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Abstract— Clock drift in digital controllers is of great rele-
vance in many applications. Since almost all real clocks exhibit
drifts, this applies in particular to networks composed of
several individual units, each of which being operated with
its individual clock. In the present work, we investigate the
effect of clock drifts in inverter-based microgrids. Via a suitable
model that incorporates this phenomenon, we prove that clock
inaccuracies hamper synchronization in microgrids, in which
the individual inverters are operated with a fixed uniform
constant electrical frequency. In addition, we show that the well-
known frequency droop control renders stability of a lossless
microgrid robust with respect to clock inaccuracies. This claim
is established by using stability results reported previously by
the authors for lossless inverter-based microgrids with ideal
clocks. We also discuss the effect of clock drifts on active power
sharing. The analysis is illustrated via a simulation example.

I. INTRODUCTION

As a consequence of political and environmental goals
together with technological advances, the worldwide use
of renewable energies has increased significantly in recent
years. This development not only changes the mix of the gen-
eration structure, but also strongly affects the power system
structure and its operation as a whole [1]. In particular, most
renewable power plants are relatively small-sized in terms of
their generation power. Therefore, they are often connected to
the power system at the medium (MV) and low voltage (LV)
levels. Such units are commonly denoted as distributed gen-
eration (DG) units and are mostly interfaced to the network
via AC inverters. The latter are power electronic devices,
which possess significantly different physical characteristics
from synchronous generators (SGs). This implies that new
control and operation strategies are needed in networks with
a large share of DG units [2].

Microgrids are foreseen to be a promising solution to
address these changes by enabling an efficient and reliable
integration of large shares of renewable DG units in the
electrical power system [1], [3], [4]. A microgrid is a
locally controllable subset of a larger electrical network.
It is composed of several DG units, storage devices and
loads. One main feature of a microgrid is that it can be
operated either in grid-connected or in islanded mode, i.e.,
in a completely isolated manner from the main transmission
system to increase the reliability of power supply.

As in any power system, stability is a key performance
criterion in microgrids. In conventional power systems,
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mostly SG-based units, operated as so-called grid-forming
units, are used for this task. However, in inverter-dominated
microgrids, grid-forming capabilities have to be provided by
inverter-interfaced sources [5]. Inverters operated in grid-
forming mode are commonly represented as ideal control-
lable AC voltage sources [2], [5]–[7].

While the above is a reasonable assumption, the following
important aspect regarding inverter modeling has not been
considered explicitly in previous work on microgrid stabil-
ity analysis, e.g., [8]–[11]. In many practical setups, each
individual inverter is operated with its own processor. It is
well-known that the clocks used to generate the time signals
of the individual processors differ from each other due to
clock drifts [12], [13]. Furthermore, it has been argued in [6],
[7], [14] that apart from sensor uncertainties, the presence of
clock drifts is the main reason why inverters operated with
fixed electrical frequency cannot operate in parallel—unless
the network possesses a very accurate clock synchronization
system, which is rarely the case in practice [7].

The present paper provides an analysis of the effects of
clock inaccuracies on microgrid performance in terms of
stability and active power sharing. In that regard, our main
contributions are: first, we derive a model of an inverter with
unknown constant clock drift; second, under a mild assump-
tion on the network topology, we prove the abovementioned
claim in [6], [7], [14] that clock inaccuracies hamper syn-
chronization in an inverter-based microgrid, in which the
inverters are operated with a fixed uniform constant electrical
frequency; third, as indicated in [14], we show that the usual
droop controls, see, e.g., [7], [15], render stability of inverter-
based microgrids robust with respect to unknown constant
clock drifts. The claim is established based on our previous
stability analysis of droop-controlled microgrids with ideal
clocks [10]. Furthermore, we discuss the effect of clock drifts
on active power sharing and illustrate the analysis via a
simulation example.

II. PRELIMINARIES

A. Notation
We define the sets n̄ := {1, 2, . . . , n}, R≥0 := {x ∈

R|x ≥ 0}, R>0 := {x ∈ R|x > 0}, R≤0 := {x ∈ R|x ≤ 0},
R<0 := {x ∈ R|x < 0} and S := [0, 2π). For a set V, let
|V| denote its cardinality. For a set of, possibly unordered,
positive natural numbers V = {l, k, . . . , n}, the short-hand
i ∼ V denotes i = l, k, . . . , n. Let x := col(xi) ∈ Rn
denote a vector with entries xi for i ∼ n̄, 0n the zero
vector, 1n the vector with all entries equal to one, In the
n×n identity matrix, 0n×n the n×n matrix with all entries
equal to zero and diag(ai), i ∼ n̄, an n× n diagonal matrix
with diagonal entries ai ∈ R. Let j denote the imaginary
unit. Finally, ∇f denotes the transpose of the gradient of a
function f : Rn → R.



B. Electrical network
We consider a Kron-reduced [16] representation of a

generic meshed microgrid in which loads are modeled by
constant impedances. The Kron-reduced microgrid is formed
by n ≥ 1 nodes, each of which represents a DG unit
interfaced via an AC inverter. We denote the set of network
nodes by n̄ and associate a time-dependent phase angle
δi : R≥0 → S and a voltage amplitude Vi : R≥0 → R>0 to
each node i ∈ n̄. We assume that the microgrid is connected,
i.e., that for all pairs (i, k) ∈ n̄ × n̄, i 6= k, there exists
an ordered sequence of nodes from i to k such that any
pair of consecutive nodes in the sequence is connected by a
power line represented by an admittance. This assumption
is reasonable for a microgrid, unless severe line outages
separating the system into several disconnected parts occur.

Furthermore, we assume that the admittances in the
microgrid are purely inductive. For the line admittances,
this assumption is justified if the inductive inverter output
impedance (due to the output inductor and/or the possible
presence of an output transformer) dominates the resistive
parts of the network lines [8], [10]. With regards to the shunt
admittances, we are aware that in the case of the Kron-
reduced network the reduced network admittance matrix
does, in general, not permit to neglect the shunt conductances
and our stability results might therefore be inaccurate.

Two nodes i and k of the microgrid are connected via
a complex nonzero admittance Yik := jBik ∈ C with sus-
ceptance Bik ∈ R<0. For convenience, we define Yik := 0
whenever i and k are not directly connected. The set of
neighbors of a node i ∈ n̄ is denoted by n̄i := {k

∣∣ k ∈
n̄, k 6= i , Yik 6= 0}. For ease of notation, we write angle
differences as δik := δi − δk. The overall active and reactive
power flows Pi : Sn × Rn>0 → R and Qi : Sn × Rn>0 → R
at a node i ∈ n̄ are obtained as1

Pi=
∑
k∼n̄i

|Bik|ViVk sin(δik),

Qi= |Bii|V 2
i −

∑
k∼n̄i

|Bik|ViVk cos(δik),
(II.1)

with
Bii := B̂ii +

∑
k∼n̄i

Bik, (II.2)

where B̂ii ∈ R≤0 denotes the shunt admittance at the i-th
node. As we are mainly concerned with dynamics of DG
units, we express all power flows in generator convention.

C. Model of an inverter with ideal clock
Under the assumption of ideal clocks, the grid-forming

inverter at the i-th node, i ∈ n̄, can be modeled as an AC
voltage source, the frequency and amplitude of which can
be specified by the designer2 [5], [9], i.e.,

δ̇i = uδi ,

τPi
Ṗmi = −Pmi + Pi,

Vi = uVi ,

τPi
Q̇mi = −Qmi +Qi,

(II.3)

1To simplify notation the time argument of all signals is omitted.
2An underlying assumption to this model is that whenever the inverter

connects an intermittent renewable generation source, e.g., a photovoltaic
plant, to the network, it is equipped with some sort of storage (e.g. a battery).
Thus, it can increase and decrease its power output within a certain range.

where uδi : R≥0 → R and uVi : R≥0 → R are controls. Fur-
thermore, it is assumed that the power outputs Pi and Qi
given in (II.1) are measured and passed through filters with
time constant τPi ∈ R>0 [17]. The measured powers are
denoted by Pmi : R≥0 → R and Qmi : R≥0 → R.

III. PROBLEM STATEMENT

In a practical setup, the dynamics (II.3) together with the
controllers generating the signals uδi and uVi are implemented
on a processor by means of numerical integration. After each
integration step, the generated values of the angle δi and the
voltage amplitude Vi are passed to the internal controllers
of the inverter at the i-th node. These internal controls
then ensure that the inverter provides the desired sinusoidal
voltage at its terminals [6].

For each unit in the network, the sampling interval used
to perform this numerical integration stems from the internal
clock of the processor of that same unit. Following standard
terminology and to avoid confusions with the electrical
frequency, we denote by clock rate the frequency at which
the processor is running. The clock rate is usually determined
by some sort of resonator, e.g., a crystal oscillator. Almost all
resonators suffer from precision inaccuracies [12], [18]. As a
consequence, the clocks of different units in the network are
not synchronized per se. In particular, this implies that the
numerical integration required to implement (II.3) is carried
out using different integration time steps at the different units
in the network. The impact of this phenomenon on microgrid
performance in terms of stability and active power sharing
is analyzed in the following.

IV. MODEL OF AN INVERTER WITH INACCURATE CLOCK

In this section, an equivalent model to (II.3) is derived
for an inverter with an inaccurate processor clock. For
an illustration of the influence of the clock inaccuracy on
the numerical integration of (II.3), consider the well-known
Euler method [19] as an exemplary numerical integration
method3. Let x ∈ Rn, f : R × Rn → Rn and consider the
ordinary differential equation

ẋ(t) = f(t, x(t)), x(t0) = x0.

Fix an initial time t0 ∈ R and an integration step size h ∈
R>0. Let k ∈ N be the k-th integration step. Then

tk = t0 + kh (IV.1)
and the integration step of the Euler method from tk to
tk+1 = tk + h is given by [19]

xk+1 = xk + hf(tk, xk). (IV.2)
Recall that at each inverter the integration (IV.2) is carried out
using the time signal provided by the local clock. As outlined
in Section III, almost all real clocks exhibit a certain (though
often small) inaccuracy. In data-sheets, this clock drift is
usually specified relative to the nominal clock rate [18]. To
see how such a clock drift affects the time signal provided by
a processor clock, denote an exemplary nominal clock rate
by fc ∈ R>0 and its relative drift by µ ∈ R. Typically, |µ| ≤
10−5 [18]. Then, the actual sampling interval ∆tc ∈ R>0

3Our analysis and model derivation apply equivalently to other numerical
integration methods, at the cost of a more complex notation.



with respect to the nominal sampling interval ∆t̄c = 1/fc
of the corresponding processor is

∆tc =
1

fc(1 + µ)
=

1

1 + µ
∆t̄c = (1 + ε)∆t̄c, (IV.3)

with ε := −µ/(1+µ). Note that both the step size h in (IV.1)
and the time signal provided by the processor (given, e.g.,
by (IV.1)) are multiples of the sampling time ∆tc in (IV.3).
Denote by t ∈ R the nominal network time, by t0 ∈ R the
nominal network initial time, by h ∈ R>0 the step size in
nominal time, by ti ∈ R the local time of the clock of the
i-th inverter, by ti0 ∈ R its initial time and by hi ∈ R>0 its
step size. Furthermore, denote the relative drift of the clock
of the i-th inverter by µi ∈ R. Due to the good short-term
accuracy of many resonators (see Section III), we assume
in the following that µi is a small, but unknown constant
parameter satisfying |µi| � 1. Furthermore, we account for
a possible constant local clock offset ζ̄i ∈ R. Without loss
of generality, it is convenient to write ζ̄i as ζ̄i = t0εi + ζi,
ζi ∈ R. Hence, with (IV.3), ti0 and hi can be expressed as

ti0 = t0 + ζ̄i = t0(1 + εi) + ζi, hi = h(1 + εi).

Then

tki = ti0 + khi = tk(1 + εi) + ζi,

with tk given in (IV.1). It follows that, for sufficiently fast
sampling times, the clock drift of the processor of the i-th
inverter can formally be included in the continuous-time
model (II.3) by an appropriate time-scaling, i.e.,

ti = (1 + εi)t+ ζi. (IV.4)
Note that the clock model (IV.4) is identical to that used to
investigate clock synchronization, e.g., in [13]. Furthermore,
d(·)
dti

=
1

(1 + εi)

d(·)
dt

= γi
d(·)
dt

, γi :=
1

1 + εi
= 1 + µi > 0.

(IV.5)
Suppose the time derivatives in (II.3) are expressed with
respect to the local time ti of the i-th inverter. Inserting (IV.5)
in (II.3) yields

γiδ̇i = uδi ,

γiτPi Ṗ
m
i = −Pmi + Pi,

Vi = uVi ,

γiτPi
Q̇mi = −Qmi +Qi,

(IV.6)

where the time derivatives are now expressed with respect to
the nominal time t. Furthermore, without loss of generality,
the local clock offset ζi can be included in the initial
conditions of the system (IV.6) and is therefore omitted in
the following analysis. By defining (with Pi, Qi in (II.1))

δ := col(δi) ∈ Sn, V := col(Vi) ∈ Rn>0,
uδ := col(uδi ) ∈ Rn, uV := col(uVi ) ∈ Rn,
P := col(Pi) ∈ Rn, Q := col(Qi) ∈ Rn,
Γ := diag(γi) ∈ Rn×n, T := diag(τPi

) ∈ Rn×n,
the system (IV.6) can be compactly written as

Γδ̇ = uδ,

ΓT Ṗm = −Pm + P,

V = uV ,

ΓTQ̇m = −Qm +Q.

(IV.7)

The result below proves, under a mild assumption on the
network topology, that a microgrid operated with constant
frequencies does not possess a solution with constant power
flows in the presence of clock inaccuracies described above.

Claim 4.1: Consider the system (IV.7), (II.1). Assume
γi 6= γk, i ∼ n̄, k ∼ n̄i and that there is at least one
node i ∈ n̄ with |n̄i| ≤ 2. Set uδi = ωd and uVi = V d,
i ∼ n̄, where ωd and V d are positive real constants. Then
the system (IV.7), (II.1) possesses no solution

col(δ∗, Pm,∗, V d, Qm,∗),
where Pm,∗ ∈ Rn and Qm,∗ ∈ Rn are constant vectors.

Proof: Recall that the power flow equations (II.1) de-
pend upon angle differences δ∗ik. From (IV.7) with uδi = ωd,
i ∼ n̄, it follows that

δ∗ik = δ∗ik(0) + ωdt

(
1

γi
− 1

γk

)
, i ∼ n̄, k ∼ n̄i. (IV.8)

Hence, with the made assumptions, δ̇∗ik is a nonzero constant
and clearly the absolute angle differences grow with time.

We proceed by showing by contradiction that (IV.8) im-
plies non-existence of solutions of (IV.7), (II.1) with constant
vectors Pm,∗ ∈ Rn and Qm,∗ ∈ Rn. Assume that such a
solution exists and let Pm,∗i be the constant active power
measurement corresponding to the i-th node with |n̄i| = 2.
Then, we have from (IV.7) with uVi = V d, i ∼ n̄,
|Bik|(V d)2 sin (δ∗ik)+|Bim|(V d)2 sin (δ∗im)=Pm,∗i . (IV.9)

Taking the time derivative of (IV.9) yields
|Bik|(V d)2δ̇∗ikcos(δ∗ik)+|Bim|(V d)2δ̇∗imcos(δ∗im)=0, (IV.10)

where δ̇∗ik and δ̇∗im are nonzero constants. This implies that
cos (δ∗ik) = 0 ⇔ cos (δ∗im) = 0.

Hence, δ̇∗ik = δ̇∗im. But, since γi 6= γk 6= γm, δ̇
∗
ik 6= δ̇∗im.

Thus, (IV.10) is violated.
A similar argument applies to the reactive power flows Q

given in (II.1). Furthermore, for |n̄i| = 1 the result follows
trivially from (IV.9). Consequently, the system (IV.7), (II.1)
possesses no synchronized motion with constant vectors
Pm,∗ and Qm,∗, completing the proof.

Claim 4.1 confirms the observation made in [6], [7], [14]
that, if several inverters in parallel are to be operated with
a constant uniform frequency, then a very accurate clock
synchronization system is required in order to maintain con-
stant angle differences. See [7] for a discussion on possible
solutions for this.

Remark 4.2: The requirement uVi = V d, i ∼ n̄, is merely
added in Claim 4.1 to simplify the presentation of the proof.

V. DROOP CONTROL RENDERS INVERTER-BASED
MICROGRIDS ROBUST TO CLOCK DRIFTS

In addition to the sensitivity with respect to clock drifts,
operating parallel grid-forming inverters with fixed constant
frequencies (and voltage amplitudes) has two further main
disadvantages. First, the network operator looses all con-
trollability over the current and power flows in the network
(unless the phase angles are directly controlled, which again
requires a very accurate synchronization system [7]). Hence,
the control objective of power sharing can, in general, not be
achieved. Second, such an operation may lead to very high
uncontrolled current flows in the network.



A popular control scheme to address both aforementioned
problems is droop control [7], [15]. While there exists a large
variety of control schemes for inverters named droop control,
the ones most commonly employed are defined as follows
[7]. Let ωd ∈ R>0, V

d ∈ Rn>0 and
KP = diag(kPi

) ∈ Rn×n>0 , KQ = diag(kQi
) ∈ Rn×n>0 ,

P d = col(P di ) ∈ Rn, Qd = col(Qdi ) ∈ Rn.
Then, the usual frequency and voltage droop controls are

uδ = ωd1n −KP (Pm − P d),
uV = V d −KQ(Qm −Qd).

(V.1)

We refer the reader to [8], [9] for an in-depth discussion and
motivation of the control (V.1). By inserting (V.1) in (IV.6)
and following [9], [10], we obtain the closed-loop system

Γδ̇ = ω,

ΓT ω̇ = −ω + ωd1n −KP (P − P d),
ΓT V̇ = −V + V d −KQ(Q−Qd),

(V.2)

where P and Q are given in (II.1) and ω := col(ωi) ∈ Rn
is the vector of internal inverter frequencies. Note that the
model (V.2), (II.1) differs from the model of a droop-
controlled inverter-based microgrid with ideal clocks ana-
lyzed in [8]–[11] by the coefficients γi, i ∼ n̄.

A. Synchronized motion under clock drifts

It is convenient to introduce the notion of a desired
synchronized motion of the system (V.2), (II.1).

Definition 5.1: A solution col(δs, ωs, V s) ∈ Sn × Rn ×
Rn>0 of the system (V.2), (II.1) is said to be a desired
synchronized motion if ωs ∈ Rn and V s ∈ Rn>0 are constant
vectors and δs ∈ Θ, where

Θ :=
{
δ ∈ Sn

∣∣ |δik| < π

2
, i ∼ n̄, k ∼ n̄i

}
,

such that δsik = δsi − δsk are constant, i ∼ n̄, k ∼ n̄i,∀t ≥ 0.
Claim 5.2: Consider the system (V.2), (II.1). The vector of

internal frequencies ωs of any desired synchronized motion
is given uniquely by

ωs = ΓωN1n, (V.3)
where the real constant ωN is given by

ωN = ωd

∑
i∼n̄

1
kPi∑

i∼n̄
γi
kPi

+

∑
i∼n̄ P

d
i∑

i∼n̄
γi
kPi

. (V.4)

Proof: By Definition 5.1, a synchronized motion of the
system (V.2), (II.1) is characterized by constant vectors ωs

and V s, as well as constant angle differences δsik. Since,

δsik = δsik(0) +

(
ωsi
γi
− ωsk
γk

)
t, i ∼ n̄, k ∼ n̄i,

constant angle differences, together with the connectedness
of the network, imply

ωsi
γi

=
ωsk
γk

=: ωN , i ∼ n̄, k ∼ n̄. (V.5)

Moreover, it follows from (V.2), (II.1) with ω̇s = 0n that
0 = 1Tn

(
K−1
P (−ωs + ωd1n) + P d

)
,

which with (V.5) is equivalent to

0 =
∑
i∼n̄

(
1

kPi

(−γiωN + ωd) + P di

)
and, by rearranging terms, yields (V.4).

Note that for γi = 1, i ∼ n̄, i.e., for ideal clocks, all
internal frequencies become identical and (V.4) reduces to
the usual expression of the synchronization frequency in a
lossless microgrid, see [8], [10]. Hence, under the presence
of clock drifts, the internal synchronized frequencies of the
inverters are scaled by the parameters 1/γi, i ∼ n̄.

B. Error states

The stability analysis is carried out following [10]. To
establish the result, we make the following natural power-
balance feasibility assumption.

Assumption 5.3: The system (V.2), (II.1) possesses a de-
sired synchronized motion.

Under Assumption 5.3, we introduce the error states

ω̃(t) := ω(t)− ωs, δ̃(t) := δ(0) + Γ−1

∫ t

0

ω̃(τ)dτ.

Furthermore, by noting that the power flows (II.1) only
depend upon angle differences, we express all angles relative
to an arbitrarily chosen reference node, say node n, i.e.,

θ := Rδ̃, R :=
[
I(n−1) −1(n−1)

]
.

For ease of notation, we define the constant θn := 0, which is
not part of the vector θ. The power flows (II.1) become in the
reduced coordinates x := col(θ, ω̃, V ) ∈ Rn−1 × Rn × Rn>0

Pi :=
∑
k∼n̄i

ViVk|Bik| sin(θik),

Qi := |Bii|V 2
i −

∑
k∼n̄i

ViVk|Bik| cos(θik), i ∼ n̄,

P := col(Pi) ∈ Rn, Q := col(Qi) ∈ Rn.

(V.6)

To simplify notation, we also introduce the constants
c1i := ωd − ωsi + kPiP

d
i , c2i := V di + kQiQ

d
i , i ∼ n̄

and c1 := col(c1i) ∈ Rn and c2 := col(c2i) ∈ Rn. In the
reduced coordinates, the dynamics (V.2), (V.6) are given by

θ̇ = RΓ−1ω̃,

ΓT ˙̃ω = −ω̃ −KPP + c1,

ΓT V̇ = −V −KQQ+ c2,

(V.7)

The reduced system (V.7), (V.6) has an equilibrium at
xs := col(θs, 0n, V

s), the asympotitic stability of which
implies asymptotic convergence to the synchronized motion
(up to a uniform shift of all angles). Note that from (V.7),
(V.6) it follows that, along any synchronized motion,

1TnP = 1TnK
−1
P c1 = 0 ⇒ c1n = −

n−1∑
i=1

kPn

kPi

c1i
. (V.8)

C. Main result

For the presentation of our main result, it is convenient to
introduce the matrices L ∈ R(n−1)×(n−1), W ∈ R(n−1)×n,
D ∈ Rn×n and T (δs) ∈ Rn×n defined in the appendix.

Proposition 5.4: Consider the system (V.7), (II.1) with
Assumption 5.3. Fix τPi

, kPi
and P di , i ∼ n̄. If V di , kQi

and Qdi are selected such that
D + T (δs)−W>L−1W > 0, (V.9)

then the equilibrium point xs is locally asymptotically stable.
Proof: As done in [10], the claim is established

by following the interconnection and damping assignment
passivity-based control approach [20]. With x = col(θ, ω̃, V )



and by recalling (V.8), the system (V.7), (V.6) can be written
in port-Hamiltonian form, i.e.,

ẋ = (J −R(x))∇H
with Hamiltonian H : R(n−1) × Rn × Rn>0 → R given by

H(x) =

n∑
i=1

( τPi

2kPi

ω̃2
i +

1

kQi

(Vi − c2i ln(Vi)) +
1

2
|Bii|V 2

i

− 1

2

∑
k∼n̄i

ViVk|Bik| cos(θik)
)
−
n−1∑
i=1

c1i

kPi

θi, (V.10)

interconnection matrix

J =

[
0(n−1)×(n−1) J
−J> 02n×2n

]
,

J =
[
RKP (ΓT )−1 0(n−1)×n

]
,

and damping matrix
R = diag(0(n−1),KP (ΓT 2)−11n,KQ(ΓT )−1V ).

Note that the Hamiltonian H(x) defined in (V.10) is identical
to that for droop-controlled microgrids with ideal clocks de-
rived in the proof of Proposition 5.9 in [10]. The parameters
γi, i ∼ n̄, stemming from the clock drifts only appear
as scaling parameters in the interconnection and damping
matrices J and R. Furthermore, it has been proven in [10]
that, under the standing assumptions, L is positive definite.
It also follows from (II.2) that T (δs) is positive semidefinite.
Consequently, local asympotitic stability of the equilibrium
point xs of the system (V.7), (V.6) follows in a straight-
forward manner from the proof of Proposition 5.9 in [10].

Condition (V.9) is independent of the parameters γi, i ∼ n̄,
originating from the clock drifts. This fact implies that local
stability of the equilibrium xs is independent from γi, i.e.,
stability of an inverter-based droop-controlled microgrid is
robust with respect to unknown constant clock drifts.

VI. CLOCK DRIFTS AND ACTIVE POWER SHARING

We employ the following definition of power sharing.
Definition 6.1: Let χi ∈ R>0 denote weighting factors

and P si the steady-state active power flow, i ∼ n̄. Then, two
inverters at nodes i and k are said to share their active powers
proportionally according to χi and χk, if

P si
χi

=
P sk
χk
.

For droop-controlled inverters with ideal clocks, it has
been shown in [8], [10] that the objective of active power
sharing is achieved in a synchronized state if the parameters
of the frequency droop controllers are chosen such that

kPi
χi = kPk

χk and kPi
P di = kPk

P dk . (VI.1)
The result below quantizes the largest ratio of weighted
power outputs P si /χi introduced by the clock drifts µi if
the parameters kPi and P di are chosen according to (VI.1).
Due to space limitations, we restrict the statement to units
with positive active power outputs.

Claim 6.2: Consider the system (V.2), (II.1). Assume that
it possesses a synchronized motion with vector of synchro-
nization frequencies ωs ∈ Rn>0. Let n̂ ⊆ n̄. Fix χi and select
the parameters kPi

and P di according to (VI.1), i ∼ n̂. Then
the largest ratio of weighted power outputs P si /χi, i ∼ n̂,

satisfying sign(P si ) = sign(P sk ) = 1, is given by
maxi∼n̂ (P si /χi)

mink∼n̂ (P sk/χk)
=
−mini∼n̂(µi)ω

N + c

−maxk∼n̂(µk)ωN + c
(VI.2)

with c = kPi
P di +ωd−ωN , i ∼ n̂ and ωN defined in (V.4).

Proof: Recall from (IV.5) that γi = 1+µi. This implies
with (V.3) and (V.4) that ωsi = γiω

N = (1 +µi)ω
N . Hence,

for any pair of nodes (i, k) ∈ n̂× n̂, i 6= k, satisfying (VI.1),
the ratio of their weighted active power outputs along the
synchronized motion of the system (V.2), (II.1) is given by
P si /χi
P sk/χk

=
(−ωsi + kPi

P di + ωd)kPk
χk

(−ωsk + kPk
P dk + ωd)kPi

χi
=
−µiωN+c

−µkωN+c
. (VI.3)

Finally, with ωN ∈ Rn>0, (VI.2) follows from (VI.3).
Condition (VI.2) reveals that the presence of unknown clock
drifts has a deteriorating effect on the active power sharing
accuracy. Nevertheless, since in general |µi| � 1, (VI.2) also
shows that the introduced error in power sharing is negligible
in most practical scenarios. Therefore, the selection criteria
(VI.1) seem also appropriate in the presence of clock drifts.

VII. SIMULATION EXAMPLE

The conducted analysis is illustrated via a simula-
tion example based on the three-phase islanded Subnet-
work 1 CIGRE MV benchmark model [21]. The net-
work, shown in Fig. 1, is composed of 11 main buses
and possesses a total of 6 generation units operated in
grid-forming mode. The power ratings of these units are
given by SNi = [0.505, 0.028, 0.261, 0.179, 0.168, 0.012] pu,
where pu denotes per unit values with respect to the system
base power Sbase = 4.75 MVA. For a detailed description of
the simulation setup, the reader is referred to [21] and [10].

Besides illustrating the effect of clock drifts in inverter-
based microgrids, the simulation also serves to evaluate the
robustness of the model (II.1), (V.2) and the stability con-
dition (V.9) with respect to model uncertainties. Therefore,
loads are represented by impedances and all inductances are
modeled by first-order ODEs opposed to constant admit-
tances as in (II.1). The simulation is carried out in Plecs.

The relative clock drifts are assumed as
µ = [1,−10−3,−10−1, 1, 10−2,−10−1]10−5. At first,
the inverters are operated with a fixed constant frequency
ωd = 2π50 Hz and fixed voltage amplitudes V d = 1
pu. In this scenario, the power outputs of the inverters
oscillate, see Fig. 2. This illustrates that clock drifts hamper
synchronization, when all inverters are operated with a
uniform constant electrical frequency. Note that we have
not considered power limitations. In a real microgrid, any
source exceeding its nominal power output would have been
disconnected by the overcurrent protection devices.

For the case of a droop-controlled microgrid, follow-
ing (VI.1), we set χi = SNi , P

d
i = 0.6SNi pu and

kPi
= 0.2/SNi Hz/pu, i ∼ n̄. The parameters of the

voltage droop controllers are chosen as Qdi = 0.25SNi pu,
kQi

= 0.1/SNi pu/pu and V di = 1 pu, i ∼ n̄. The simulation
example in Fig. 3 shows that under the droop controls (V.1),
the microgrid converges quickly to a synchronized motion—
despite the presence of clock drifts. As in our previous
investigation [10], the stability condition (V.9) is satisfied,
indicating that it is, to a certain extent, robust to model
uncertainties, such as conductances. The largest ratio of
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Fig. 1. Benchmark model adapted from [21] with 11 main buses and
inverter–interfaced units of type: PV–Photovoltaic, FC–fuel cell, Bat–battery,
FC CHP. PCC denotes the point of common coupling to the main grid. The
sign ↓ denotes loads.
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Fig. 2. Simulation example of a microgrid in which the inverters exhibit
clock drifts and are operated with constant uniform frequency ωd = 2π50
Hz and constant voltage amplitude of V d = 1 pu.
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Fig. 3. Simulation example of a droop-controlled microgrid with clock
drifts. Trajectories of the power outputs relative to source rating Pi/S

N
i

and Qi/S
N
i , the internal scaled frequencies fi = 2πωi/γi in Hz and the

voltage amplitudes Vi in pu of the controllable sources in the microgrid.
The lines correspond to the following sources: battery 5b, i = 1 ’–’, FC
5c, i = 2 ’- -’, FC CHP 9b, i = 3 ’+-’, FC CHP 9c, i = 4 ’* -’, battery
10b, i = 5 ’M -’ and FC 10c, i = 6 ’o-’.

weighted active power outputs (VI.2) introduced by the clock
drifts µi amounts to 1.0085. Hence, the error in active power
sharing is negligibly small.

VIII. CONCLUSION

We have shown that clock drifts are a practically relevant
phenomenon in inverter-based microgrids, as they prevent
synchronization if the individual grid-forming inverters are
operated with a fixed constant electrical frequency. A suitable
inverter model incorporating this phenomenon has been

provided. By using this model, we have derived a port-
Hamiltonian representation of a lossless droop-controlled
inverter-based microgrid, based on which we have shown
that stability of such networks is robust to unknown constant
clock drifts. In future work, we plan to complement the
conducted analysis with tests on an experimental setup.

APPENDIX

The matrix D is given by

D := diag
(

c2m

kQm
(V sm)2

)
= diag

(
V dm + kQmQ

d
m

kQm
(V sm)2

)
,m ∼ n̄.

The entries of the matrices L, W and T (δs) are given by

lii :=

n∑
q=1

|Biq|V si V sq cos(δsiq), lik := −|Bik|V si V sk cos(δsik),

wii :=

n∑
q=1

|Biq|V sq sin(δsiq), wiq := |Biq|V si sin(δsiq),

tpp := |Bpp|, tpq := −|Bpq| cos(δspq),

where i ∼ n̄ \ {n}, k∼ n̄\ {n}, as well as p ∼ n̄ and q∼ n̄.
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