linkage groups and the significance level at p-value = 10-6. 430 

One representative SNP from each genetic bin was selected for QTL mapping. Linkage group 431 

numbers were determined by the chromosomal location of the markers relative to the reference 432 

genome. Heritability of the phenotype was estimated using mixed effect modeling with R packages 433 

“synbreed” (Wimmer et al., 2012) and “sommer” (Covarrubias-Pazaran, 2016) using block-level 434 

phenotype data. QTL analysis was performed using 2,677 SNP markers, each representing distinct 435 
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genetic bins. The R package “qtl” was used for interval mapping, 10,000-iteration permutation test, 436 

and QTL effect analysis (Broman et al., 2003).  437 

 438 

Candidate gene identification 439 

Single nucleotide variants, insertions, deletions, stop-loss variants and stop-gain variants were 440 

identified between the parental lines using software ANNOVAR (Wang et al., 2010). Genes were 441 

filtered for non-synonymous variations in coding sequence between the parental lines. Orthofinder 442 

(Emms and Kelly, 2015) was used for genome-wide prediction of lettuce orthologs of Arabidopsis 443 

thaliana genes.  444 
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 459 

Tables 460 

Table 1. Prediction accuracy of support vector machine algorithm, checked using testing 
dataset 

  Testing: floral Testing: vegetative Testing: ground 

Prediction: floral 792 1 4 

Prediction: vegetative 3 779 8 

Prediction: ground 7 6 803 

 461 

Table 2. QTL linked to differential floral opening hour (qDFO) and their effects 

QTL 
1-LOD interval 
Physical Location 
(Base) 

1-LOD interval 
Genetic 
Location (cM) 

LOD p-value 
Variance 
Explained 

Effect 
of AA 
allele 
(hours) 

qDFO2.1 
Chr2: 183,906,862–
190,964,979 

LG2: 148.7-
159.0 

10.3 0 18.23% 0.48 

qDFO8.1 
Chr8: 196,253,927–
202,987,597 

LG8: 153.4-
156.9 

7.7 0 13.84% 0.4 

 462 

Table 3. Candidate genes within QTL qDFO2.1 with non-synonymous variations between 
parents and orthology to Arabidopsis genes involved in flowering time and/or circadian clock 
regulation.  

Lettuce gene model name Variant type* Arabidopsis ortholog 

Lsat_1_v5_gn_2_94800 NS-SNV BAF60; CHC1 

Lsat_1_v5_gn_2_93700 
NS-SNV, FS-Del, NFS-Ins, NFS-
Sub 

UBP12, UBP13 

*Variant types: “NS-SNV”: non-synonymous single nucleotide variant; “FS-Del”: Frameshift 
deletion; “NFS-Ins”: non-frameshift insertion; “NFS-Sub”: non-frameshift substitution. 

 463 
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Figure 1. Close-up photographs taken at hourly intervals from 8.00 am to 4.00 pm illustrating the asynchronous floral opening and closing of 

the parental lines and four RILs of the PI251246 x Armenian999 F6 population.
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Figure 2. Reconstructed field orthomosaic image at 11:00 am on July 1st, 2019.  A total of 2,355 raw drone images in five reflectance bands (red, 

blue, green, red-edge and infrared) were tiled using the Pix4Dmapper Pro software in GPS-guided mode. Only the red, blue and green channels 

are shown in this figure. The seven ground control points are identified with blue boxes. 
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Figure 3. Pair-wise distribution of hue (H), saturation (S) and value (V) 

of sampled floral (yellow), ground (tan), and vegetative (green) pixels. 

The plots are colored by pixel labels in (a) and hours in (b). Fewer 

samples were taken at 9 am, 3 pm and 4 pm due to the small number 

of floral pixels available at these times. 2(a) demonstrates clear 

distinction between the three classes of pixels; 2(b) indicates that 

images taken at different hours of the day are homogeneous in their 

composition. 
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Figure 4. Comparison of pixel classification prediction accuracy and 

adjusted accuracy (“Kappa”) of five machine learning algorithms: 

support vector machine (SVM), random forest (RF), classification and 

regression tree (CART), linear discriminant analysis (LDA) and k-

nearest neighbors (KNN). 
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Figure 5. The ranges of per-plot number of floral pixels at each time 

point.  The orange line shows the change of the mean per-plot floral 

pixel count over time. The box plots show median and quartile of the 

pixel count distribution at each time point. 
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Figure 6. False-colored image of 36 plots based on output of SVM classification of image pixels. Floral pixels were rendered white and non-

floral pixels (vegetative or ground) were illustrated in black. Changes in floral pixel count of highlighted plots “1”, “2”, “3”, and “4” through 

hours (a) 10 am, (b) 11 am, (c) 12 pm and (d) 1 pm show the variation in floral opening time. 
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Figure 7. Correlation between-blocks for peak floral opening time of 

236 RILs that had a convergent inference and an estimate for both 

blocks (R2 = 0.485). 
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Figure 8. Standardized floral pixel counts for four RILs and the parents throughout the day, overlaid with 

the respective Bayesian inferred floral opening curve. Close-up photographs of floral opening and closing 

events of these RILs and the parents are shown in Figure 1. 
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Figure 9. Distribution of high-confidence Bayesian inferred peak floral 

opening time of the parents and the 236 RILs used in QTL the analysis. 
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Figure 10. LOD scores of markers for peak floral opening time shown along the nine chromosomal linkage 

groups.  The LOD threshold for significance (p < 0.05) calculated by 10,000 permutations is shown as a 

black line.
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Figure 11. The additive effect of Armenian999 alleles at each QTL on 

peak floral opening time. The box plots represent the median and 

quartiles of the phenotypic distribution of each allelic combination. 

Widths of the violin plots represent density of samples at each 

phenotypic value. 
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