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Abstract— The printing quality delivered by a Drop-on-
Demand (DoD) inkjet printhead is mainly limited due to the
residual oscillations in the ink channel. The maximal jetting
frequency of a DoD inkjet printhead can be increased by
quickly damping the residual oscillations and by bringing in this
way the ink-channel to rest after jetting the ink drop. The inkjet
channel model obtained is generally subjected to parametric
uncertainty. This paper proposes a robust optimization-based
method to design the input actuation waveform for the piezo
actuator in order to improve the damping of the residual
oscillations in the presence of parametric uncertainties in the
ink-channel model. Simulation results are presented to show
the efficacy of the proposed method.

I. INTRODUCTION

The ability of inkjet technology to deposit materials with

diverse chemical and physical properties has made it an

important technology for both industry and home use. Apart

from conventional document printing, the inkjet technology

has been successfully applied in the areas of electronics,

mechanical engineering and life sciences [1]. This is mainly

thanks to the low operational costs of the technology. Typi-

cally, a drop-on-demand (DoD) inkjet printhead consists of

several ink channels in parallel. Each channel is provided

with a piezo-actuator, which on application of a voltage pulse

can generate pressure oscillations inside the ink channel.

These pressure oscillations push the ink drop out of the

nozzle [2]. The print quality delivered by an inkjet printhead

depends on the properties of the jetted drop, i.e., the drop

velocity, the jetting direction and the drop volume. To

meet the challenging performance requirements posed by

new applications, these drop properties have to be tightly

controlled.

The performance of the inkjet printhead is mainly limited

due to the residual pressure oscillations. The actuation pulses

are designed to provide an ink drop of a specified volume

and velocity under the assumption that the ink channel is

in steady state. Once the ink drop is jetted, the pressure

oscillations inside the ink channel take several micro-seconds

to decay. If the next ink drop is jetted before the residual
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pressure oscillations settle, the resulting drop properties will

be different from the ones of the previous drop. Therefore,

at a high jetting frequency (which is also called the DoD

frequency), drops will be jetted before the oscillations in the

ink channel have completely disappeared and these residual

oscillations will influence the drop velocity. This can degrade

the printhead performance, since a printhead has to jet drops

with a constant velocity at different frequencies.

In the literature, we can find various methods [3], [4], [5],

[6] to design the piezo actuation pulse. In [7] we have pro-

posed an optimization-based method to design the actuation

pulse using a discrete-time model H(q) relating the piezo

input voltage (i.e., the input u) to the velocity of the meniscus

(i.e., the output y). The meniscus is an interface between

the ink and air. We consider this particular model since it

is well known that the velocity of the meniscus is a good

measure of the pressure in the ink channel. Consequently,

reducing the residual oscillations of the meniscus velocity

is equivalent to reducing the residual pressure oscillations

in the ink channel. In our latest work [8] we have shown

that the dynamical model H(q) from the piezo input to

the meniscus velocity changes considerably while jetting at

various operating DoD frequencies. A compact polytopic

uncertainty ∆ ∈ ∆ on the coefficients of the nominal inkjet

system is presented such that the uncertain model H(q, ∆),
encompasses the set of dynamics at various operating DoD

frequencies. The actuation pulse is parameterized as a pulse

response of a to-be-designed filter F (q). Thus, the robust

pulse is determined as the one minimizing the worst-case

H2 norm of the tracking error given as follows

J (F ) = max
∆∈∆

∥

∥Href(q) − H(q, ∆)F (q)
∥

∥

2

2
. (1)

where the pulse response of Href(q) is the reference meniscus

velocity trajectory yref(k) (i.e., a meniscus velocity profile

with fast decaying residual oscillations). The experimental

results show that the robust pulse designed with the pro-

posed approach in [8] improve the printhead performance

substantially.

The robust pulse design proposed in [8] use a FIR model

structure for a to-be-designed filter F (q, β) with β the

filter coefficient vector. Thus, the dimension of the filter

coefficient vector β is equal to the number of samples

in the actuation pulse u(k). The dimension of the to-be-

designed β will become larger when the actuation pulse

is longer and/or when the sampling time Ts is shorter.

This may pose numerical problems since the size of the

LMI problem, required to obtain the robust filter F (q, β),
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is directly proportional to the dimension of vector β. One

can tackle this problem by choosing an appropriate set of

orthogonal basis functions (OBFs) and weighting them in

order to reduce the performance index (1). However, a more

general approach is to let F (q) be a rational function.

In the literature, the problem of designing a robust H2

filter is considered by many authors. Since, a class of

feedforward control problems turns out to be dual to the

filtering problem, we can utilize these classical results to

design the robust actuation pulse. We are dealing with a

discrete-time system with a polytopic uncertainty. For this

type of uncertainty we can extend the results of [9] to design

the robust H2 feedforward control. One of the drawback

of this design method is that it uses a constant Lyapunov

function at the vertices of the polytope, which may introduce

conservatism. In this paper, we propose new conditions

to design the robust filter F (q) by introducing parameter-

dependent Lyapunov functions, which improve the results

in many cases. We provide simulation results for the inkjet

system to show the performance improvement using the

proposed method.

II. SYSTEM DESCRIPTION AND MODELING

Consider the discrete-time model H(q), similar to [8]1,

which describes the dynamics from the piezo input voltage

u to the meniscus velocity y is given as follows

H(q) = g

(

q2 + b1q + b2

q2 + a1q + a2

)(

q + b3

q2 + a3q + a4

)

(2)

where q is the forward shift operator and the nominal values

of the coefficients are

b1 = −3.4465, b2 = 2.4575, b3 = −5.7462× 10−1,

a1 = −1.9538, a2 = 9.6960× 10−1, a3 = −1.9102,

a4 = 9.7322× 10−1, g = 1.1820× 10−3.

The sampling time Ts is chosen equal to 0.25µs. This inkjet

system can be represented in the state-space form as follows

xS(k + 1)= ASxS(k) + BSu(k)

y(k)= CSxS(k) (3)

where

AS=





0 −a2 0 0
1 −a1 0 0
0 b3 0 −a4

0 1 1 −a3



, BS=





g(b2 − a2)
g(b1 − a1)

gb3
g



,

CS= [0 0 0 1]. (4)

As discussed in [8], at different DoD frequencies, the dynam-

ics from the piezo input to the meniscus velocity H(q) will

not be the same. It is observed that the first resonant mode

of the inkjet system varies a lot compared to the second

resonant mode. It is possible to represent these multiple

models obtained at different operating DoD frequencies by

1The difference is that [8] uses a proper transfer function and that
the transfer function considered in this paper is strictly proper. It does
not change the frequency response in the dominant low frequency range.
However, having a strictly proper function will simplify the pulse design.

the nominal plant (2) with uncertainty on its coefficients. An

uncertainty ∆ on the coefficients a1 and a2 of (2) is chosen

such that the uncertain system H(q, ∆) encompasses the set

of models obtained at different operating DoD frequencies.

The uncertainty ∆ = [∆(1) ∆(2)]T perturbs the coefficients

a1 and a2 in the following manner:

a1(∆)= a1,nom(1 + ∆(1)) (5)

a2(∆)= a2,nom(1 + ∆(2)), (6)

where a1,nom = −1.954 and a2,nom = 0.9696 are the nominal

values of the coefficients a1 and a2. The uncertainty ∆ on

the coefficients lie inside the polytope ∆ which is formed by

convex combination of the four vertices ∆i, i = 1, 2, 3, 4,

i.e. ∆ ∈ ∆= conv(∆1, ∆2, ∆3, ∆4). The values of these

four vertices computed via system identification results (for

details see [8]) are ∆1 = [0.8103/100 1.3928/100]T ,

∆2 = [0.4031/100 1.0927/100]T , ∆3 = [−0.0342/100 −
0.3206/100]T , ∆4 = [−0.5813/100 − 0.9097/100]T .

It can be seen that the uncertainty ∆ enters affinely in

the matrices AS and BS (3). Thus, the state-space matrices

of the inkjet system H(q, ∆) for the admissible uncertainty

∆ ∈ ∆ belong to the polytope

[

AS(∆), BS(∆)

]

=
4
∑

i=1

αi

[

ASi
, BSi

]

, (7)

where the matrices ASi
= AS(∆i), BSi

= BS(∆i), i =
1, ..., 4, are the system matrices of a fixed inkjet system at

the i-th vertex of the polytope and αi are positive scalars

such that
∑4

i=1 αi = 1. The matrix CS is independent of ∆.

In the next section, we use this uncertain model of the inkjet

system H(q, ∆) in order to design a robust actuation pulse.

III. ROBUST FEEDFORWARD CONTROL

Generally, commercial inkjet printheads use actuation

pulses with shape constraints (for details, see [7]) which

are mainly due to electronic hardware limitations. However,

for future high-end inkjet printheads this shape constraint

on the actuation pulse may restrict the printhead perfor-

mance. Rapid developments in the electronics field will

enable printhead manufacturers to use more sophisticated

electronic hardware which can generate an unconstrained

actuation pulse. Therefore, it is essential to investigate the

possibility of an unconstrained actuation pulse which will

damp the residual oscillations when the inkjet channel model

is subjected to parametric uncertainty. In this section, we

first review the robust actuation pulse design using the

H2 feedforward formulation presented in [8]. Further, we

provide an extension of [9] to design a robust pulse using

a constant Lyapunov function and finally, we give improved

conditions using parameter-dependent Lyapunov functions.

A. Robust actuation pulse using H2 feedforward control

In [7], we have designed a meniscus velocity profile

yref(k) with fast decaying residual oscillations. As shown

in Fig. 1, the reference trajectory yref(k) is modeled as the

pulse response of a rational function Href(q). The state-space
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Fig. 1. Filtering problem for the inkjet printhead.

representation of the reference model Href(q) is given as

follows

xR(k + 1)= ARxR(k) + BRδ(k)

yref(k)= CRxR(k) (8)

where δ(k) is the unit pulse. If the actuation pulse u(k)
is designed in such a way that the meniscus velocity y(k)
follows the reference trajectory yref(k), then the channel will

come to rest very quickly after jetting the ink drop. This

will create a condition to jet the ink drops at higher jetting

frequencies.

In the previous section, we have presented a compact

polytopic uncertainty ∆ ∈ ∆ on the coefficients of the inkjet

system such that uncertain system H(q, ∆) represents the

set of multiple models obtained at various operating DoD

frequencies. The state-space representation of the system

G(q) (see Fig. 1) with two inputs and the tracking error

e as the output is given as follows:
[

Ã(∆) B̃S(∆) B̃R

C̃ 0 0

]

=

[

AS(∆) 0 BS(∆) 0
0 AR 0 BR

CS −CR 0 0

]

.

The uncertainty in the inkjet channel model can now be

handled owing to the H2 filtering formulation. For this

purpose, we parameterize the actuation pulse as the pulse

response of a filter F (q):

u(k) = F (q)δ(k) (9)

where δ(k) the unit pulse and the state-space representation

of the filter F (q) is given as follows

xF (k + 1)= AF xF (k) + BF δ(k)

u(k)= CF xF (k) + DF δ(k). (10)

The state-space representation of the uncertain error dy-

namics (from the input δ(k) to the tracking error e(k, ∆)),
ν(q, F, ∆) =

(

Href(q) − H(q, ∆)F (q)
)

is given as follows:





A(∆) B(∆)

C 0



 =







AF 0 BF

B̃s(∆)CF Ã(∆) B̃s(∆)DF + B̃R

0 C̃ 0







(11)

In the sequel, we impose the dimension of AF to be equal to

the one of Ã(∆). It is indeed shown in [10] that the optimal

filter has this dimension. As we assume the uncertainty ∆ to

be of a polytopic nature (∆ ∈ ∆), the state-space matrices of

the error system ν(q, F, ∆) belong to the following polytope

[

A(∆), B(∆)

]

=
4
∑

i=1

αi

[

Ai, Bi

]

, (12)

where the matrices
(

Ai, Bi

)

are the state-space matrices of

the fixed error dynamics νi(q, F ) at the i-th vertex of the

polytope and αi are positive scalars such that
∑4

i=1 αi = 1.

The matrix C is independent of ∆. Clearly, the uncertain

system error dynamics is a convex combination of the fixed

systems at the vertices of the polytope ∆.

For a nominal system, the performance of the filter F (q)
can be defined as the H2 norm of the tracking error. Here, we

have an uncertain inkjet system H(q, ∆) which is perturbed

by the uncertainty ∆ ∈ ∆. Therefore, we must obtain

a robust actuation pulse whose performance is good over

the polytopic uncertainty, rather than obtaining an optimal

actuation pulse whose performance is only good for the

nominal inkjet system. Thus, it is a good choice to define

the performance index J (β) as the square of the worst-case

H2 norm of the tracking error transfer function ν(q, β, ∆):

J (F ) = max
∆∈∆

∥

∥ν(q, F, ∆)
∥

∥

2

2
= max

∆∈∆

∥

∥Href(q) − H(q, ∆)F (q)
∥

∥

2

2
.

(13)

The robust filter Frobust, describing the unconstrained robust

actuation pulse is, thus, the solution Frobust of the following

optimization problem

[γopt, Frobust] = arg min
γ, F

γ, subject to J (F ) < γ, (14)

where the solution γopt is the minimal worst-case H2 norm

that can be achieved by a filter F (q) (see Fig. 1) and Frobust

is the filter achieving this minimal worst-case H2 norm.

It is difficult to obtain the solution of the above problem

as it is not a convex finite dimensional optimization problem.

However, it is possible to compute an upper bound on γopt

and a suboptimal filter using convex optimization. In [8], the

upper bound on γopt is obtained using LMIs conditions with

a filter F (q, β) restricted to an FIR model structure with β
the filter coefficient vector. As explained in the introduction,

the dimension of the to-be-designed vector β will become

larger when the actuation pulse is longer and/or when the

sampling time Ts is smaller. This may pose numerical

problems since the size of the LMI problem, required to

obtain the robust filter F (q, β), is directly proportional to

the dimension of vector β. A general approach to overcome

this problem is to chose F (q) as a rational function.

The results for the design of the robust filter Frobust are

based on the results for the design of a filter Fopt for the

nominal plant H(q) in (2) (i.e. the plant H(q, ∆) with

∆ = [0 0]T ). For simplicity, we first present a methodology

to design this nominal filter Fopt i.e. the filter solving the

following problem

[γnom
opt , Fopt] = arg min

γnom, F
γnom,

subject to Jnom(F ) < γnom, (15)
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with Jnom(F ) =
∥

∥Href(q) − H(q)F (q)
∥

∥

2

2
.

We will see in the following lemma, as opposed to the

robust case, the solution of the problem (15) can be computed

exactly.

Note that we use ∗ as an ellipsis for terms that can be

induced by symmetry.

Lemma 1: Consider the optimization problem (15). The

solution γnom
opt of (15) can be exactly computed as the solution

of the following LMI optimization problem

min
γnom,W=W T ,Q=QT ,Z=ZT ,ÃF ,BF ,C̃F ,DF

γnom

such that trace[W ] < γnom

[

P S1 S2

∗ P 0
∗ ∗ I

]

> 0,
[

W S3

∗ P

]

> 0 (16)

where P =
[

(Q − Z) (Q − Z)
∗ Q

]

, S2 =
[

BF

B̃SDF + B̃R

]

S1 =

[

ÃF ÃF

B̃SC̃F + Ã(Q − Z) B̃SC̃F + ÃQ

]

(17)

S3 = [ C̃(Q − Z) C̃Q ] .

The state-space matrices in the above LMIs corresponds to

the state-space matrices (11) of ν(q, F, ∆) with ∆ = [0 0]T ,

i.e. the error dynamics with the nominal system H(q).

The optimal filter Fopt(q) achieving Jnom(F ) = γnom
opt can

then be computed as follows using the decision variables

Qopt, Zopt, ÃFopt
, BFopt

, C̃Fopt
and DFopt

solving the above

LMI problem

Fopt =
[

AFopt
BFopt

CFopt
DFopt

]

=

[

ÃFopt
(Qopt − Zopt)−1 BFopt

C̃F (Qopt − Zopt)−1 DFopt

]

.

Proof: Consider the error dynamics system (11) (i.e. the sys-

tem G augmented with the filter F ) without the uncertainty

∆ and for one particular F (q). Then, it is well known [9]

that for γnom > 0 the inequality ‖ν(q)‖2
2 < γnom holds if and

only if there exist symmetric matrices P and W such that

trace[W ] < γnom,

[

P AP B
∗ P 0
∗ ∗ I

]

> 0,
[

W CP
∗ P

]

> 0,

(18)

where the matrices A, B, C correspond to the state-space

matrices (11) of ν(q, F, ∆) with ∆ = [0 0]T , i.e. the error

dynamics with the nominal system H(q). By using the

partition of the Lyapunov function P given in (17) and by

using the following change of variables ÃF = AF (Q − Z)
and C̃F = CF (Q − Z) we can rewrite (18) as (16). The

expression of the optimal filter Fopt follows then directly

from the definition of ÃF and C̃F . �

Remark: Lemma 1 is close to the result in [9]. However, we

use here another partition of P (see (17)) which simplifies

the derivation of the filter.

B. Robust actuation pulse design using a rational filter

We have seen that Lemma 1 can be used to design an

optimal pulse using a rational filter F (q). By extending these

results, an upper bound γUB
opt on the solution γopt of the

problem (14) can be obtained using the following theorem.

Theorem 1: Consider the error dynamics given by (11) with

the polytopic uncertainty (12) then, γUB
opt , the solution of the

following LMI optimization problem, is guaranteed to be an

upper bound of the solution γopt of the problem(14)

min
γUB,W=W T ,Q=QT ,Z=ZT ,ÃF ,BF ,C̃F ,DF

γUB

such that following LMIs hold for i = 1, 2, 3, 4

trace[W ]< γUB

[

P S1(∆i) S2(∆i)
∗ P 0
∗ ∗ I

]

> 0,
[

W S3

∗ P

]

> 0 (19)

where

P =
[

(Q − Z) (Q − Z)
∗ Q

]

, S2(∆i) =
[

BF

B̃S(∆i)DF + B̃R

]

S1(∆i) =
[

ÃF ÃF
B̃S(∆i)C̃F + Ã(∆i)(Q − Z) B̃S(∆i)C̃F + Ã(∆i)Q

]

S3 = [ C̃(Q − Z) C̃Q ] , (20)

and the robust filter Frobust(q) which is guaranteed to achieve

(at most) a worst-case norm of γUB
opt is

Frobust =
[

AF BF

CF DF

]

=

[

ÃF (Q − Z)−1 BF

C̃F (Q − Z)−1 DF

]

.

Proof: The LMI (19) for a given i is equivalent to the LMI

(16) for the error dynamics system ν(q, F, ∆i). Verifying

that the LMI (19) holds for i = 1, 2, 3, 4, is thus equivalent

to verify that ‖ν(q, F, ∆i)‖2
2 < γUB for the systems

ν(q, F, ∆i) at the vertices of the polytopic uncertainty ∆.

Since the uncertainty ∆ enters linearly in the LMI’s (S1(∆)
and S2(∆) are indeed affine in ∆), the above fact implies

that ‖ν(q, F, ∆)‖2
2 < γUB for all ∆ ∈ ∆ (see e.g. [11]). The

construction of the filter is then similar as in Lemma 1. �

Remark: We observe that the LMI conditions (19)

proposed to obtain the robust filter Frobust should be valid at

all vertices ∆i, i = 1, ..., 4 of the polytope ∆ with a constant

Lyapunov function P . This stringent restriction may lead

to conservative results, i.e. γUB
opt >> γopt. If we allow the

Lyapunov function P to be parameter dependent, i.e. P (∆),
the condition (19) will no longer be an LMI because the

Lyapunov function P and the state-space variables of the

filter F (q) are closely interconnected. Similar to [10], to

overcome this difficulty we will utilize a reciprocal variant of

the projection lemma to alleviate the interrelation between P
and the filter variables. This result is presented in Theorem 2.

Theorem 2: Consider the error dynamics given by

(11) with the polytopic uncertainty (12). If the following

LMI optimization problem is feasible

min
γUB,W=W T ,P=P T ,Z,L

γUB

4186



such that following LMIs hold for i = 1, 2, 3, 4

trace[W ]< γUB

[

P (∆i) ∗ ∗
S4(∆i) S5 − P (∆i) ∗
S6(∆i) S7 L33 + LT

33
− I

]

> 0, (21)

[

W ∗
S8(∆i) P (∆i)

]

> 0 (22)

where

P (∆i)=
[

P1(∆i) ∗
P3(∆i) P2(∆i)

]

, L =

[

L11 L12 L13

L11 L22 L13

L31 L32 L33

]

S4(∆i)=

[

−ZT
11

−(ZT
21

B̃S(∆i)T + L12A(∆i)T + L13B̃T

R
)

−ZT
11

−(ZT
21

B̃S(∆i)T + L22A(∆i)T + L13B̃T

R
)

]

S6(∆i)= [ −ZT
12

−(ZT
22

B̃S(∆i)
T + L32A(∆i)

T + L33B̃T

R
) ]

S8(∆i)= [ C̃P3(∆i) C̃P2(∆i) ]
T

S5=
[

L11 + LT
11

∗
L11 + LT

12
L22 + LT

22

]

, Z =
[

Z11 Z12

Z21 Z22

]

S7= [ L31 + LT
13

L32 + LT
13 ] , (23)

then γUB
opt , the solution of the above LMI optimization prob-

lem is guaranteed to be an upper bound on the solution γopt of

the problem(14). Moreover, the robust filter Frobust(q) which

is guaranteed to achieve (at most) a worst-case norm of γUB
opt

is

F =

[

AF BF

CF DF

]

=

[

LT
11

LT
31

LT
13

LT
33

]

−1 [

Z11 Z12

Z21 Z22

]

. (24)

Proof: Consider the error dynamics system (11) (i.e. the

system G augmented with the filter F ) for one partic-

ular ∆ and for one particular F (q), then the inequality

‖ν(q, F, ∆)‖2
2 < γUB holds if and only if we can find γUB

such that trace[W ] < γUB and the following inequalities hold

[ I A(∆) B(∆) ] Ψ(∆)[∗]T > 0, (25)
[

W ∗
S8(∆) P (∆)

]

> 0 (26)

where Ψ(∆) = diag(P (∆),−P (∆),−I). The above condi-

tions are equivalent with those in (18). We use the notation

P (∆) because the Lyapunov matrices P can be different for

different values of ∆. Note that the condition (26) is an LMI,

but the condition (25) is not.

In order to obtain a convex robust optimization problem,

we need to rewrite (25) as a matrix inequality where P (∆)
does not multiply with any ∆-dependent term. The condi-

tion (25) can be rewritten using the projection lemma (see

Appendix A.1). This projection lemma state that (25) holds

if and only if there exists a matrix L(∆) of appropriate

dimension satisfying the following inequality

Ψ(∆) + U(∆)T LT (∆)V + V T L(∆)U(∆) > 0 (27)

with V =
[

0 I 0
0 0 I

]

, U(∆) =
[

−AT (∆) I 0
−BT (∆) 0 I

]

,

Note that L(∆) in (27) is also function of ∆. However,

in sequel we will consider a constant L in order to obtain

an LMI formulation. In (27), L has no special structure.

However, in Theorem 2, we impose the special structure

on L given by (23). If we can find a matrix having

this structure, then (25) holds. Otherwise, we cannot say

anything about (25).

Supposing first that a matrix L exists, with

S4(∆), S5, S6(∆), S7 as defined in (23) and with the

following change of variables
[

Z11 Z12

Z21 Z22

]

=

[

AF BF

CF DF

] [

LT
11

LT
31

LT
13

LT
33

]

(28)

we can rewrite (27) as follows:
[

P (∆) ∗ ∗
S4(∆) S5 − P (∆) ∗
S6(∆) S7 L33 + LT

33
− I

]

> 0. (29)

In (29), we observe that P (∆) does not multiply terms which

are functions of ∆. Moreover, the uncertainty ∆ appears

linearly in S4(∆) and S7(∆). Finally, (29) is affine in the

variables P (∆), Z and L.

Summarizing, if there exists a matrix L having the special

structure given in (23), such that trace[W ] < γUB, (26) and

(29) holds then ‖ν(q, F, ∆)‖2
2 < γUB for a given ∆ and F .

Using the convex combination property [11], we can also

say that if there exists L and Z such that trace[W ] < γUB,

(26) and (29) holds for ∆ = ∆i, i = 1, 2, 3, 4, then

‖ν(q, F, ∆)‖2
2 < γUB for all ∆ ∈ ∆. Moreover, because of

(28), the corresponding filter is given as in (23). �

Remark: We know that the solution of Theorem 1 is

an upper bound on the solution γopt of the problem (14),

but this does not hold for Theorem 2. If the new conditions

in Theorem 2 with the parameter dependent Lyapunov

functions are feasible then, indeed, it delivers an upper

bound on the solution γopt of the problem (14). However,

when the conditions in Theorem 2 are not feasible we

cannot say anything about the upper bound. The reason for

this is that it is not always possible to obtain L in (27) with

the proposed special structure to ensure (25). Nevertheless,

when the LMI problem (21)-(22) is feasible, in many cases,

it will provide a less conservative result (see e.g. [10]).

In the next section, we present simulation results for

the inkjet system with the robust actuation pulses designed

with the above two theorems.

IV. SIMULATION RESULTS

Generally, in the printhead industry the actuation pulses

are designed with the nominal model H(q) (see [7]). It

is possible to design an unconstrained optimal actuation

pulse uopt(k) for the nominal model H(q) using Lemma 1

(i.e., without considering the polytopic uncertainty). For

this purpose, we use the desired meniscus velocity yref(k)
designed in [7], i.e., a template for the meniscus velocity

with fast decaying residual oscillations. The black dash-

dot line in Fig. 2 shows the unconstrained optimal pulse

uopt(k) = Fopt(q)δ(k) obtained after solving the optimization

problem of Lemma 1 using the LMI Control Toolbox of

MATLAB . The H2 norm of the error dynamics ν(q, Fopt)
is found to be γnom

opt = 0.1172.
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Fig. 2. Comparison of the actuation pulses obtained using Lemma 1,
Theorem 1 and Theorem 2.

As discussed in the introduction, this optimal pulse may

not perform satisfactorily in practice because the inkjet

dynamics changes considerably while jetting at different

DoD frequencies. Therefore, it is interesting to compute the

worst-case H2 norm of the error dynamics ν(q, Fopt, ∆) for

the polytopic uncertainty ∆ ∈ ∆ with the optimal filter

Fopt(q) to analyze the performance degradation. For the given

filter Fopt(q), we can compute a lower bound γLB on the

worst-case H2 norm by evaluating H2 norm of ν(q, Fopt, ∆)
at fine grid points on the parametric uncertainty ∆. We found

that the lower bound γLB on the worst-case H2 norm with

the optimal filter Fopt is 189.53.

We have solved the LMI optimization problem in The-

orem 1 and Theorem 2 and the resulting robust pulses,

urobust1(k) and urobust2(k) respectively are shown in Fig. 2.

A numerical comparison of the worst-case H2 norm of the

error dynamics ν(q, ∆) with these robust actuation pulses is

presented in Table I. In Table I, we give also corresponding

lower bound on γopt computed with a fine grid on the

polytopic uncertainty ∆. Compared to the nominal filter Fopt

achieving a worst-case norm of at least 189.53, the robust

filters Frobust1 and Frobust2 achieve a much smaller worst-

case norm. This is especially true with the pulse urobust2

obtained with Theorem 2 (our improvement to Theorem 1).

We also observe that the upper bound given by Theorem 2

is very close to the lower bound, which shows its efficacy

for conservatism reduction.

TABLE I

COMPARISON OF THE WORST-CASE H2 NORM OF THE ERROR DYNAMICS

ν(q, ∆)

γLB γUB
opt

Robust pulse urobust1(k) with Theorem 1 104.27 143.68
Robust pulse urobust2(k) with Theorem 2 52.21 70.82

V. CONCLUSION

In this paper, we have proposed a robust actuation pulse

design method based on robust H2 feedforward control

to tackle the change in the inkjet system dynamics while

jetting at different DoD frequencies. We have relaxed the

constraint of the FIR model structure on the to-be-designed

robust filter presented in [8]. Further, we have provided

improved conditions to compute the robust filter by allowing

parameter dependent Lyapunov functions. Simulation results

have demonstrated that a considerable improvement in the

inkjet system performance can be achieved with the proposed

robust robust pulses. Applications of the proposed method

to multi-channel control and experimental testing will be

investigated in the future. Even though the proposed robust

feedforward control is demonstrated on the inkjet system it

can be used for a wide range of industrial applications.
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APPENDIX

A.1: Projection Lemma

Lemma:[10] Given a symmetric matrix Ψ ∈ R
m×m and

two matrices U, V of column dimension m, the following

problem

Ψ + UT LT V + V T LU > 0 (30)

is solvable in a matrix L of compatible dimension if and

only if

N T
U ΨNU > 0, N T

V ΨNV > 0 (31)

where NU and NV are any basis of the nullspace of U and

V , respectively.
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