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Abstract—Droop control framework with an adjustable 

virtual impedance loop is proposed in this paper, which is based 

on the cloud model theory. The proposed virtual impedance loop 

includes two terms: a negative virtual resistor and an adjustable 

virtual inductance. The negative virtual resistor term not only 

can avoid the active/reactive power coupling, but also it may 

reduce the output voltage drop of the PCC voltage. The proposed 

adjustable complex virtual impedance loop is putted into the 

conventional P/Q droop control to overcome the difficulty of 

getting the line impedance, which may change sometimes. The 

cloud model theory is applied to get online the changing line 

impedance value, which relies on the relevance of the reactive 

power responding the changing line impedance. The verification 

of the proposed control strategy is done according to the 

simulation in a low voltage microgrid in Matlab. 

Keywords—microgrid, droop control, adjustable virtual 

impedance, membership cloud 

I. INTRODUCTION  

In order to manage the widespread penetration of 
renewable energy and distributed generation (DG) in power 
distribution networks, the microgrid concept was introduced 
into electric power systems. The microgrid approach offers the 
most flexibility and reliability for power systems, and thus the 
micro-grid is generally regarded as the most attractive DG 
system configuration [1]-[2].  

The active power-frequency droop (P-f droop) and the 
reactive power-voltage droop (P-V droop) is used to realize the 
“plug and play” characteristic (PnP) and to mimic the parallel 
operation characteristics of synchronous generators, which was 
initially proposed in [1] for the parallel operation of multiple 
uninterruptible power supply units [3].There are mostly the 
resistive lines in low voltage microgrids [4]. The high resistive 
value of distribution lines makes the control method of active 
power (P) and reactive power (Q) couple. The accuracy of Q-
control in grid-connected operation mode and the Q-sharing 
during in islanding mode are affected due to the unequal 
voltage drops along the microgrid with the impaired line 
impedances and the inverter output impedances significantly 

[5]. Note that voltage is a local variable in the microgrid, while 
frequency is a global one. 

A lot of research works have been done to diminish the 
abovementioned disadvantages of the traditional droop control. 
We found out mainly three kinds of methods to perform this:  

(i) To make the inverter output impedance to be inductive 
instead of resistive, controlling parameters can be setting. 
However, it is important for this method to rely on the power 
stage and the control parameters of the voltage and current 
loops, which may trade-off the system stability.  

(ii) To solve this problem, Guerrero [7] proposed the 
control strategy based on the virtual impedance. In order to 
ensure the inverter output impedance adjusted flexibly, it is 
necessary to feed back the inverter output current in the virtual 
impedance loop. It seems to be a good way to diminish 
problem of power coupling and guarantee Q-sharing by the 
virtual impedance [8]. But the control strategy based on the 
virtual impedance may cause DG voltage distortions because 
of bad designed or implemented. Therefore the system stability 
and dynamics are adversely affected [9].  

(iii) A droop control method connecting an adjustable 
virtual impedance is proposed to decrease mismatch voltage 
drops across lines and to diminish P/Q coupling in this paper. 
The adjustable virtual impedance is regulated the cloud model 
theory. 

This paper starts in Section II, which discusses firstly some 
problems about P/Q coupling and mismatch line impedances 
among inverters in a microgrid. Section III shows the proposed 
droop controlling method with the cloud-based adjustable 
virtual impedance. The simulation is done in Section IV. The 
system performance is verified by the simulating results. 
Section V is the conclusions. 

II. PROBLEMS ON POWER COUPLING AND IMBALANCE LINE

IMPEDANCES

The voltage across the equivalent line impedance is shown 
in Fig.1. Note that the inverter output impedance is included 
the equivalent line impedance.  
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Fig. 1. the line impedance voltage. 

From the Fig.1 we can see that the voltage drop (ΔUL), and 

the phase angle (δ) difference can be calculated as follows 
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Where U0∠0 denotes the inverter open-circuit voltage and 

UL∠-δ the voltage on PCC, respectively; and ZL∠θ=RL+jXL is 

the line impedance of the system. From (1) and (2), it can be 
seen that the higher the RL/XL ratio of the distribution feeders, 
the higher the P/Q coupling. Actually, besides the P/Q 
coupling effect, the power sharing among the inverters is 
affected by the mismatch line impedance. For instance, 
consider that the two DGs present same line impedances 
RL+jXL is not realistic. The line impedances may change due to 
many factors. The changing line impedances can be given as in 
the resistive and/or inductive parts, ∆ܴ  and ∆ܺ  respectively. 
Consequently this imbalance may produce voltage differences ∆ܷ  and circulating currents, thus these imbalance line 
impedances ∆ܴ	and ∆ܺ  may bring about unequal Q-sharing. 
For this case, the total line impedance is presented as: 

)( XXjRRZ LLT Δ++Δ+= ω


 (3) 

Notice that it includes nominal values and variations. 

 

Fig. 2. Control strategy block on the cloud model theory to regulate	∆ܼ௏. 

III. DROOP CONTROL WITH AN ADJUSTABLE VIRTUAL 

IMPEDANCE 

A. Adjustable Virtual Impedance Concept  

It is well known that not only imbalanced feeder 
impedances affect power sharing among the inverters, but also 
high RL/XL ratios deal with voltage raises. We set the virtual 
impedance as follows to overcome these disadvantages: 

 XωjRRZ LV ΔΔ −−−=


 (4) 

Then the resistive part of the line becomes 0. The whole 
impedance of the line is: 

 LT XωjZ =


 (5) 

In this case, the problems of P/Q couple and the imbalance 
line impedance can be solved. From the equations (1) and (2) it 
can be seen that after applying equation (4), the equations (1) 
and (2) can be expressed as: 
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Equations (6) and (7) show that in the inductive 
impedance-dominated microgrids, the output Q controls the 

inverter voltage, while P controls the system frequency, 
independently. This behavior is similar that those in large 
power systems, so that similar equations can be found when 
transmitting power in large distances. 

Then equation (4) can be rewritten as follows: 

 VLV ZRZ Δ−−=


 (8) 

where XjRZV Δ+Δ=Δ ω is the changing line impedance 

portion. In equation (8), although the value of RL can be easily 
obtained, however the knowledge of the changing line 
impedance value is often not available. In this paper we 
propose a way to solve this problem by applying the cloud 
model theory to adjust	∆ܼ௏ . The reactive power is inversely 
proportional to the line impedance. This relationship is used in 
the control method, which is shown in (6). The control diagram 
of the proposed approach is given in Fig. 2. 

Fig. 2 shows the control strategy based on 
power/voltage/current three-loop including the proposed 
adjustable virtual impedance. As we know, communications 
among the parallel connected DGs can be reduced by the P/Q 
droop control method. The well-known traditional P/Q droop 
control functions can be expressed as: 

 
mPωω −= 0  (9) 

 
nQUU −= 0  (10) 
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Where ω0 and U0 are the set frequency and voltage for micro-
grid at no load conditions; m and n are the droop coefficients of 
DGs P and Q. Thus, the output voltage Upq generated from the 
P/Q droop control can be shown as: 

 tωsinUU pq =  (11) 

Thus, the reference for the voltage loop can be expressed as 
follows: 

 IZUU Vpqref −=  (12) 

Where Uref is the final reference voltage. In order to enhance 

Q-sharing accuracy, an adjustable virtual impedance strategy 

is proposed here. The cloud model theory is used to obtain the 

adjustable virtual impedance. We can implement the 

adjustable virtual impedance strategy straightly without the 

changing line impedance values. 

B. the Cloud model Theory 

We present the principle of the cloud model theory in this 
SubSection [10]. A membership cloud generator is constructed 
by three digital characteristics, which can cloud numerical 
values. Assuming that ܴሺܧ௫,  ௘ሻ is a random function, whichܪ
meets a normal distribution. So the normal random entropy can 
be gotten: 

 )H,E(RE en
'
n =  (13) 

Where Ex is the expected value of a membership cloud. It 

shows the center of gravity of the cloud. En is the entropy to 

measure the fuzziness of the concept over the universe of 

discourse. He is the super-entropy to measure of the 

randomness of the membership function. Therefore, we can get 

the normal random number by the random function with an 

expected value Ex and the standard error 
'
nE  : 

 )E,Ex(Rx '
ni =  (14) 

The membership function with a normal distribution can be 
expressed as: 
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where ix with membership iμ  is a cloud drop, which is drop( ix ,

iμ ).  

 Hence, lots of cloud drops construct the membership cloud. 
Actually, we also call the membership cloud generator as the 
membership cloud generator with X-term. 

Here, we say that it has a membership cloud generator with 

Y-term, if the set iµ  has a membership degree and it satisfies: 

 '
nixi E)μ(Ez ln2−±=  (16) 

A set of special cloud rules is established by using cloud 
generators with X-term and Y-term. These special cloud rules 
can be summed up by human controllers from their experiences. 
Note that the nonlinear characteristics can be expressed by 
these specified cloud rules . For example “if A, then B”, if the 
digital characteristics of the linguistic terms A and B in that 

rule are given. The membership degree, μi , produced by the 
cloud generator with X-term CGX represents the activated 
strength of the rule which goes to control the cloud generator 
with Y-term CGY to produce a set of drops(zi, μi) quantitatively. 
All the activated rules will make contributions to a particular 
input. This natural rule with one “and” can be constructed by 
the two-dimension membership cloud generator with X-term 
and the one-dimension membership cloud generator with Y-
term, for example, "If A and B, then C" .  

Set GA((Exx Exy),(Enx Eny),(Hex, Hey)) be a two-dimension 
membership cloud, if there are 
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Thus we can get the two-dimension membership cloud 
generator with X-term. 

According to equations (15) and (19), equation (19) can be 
represented as following: 

 
)()())}()(exp{ln(

 ))}(ln())(exp{ln()(

yμxμyμxμ
yμxμy,xμ

==

+=
 (20) 

Finally, the backward cloud generator is used to obtain the 
numerical output. The output expected value of Exu expressed 
by: 

 =
=

n

i
ixu z

n
E

1

1
 (21) 

being numerical output expressed in (21). It is not 
necessary to calculate the output entropy Enu and the output 
super-entropy Heu here. 

C. Adjusting the Virtual Impedance 

The membership cloud model can convert the qualitative 
knowledge into the quantitative. The membership cloud model 
joins the fuzziness into randomness through Ex , En, and He for 
an object. The two-dimension and one-dimension membership 
cloud generator can form the control rules according to 
regulating actions. By using this method, the mathematical 
model is not necessary. It only requires controller’s experience 
and their logic judgments to overcome the nonlinearities and 
uncertainties of the plant. 

The Block diagram of the closed loop system using the 
cloud model theory to regulate the virtual impedance is shown 
in Fig. 3. In this control system, the error and the error change 
of the reactive power is settled as the input signal denoting as e 
and ec, respectively. According to the input signals error e and 
the error change ec, the variable term of the adjustable virtual 
impedance ΔZV  can be obtained by applying the cloud model 
for online regulation purposes.  

In Fig. 3, we set the input signals of the closed loop system 
t as e and ec of reactive power Q.  The output signal of the 
closed loop system is set as the changing virtual impedance 
ΔZV for the parameter regulation algorithm. There are three 
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main steps in the computation process of the cloud model: (i) 
transforming input numerical values into clouds, (ii) setting 
reasoning rules and clouding uncertainty reasoning and (iii) 
transforming output clouds into numerical values. 

 

Fig. 3. Block diagram of the closed loop system to regulate the virtual 

impedance. 

The discourse domains of input and output signals can be 
represented as [Xmin, Xmax]. So that the discourse domains of the 
error e and the error change ec are [-1000 1000] and ΔZV [-1 1]. 
Here, in order to obtain three digital characteristics of each 
cloud, the golden section method is adopted[11]. The input and 
output signals e, ec and ΔZV for the cloud model are expressed 

as Ge(Ex，En，He), Gec and GΔZV, respectively.  

Subsequently, seven clouds of the error e can be expressed 
as: 

E-3=Ge1(-1000 333.3 42), E-2= Ge2(-382 206.0 26),  

E-1= Ge3(-191 127.3 16), E0= Ge4(0 78.7 10),  

E+1= Ge5(191 127.3 16), E+2= Ge6(382 206.0 26), 

E+3=Ge7(1000 333.3 42). 

Thus, the seven clouds of the error change ec are: 

EC-3=Ge1(-1000 333.3 42), EC-2= Ge2(-382 206.0 26),  

EC-1= Ge3(-191 127.3 16), EC0= Ge4(0 78.7 10), 

EC+1= Ge5(191 127.3 16), EC+2= Ge6(382 206.0 26), 

EC+3=Ge7(1000 333.3 42). 

Hence the seven clouds of the changing virtual impedance 
ΔZV  can be obtained by: 

ΔZV-3=Ge1(-1 0.3 0.042), ΔZV-2= Ge2(-0.4 0.2 0.026),  

ΔZV-1= Ge3(-0.2 0.1 0.016), ΔZV0= Ge4(0 0.08 0.01),  

ΔZV+1= Ge5(0.2 0.1 0.016), ΔZV+2= Ge6(0.4 0.2 0.026), 

ΔZV+3=Ge7(1 0.3 0.042). 

The membership cloud of error e with 1000 cloud drops is 
shown in Fig.4. The membership cloud of the error changes ec. 
We can get the membership cloud of the output ΔZV in the 
same way. 

 

Fig. 4. Membership clouds of the error of the reactive power Q. 

 

Fig. 5. Two-dimension membership cloud. 

The two-dimension membership cloud is shown in Fig. 5 at 
“if E+2 and EC0”. Here the cloud drop number is also 1000. 
The two-dimension membership constructs each reasoning rule. 

Cloud models of input and output signals e, ec, and ΔZV, 
can be defined respectively According to corresponding each 
7-cloud, as following: 

E={NB,NM,NS,Z,PS,PM,PB} 

EC={NB,NM,NS,Z,PS,PM,PB} 

ΔZV ={NB,NM,NS,Z,PS,PM,PB} 

being NB, NM, NS, Z, PS, PM, and PB, remark negative big, 
negative middle, negative small, zero, positive small, positive 
middle, and positive big, respectively. The reasoning rules for 
ΔZV are formed, which is given in Table I. For instance, if E is 
NB and EC is NB, then  ΔZV is PB. 

TABLE I.  REASONING RULES OF ΔZV  

E 
EC 

NB NM NS Z PS PM PB

NB PB PB NB PM PS PS Z 

NM PB PB NM PM PS Z Z 

NS PM PM NS PS Z NS NM

Z PM PS Z Z NS NM NM

PS PS PS Z NS NS NM NM

PM Z Z NS NM NM NM NB

PB Z NS NS NM NM NB NB

 

In the process of the cloud reasoning shown in Fig. 6,  CGXi, 
CGYi and CGC are the two-dimension membership cloud 
generator with X-term, the one-dimension membership cloud 
generators with Y-term, and the backward membership cloud 
generator, respectively; 3E is a rule that cloud drops at the 
universe of discourse U, which is mainly contributing to the 
qualitative conception C to be in the range [Ex-3En, Ex+3En]. 
The 3E rule is given as follows. At the universe of discourse U, 

any △x at X which contributes to the qualitative conception C 

will guarantee the following approximation: 
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