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ABSTRACT

Drop shapes derived from a previously conducted artificial rain experiment using a two-dimensional
video disdrometer (2DVD) are presented. The experiment involved drops falling over a distance of 80 m
to achieve their terminal velocities as well as steady-state oscillations. The previous study analyzed the
measured axis ratios (i.e., ratio of maximum vertical to maximum horizontal chord) as a function of
equivolumetric spherical drop diameter (Deq) for over 115 000 drops ranging from 1.5 to 9 mm. In this
paper, the actual contoured shapes of the drops are reported, taking into account the finite quantization
limits of the instrument. The shapes were derived from the fast line-scanning cameras of the 2DVD. The
drops were categorized into Deq intervals of 0.25-mm width and the smoothed contours for each drop
category were superimposed on each other to obtain their most probable shapes and their variations due to
drop oscillations. The most probable shapes show deviation from oblate spheroids for Deq � 4 mm, the
larger drops having a more flattened base, in good agreement with the equilibrium (nonoblate) shape model
of Beard and Chuang. Deviations were noted from the Beard and Chuang model shapes for diameters
larger than 6 mm. However, the 2DVD measurements of the most probable contour shapes are the first to
validate the Beard and Chuang model shapes for large drops, and further to demonstrate the differences
from the equivalent oblate shapes. The purpose of this paper is to document the differences in radar
polarization parameters and the range of error incurred when using the equivalent oblate shapes versus the
most probable contoured shapes measured with the 2DVD especially for drop size distributions (DSDs)
with large median volume diameters (�2 mm).

The measured contours for Deq � 1.5 mm were fitted to a modified conical equation, and scattering
calculations were performed to derive the complex scattering amplitudes for forward and backscatter for H
and V polarizations primarily at 5.34 GHz (C band) but also at 3 GHz (S band) and 9 GHz (X band).
Calculations were also made to derive the relevant dual-polarization radar parameters for measured as well
as model-based drop size distributions. When comparing calculations using the contoured shapes against the
equivalent oblate spheroid shapes, good agreement was obtained for cases with median volume diameter
(D0) less than around 2 mm. Small systematic differences in the differential reflectivity (Zdr) values of up
to 0.3 dB were seen for the larger D0 values when using the oblate shapes, which can be primarily attributed
to the shape differences in the resonance region, which occurs in the 5.5–7-mm-diameter range at C band.
Lesser systematic differences were present in the resonance region at X band (3–4 mm). At S band, the
impact of shape differences in the polarimetric parameters were relatively minor for D0 up to 2.5 mm.
Unusual DSDs with very large D0 values (�3 mm) (e.g., as can occur along the leading edge of severe
convective storms or aloft due localized “big drop” zones) can accentuate the Zdr difference between the
contoured shape and the oblate spheroid equivalent, especially at C band. For attenuation-correction
schemes based on differential propagation phase, it appears that the equivalent oblate shape approximation
is sufficient using a fit to the axis ratios from the 80-m fall experiment given in this paper. For high accuracy
in developing algorithms for predicting D0 from Zdr, it is recommended that the fit to the most probable
contoured shapes as given in this paper be used especially at C band.
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1. Introduction

Drop shapes in rain play a central role in the devel-

opment of rain retrieval algorithms used for polariza-

tion weather radars (e.g., Bringi and Chandrasekar

2001, chapter 7). The majority of past studies have ap-

proximated the drop shapes to oblate spheroids, even

though it is well known that larger drops tend to deviate

from such an approximation (Pruppacher and Pitter

1971; Beard and Chuang 1987). Typically, the drop

shape is simply characterized by an axis ratio, defined

by the ratio between the maximum vertical and hori-

zontal chords. An oblate spheroid model with the same

axis ratio is then used in place of the “true” shape for

applications involving dual polarization radar param-

eters, such as differential reflectivity (Zdr) and specific

differential propagation phase (Kdp).

At low-attenuating frequencies such as S band, drop

shapes are used in the estimation of raindrop size dis-

tribution (DSD) and hence the rainfall rate from polari-

metric radar measurements. At increasingly attenuat-

ing frequencies such as C band and above, the rainfall

estimation method requires an added process of cor-

recting for rain attenuation of the radar signal. Correc-

tion schemes that utilize Kdp assume an equivalent ob-

late model to determine the copolar attenuation and

the differential attenuation. Generally speaking, at

higher frequencies, the attenuation-correction algo-

rithms and the subsequent DSD retrievals are more

sensitive to errors due to non-Rayleigh effects.

The shape information is also relevant in evaluating

propagation effects on line-of-sight systems and earth–
space communication links operating at microwave fre-

quencies (Oguchi 1983; Olsen 1981; Allnutt 1989, chap-

ters 4 and 5). Effects such as differential attenuation

and rain-induced cross polarization, which are particu-

larly relevant for systems employing orthogonal polar-

izations, are governed by the probable drop shapes and

size distributions.

An earlier study (Thurai and Bringi 2005) reported

on axis ratios measured using a two-dimensional video

disdrometer (2DVD; Randeu et al. 2002; Kruger and

Krajewski 2002) from an artificial rain experiment for

drop diameters ranging up to 9 mm. The axis ratios

were derived from the height to length ratios of the

drop images. In this article, we present the actual con-

toured shapes of drops from that same experiment after

accounting for the finite quantization limits of the in-

strument. The shapes were derived directly from the

digitized data provided by fast line-scanning cameras of

the 2DVD. Drop shape comparisons are made with the

full (nonoblate) numerical model of Beard and Chuang

(1987). The effects of approximating the shapes to ob-

late spheroids are considered in terms of computations

of dual-polarization radar parameters, primarily at C

band but also at X and S bands.

2. Drop shapes from the 80-m fall experiment

a. Previous results

The 80-m fall experiment (described in Thurai and

Bringi 2005) involved drops being generated from a

hose located on a bridge 80 m above ground, this height

being the largest so far and assumed to be sufficient to

allow drop oscillations to reach steady state. A 2DVD

was located on the ground in order to capture images of

the falling drops, under very light wind conditions. The

total number of drops analyzed was around 115 000.

Their axis ratio (ratio of maximum vertical to maximum

horizontal chord) distributions were obtained for diam-

eters ranging from 1.5 to 9 mm. Distributions of axis

ratios for all diameters larger than 1.5 mm showed that

they could be fitted to Gaussian distributions. Their

fitted mean values were compared with past literature

results and were shown to be in close agreement with

those reported by Goddard et al. (1995) as well as the

fitted equation given in Brandes et al. (2002). In addi-

tion, the axis ratio at the lower diameter end of the

2DVD data resolution (near 1.5 mm) were shown to

merge closely with laboratory measurements of smaller

drops at the 1.5-mm-diameter region (Beard and

Kubesh 1991).

The images captured during this experiment by the

2DVD’s fast scanning cameras were reprocessed using

a contour smoothing procedure to construct the actual

shape of each individual drop. Full details of the con-

tour smoothing algorithms for the 2DVD data as well

as their implementation can be found in Gimpl (2003).

The appendix describes the methodology used herein.

b. Probability contours

Each drop, after undergoing contour smoothing, was

categorized into various equivolumetric sphere diam-

eter intervals, ranging from 1.5 to 8 mm in 0.25-mm

steps. Below 1.5 mm, the resolution of the 2DVD was

not considered sufficient for accurate shape estimation.

For each of the assigned diameter intervals, all drop

contours in that category were superimposed exactly on

each other to derive the probability contours, the prob-

ability values being normalized to the total number of

pixels in all the drop contours in that diameter interval.

In essence the contours represent a two-dimensional

histogram of the (x, y) coordinates obtained from the

2DVD data (see also the appendix), depicted in color

scale as opposed to a 3D surface plot. It follows that
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outliers will be diminished in their significance and the

most probable (x, y) coordinates will be highlighted.

Figure 1 shows color images of these probability con-

tours (in log scale) for equivalent drop diameters in the

range (a) 3–3.25, (b) 4–4.25, (c) 5–5.25, and (d) 6–6.25

mm. The finite width of these contours reflects drop

oscillations, which in Thurai and Bringi (2005) were

quantified in terms of the mean and width of the axis

ratio distributions. To give an indication of the inferred

oscillation amplitudes, for the 4–4.25-mm drops, the

maximum horizontal chord was within 3.8 and 4.9 mm

for 95% of the cases while the vertical chord was within

2.6 and 4.1 mm. The most probable dimensions were 3.4

mm for the vertical and 4.4 mm for the horizontal, giv-

ing a mean axis ratio of 0.77.

Each image in Fig. 1 has two curves superimposed on

it. The one in black represents our estimate of the best-

fitted equation to the most probable contour, given by

FIG. 1. Drop shapes given in terms of probability contours on a log scale indicated in color for (a) 3–3.25, (b) 4–4.25, (c) 5–5.25, and

(d) 6–6.25 mm, the probability values being normalized with respect to the total number of pixels for all the drop contours in that

diameter interval. Superimposed in black is the curve given by the fitted Eq. (1) obtained by modifying the shapes given in Wang (1982).

Light blue curve shows the approximated oblate spheroid shapes whose axis ratios are from Thurai and Bringi (2005).
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x � c1�1 � � y

c2
�2�cos�1� y

c3c2
���c4� y

c2
�2

� 1�,

�1�

where x and y are the Cartesian coordinates and the

parameters c1, c2, c3, and c4 were fitted to obtain the

mean dependence on the equivolumetric sphere diam-

eter (Deq in mm), given by

c1 �
1

�
�0.02914Deq

2 � 0.9263Deq � 0.07791�,

c2 � �0.01938Deq
2 � 0.4698Deq � 0.09538,

c3 � �0.06123Deq
3 � 1.3880Deq

2 � 10.41Deq � 28.34,

c4 � �0.01352Deq
3 � 0.2014Deq

2 � 0.8964Deq

� 1.226 for Deq � 4 mm,

c4 � 0 for 1.5 mm � Deq � 4 mm.

The form of (1)1 is a modification of the mathematical

formulation representing smooth conical-like shapes

given in Wang (1982; c1, c2, and c3 are the same as the

parameters a, c, and � in that reference). The last brack-

eted term containing c4 is the only modification to the

Wang formula that had to be introduced to get a more

precise fit to the most probable contour for drops larger

than 4 mm. Fitting of the other three parameters (c1, c2,

and c3) is similar to that given in Wang et al. (1987).

The second superimposed curve in Fig. 1, shown in

blue, represents the approximated oblate spheroid

shape with axis ratio given by a refitted formula to the

measurements reported in Thurai and Bringi (2005) for

Deq � 1.5 mm:

b

a
� 1.065 � 6.25 � 10�2�Deq� � 3.99

� 10�3�Deq
2 � � 7.66 � 10�4�Deq

3 �

� 4.095 � 10�5�Deq
4 �, �2�

where the ratio b/a represents the minor to major axis

ratio for the equivalent oblate spheroid. This refitted

formula is a much closer representation of the axis ratio

measurements for all Deq values ranging from 1.5 up to

10 mm.

Figure 1 clearly shows that the larger drops have

more deviation from oblate spheroid shapes. The

3–3.25- and 4–4.25-mm drop contours agree closely

with the approximated formula in (2) above whereas

the 5–5.25- and 6–6.25-mm drop contours show more

deviation, clearly with a much flatter base. As shown

later, these deviations can have some effect on differ-

ential reflectivity calculations for certain regimes of

drop size distributions.

3. Comparison with Beard–Chuang (nonoblate

shape) model

The full numerical model of Beard and Chuang

(1987) (B–C), although often approximated to oblate

spheroids for practical applications, in actual fact pre-

dicts shapes that are similar to those in Fig. 1. Their

model computation results in “a singly curved surface

with a flattened base and a maximum curvature just

below the major axis,” a feature that could also be no-

ticed in Fig. 1d for the 6-mm drops. The B–C model

shapes were given in terms of a summation of cosine

series, the coefficients of which are given in Table 4 of

their article. These coefficients were used to derive the

mean drop shapes for the four drop diameters consid-

ered in Fig. 1; the comparisons are given in Fig. 2. As

seen, the B–C model results lie close to the measured

probability contours, although the latter show a slightly

more flattened base for the larger drops. This minor

discrepancy increases slightly for larger drop diameters

(7–8 mm; not shown here).

The other (nonoblate shape) model often quoted in

the literature is the Pruppacher and Pitter (1971) model

(P–P). When compared with the B–C model, it pro-

duces a noticeable indentation at the base for drop di-

ameters above 5 mm. Such indentations were not im-

mediately obvious in our contours, even for the largest

diameters examined (up to 9 mm). It has been noted

earlier that drops in the 7–9-mm region showed a slight

decrease in their mean fall velocities (Thurai and Bringi

2005), attributed to a possible increase in drop distor-

tion giving rise to an increase in drag when compared

with the increase in weight. Nevertheless, since the B–C

model gives good agreement with our measured con-

tours, we would expect their above-mentioned state-

ment on the “singly curved surface with a flattened

base” to apply to large drops.

4. Calculations of polarization variables

In previous studies, the P–P (nonoblate shape) model

has been used for scattering calculations to quantify the

effect of the equivalent oblate approximation (Oguchi

1977; Morgan 1980). We consider here the conse-

quences of our measured shapes on scattering ampli-

1 Equation (1) has also been shown to be valid for drop shapes

in natural rain (Thurai et al. 2006), at least for 1.5 mm � Deq � 4

mm; the upper limit of 4 mm was only restricted because of an

insufficient number of larger drops in natural rain to derive sta-

tistically meaningful probability contours.
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tudes and extend the considerations to examine the ef-

fect on radar polarization parameters as well.

a. C-band scattering calculations: Single particles

Using (1) for the mean drop shapes, the complex

scattering amplitudes for forward and backscatter were

calculated using the T-matrix method. Table 1 shows

the calculations at 5.34 GHz (C band) for Deq larger

than 1.5 mm. The computations correspond to 20°C

water temperature and the dielectric constant from Ray

(1972). Figure 3a compares these calculations with the

Mie solutions for spheres in terms of the normalized

backscatter cross section (i.e., normalized with respect

to the cross-sectional area). The Mie curve lies in be-

tween the horizontal (H) and vertical (V) polarization

curves but for Deq up to 5.5 mm, it lies somewhat closer

to the former. The resonance effects (e.g., Keenan et al.

2001) are evident in the 5.5–7-mm region in all three

cases. Note also in this region, the difference between

H and V cross sections is the greatest.

FIG. 2. The same probability contours as in Fig. 1, but compared with the Beard and Chuang (1987) shapes (shown in black)

derived using Table 4 of their paper.

JUNE 2007 T H U R A I E T A L . 1023



Figure 3a also shows the normalized backscatter

cross sections calculated using (2). In general, they

agree well with those using (1), but in the 6-mm region,

the equivalent oblate spheroid approach slightly under-

estimates the backscatter cross section for H polariza-

tion and slightly overestimates for V polarization. The

effect of this discrepancy is more evident in Fig. 3b,

which compares the equivalent Zdr values derived for

the two cases. In the 6–7-mm region, the contoured

shapes give 0.5 dB higher Zdr than the equivalent oblate

spheroid shapes. For smaller and larger diameters, the

differences are negligible. The shape effects on Zdr are

mostly negligible except in the resonance region.

The resonance effect in the 5.5–7-mm region also

TABLE 1. Real and imaginary parts of the complex scattering amplitudes (in m) for H and V polarizations at C band as a function

of drop equivolumetric sphere diameter.

Diameter

(mm)

Real,

forward for V

Imaginary

forward for V

Real,

forward for H

Imaginary

forward for H

Real,

back for V

Imaginary

back for V

Real,

back for H

Imaginary

back for H

1.75 8.2682E-06 �1.5864E-07 8.6830E-06 �1.7120E-07 7.8330E-06 �2.3357E-08 �8.2287E-06 2.9511E-08

2 1.1974E-05 �2.6310E-07 1.2961E-05 �2.9624E-07 1.1147E-05 �3.6658E-10 �1.2073E-05 1.2505E-08

2.5 2.2496E-05 �6.6636E-07 2.5770E-05 �8.0770E-07 2.0026E-05 1.6217E-07 �2.2971E-05 �1.4593E-07

3 3.8154E-05 �1.5582E-06 4.6172E-05 �2.0287E-06 3.1984E-05 6.6554E-07 �3.8757E-05 �7.2297E-07

3.5 6.0382E-05 �3.4459E-06 7.7267E-05 �4.8663E-06 4.6748E-05 1.9384E-06 �5.9781E-05 �2.4108E-06

4 9.1026E-05 �7.3393E-06 1.2361E-04 �1.1489E-05 6.3491E-05 4.8696E-06 �8.5591E-05 �6.9997E-06

4.5 1.3556E-04 �1.5939E-05 1.9512E-04 �2.8498E-05 8.1989E-05 1.1841E-05 �1.1541E-04 �2.0264E-05

5 1.9821E-04 �3.5091E-05 3.0202E-04 �7.5620E-05 9.9309E-05 2.8289E-05 �1.4696E-04 �6.0450E-05

5.5 2.8179E-04 �7.8043E-05 4.2854E-04 �2.0655E-04 1.1349E-04 6.6800E-05 �2.0527E-04 �1.7844E-04

6 3.7528E-04 �1.7006E-04 4.2895E-04 �4.2227E-04 1.3500E-04 1.5161E-04 �4.4403E-04 �3.6993E-04

6.5 4.2434E-04 �3.2713E-04 3.3183E-04 �4.6120E-04 2.1508E-04 2.9718E-04 �8.3719E-04 �3.6372E-04

7 3.6672E-04 �4.7530E-04 3.8483E-04 �4.1557E-04 4.0899E-04 4.2759E-04 �1.1290E-03 �2.3575E-04

7.5 2.6574E-04 �5.2453E-04 5.3563E-04 �4.3320E-04 6.6292E-04 4.4670E-04 �1.3772E-03 �9.6335E-05

8 2.2212E-04 �5.0920E-04 7.0618E-04 �5.3560E-04 8.7525E-04 3.7906E-04 �1.6015E-03 6.2197E-05

8.5 2.3500E-04 �5.0400E-04 8.4900E-04 �6.6600E-04 1.0300E-03 2.9100E-04 �1.7800E-03 1.9300E-04

9 2.6400E-04 �5.2600E-04 1.0300E-03 �7.8400E-04 1.1300E-03 2.1200E-04 �1.9900E-03 2.5200E-04

FIG. 3. (a) Comparisons of normalized backscatter cross sections for H and V polarizations using the

contoured shapes [Eq. (1)] and the approximated oblate spheroids [Eq. (2)]. (b) Comparisons of single

particle Zdr. (c) Comparisons of single particle Kdp assuming a drop concentration of 1 per m3. (d)

Comparisons of single particle Adp assuming the same drop concentration.
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affects the specific differential phase (Kdp) and the spe-

cific differential attenuation (Adp) at C band. The Kdp

depends on the real part of the difference between the

forward scattering amplitudes at H and V polarizations,

while Adp depends on the corresponding difference of

the imaginary parts. As deduced from Table 1, these

differences are positive for all diameters except for the

6.5-mm case. This trend is also predicted by the oblate

spheroid approximation, although some differences in

their magnitudes were observed, once again in the 6–7-

mm region. The single particle Kdp and Adp are given in

Figs. 3c and 3d, assuming a concentration of 1 particle

per cubic meter. Negative values in the 6–7-mm region

are not shown (since the y axes are on log scales), but

they agree with prior calculations at C band (e.g.,

Keenan et al. 2001).

b. C-band scattering calculations: Integration

over DSD

Having compared the radar and propagation param-

eters for individual drops, we now examine the inte-

grated effect over a range of drop size distributions,

both measured as well as model-based.

1) CALCULATIONS USING MEASURED DSDS

For the measured DSDs, a previously analyzed event

(Bringi et al. 2006) in an oceanic, subtropical location

(Okinawa, Japan) is used here. This was a long duration

baiu event that lasted over 12 h and had rainfall rates

up to 100 mm h�1, but the size of drops as measured

with the 2DVD rarely exceeded 5 mm (as shown in

Figs. 12, 14, and 16 of Bringi et al. 2006).

T-matrix calculations were performed for the 1-min

integrated DSDs from this event. The DSDs were fitted

to normalized gamma distributions using the method

described in Bringi et al. (2003). The maximum diam-

eter for the size integration was set to a “realistic” value

of 3 times the estimated median volume diameter (D0)

corresponding to each of the DSDs or set at 8 mm,

whichever was less. The water temperature was set to

20°C and a Gaussian canting angle distribution with

zero mean and 5° standard deviation was used to ac-

count for turbulence effects. The overall effects of the

contoured shapes are given in Fig. 4, in terms of the

various radar parameters at C band. It shows the com-

parisons between the T-matrix calculations based on

the contoured shapes using (1) and their oblate ap-

proximations using (2). Note that in both sets of calcu-

lations, a fitted formula for drops smaller than 1.5 mm

to the more accurate laboratory measurements of

Beard and Kubesh (1991) was used, given by

b

a
� 1.173 � 0.5165�Deq� � 0.4698�Deq

2 � � 0.1317�Deq
3 �

� 8.5 � 10�3�Deq
4 � for 0.7 � Deq � 1.5 mm.

�3�

Below 0.7 mm, drops were assumed spherical, again for

both sets of calculations.

Six parameters were computed, namely, (a) ZH, (b)

Zdr, (c) Kdp, (d) AH, (e) Adp, and (f) the linear depo-

larization ratio (LDR), for C band (5.34 GHz). Figure

4 shows close agreement between the calculations using

the most probable shapes and those derived using the

equivalent oblate spheroids. Over 1600 one-minute

DSDs are represented in the figure. Although they rep-

resent rainfall rates ranging up to 100 mm h�1, over

80% of the cases have rain rates less than 10 mm h�1.

Hence, the DSD data are weighted toward the strati-

form, less intense periods of the event (Bringi et al.

2006). Nevertheless, as seen in Fig. 4, agreement to

within a few percent is obtained even for the higher

values of rainfall rates for all computed parameters. For

example, for the highest recorded rainfall rate of 102

mm h�1, the computed values for ZH, Zdr, Kdp, AH, and

Adp were 53.1 dBZ, 4.3 dB, 5.46° km�1, 0.328 dB km�1,

and 0.111 dB km�1, respectively for case using (1), com-

pared with 53.0 dBZ, 4.0 dB km�1, 5.54° km�1, 0.35 dB

km�1, and 0.109 dB km�1 using the approximated ob-

late spheroid approach. These comparisons represent

small errors (	4%). This is not surprising, given the

fact that the maximum drop sizes observed during this

event rarely exceeded 5 mm. As seen earlier in Fig. 3,

noticeable deviation from oblate shapes only occurs

within the resonance region for Deq in the 5.5–7-mm

range at C band.

Thurai and Hanado (2005) as well as Bringi et al.

(2006) have used the measured DSDs from the baiu

front event to examine the validity of the so-called 
dp

consistency method at C band for attenuation correc-

tion and radar external calibration. Analyses using PPI

scans of ZH, Zdr, and Kdp taken over 8 h showed that it

was possible to determine the reflectivity calibration

factor as well as to quantify the effects due to rain-on-

radome. The method used the approximated oblate

spheroids for deriving the various relationships re-

quired for the attenuation-correction scheme and the

subsequent reconstruction of the differential phase pro-

files. These relationships entailed the five parameters

shown in Figs. 4a–e. Since our comparisons show that

the oblate approximation is sufficiently accurate for de-

riving these five parameters for this event, we would

expect the same relationships to apply for the con-
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toured shapes and hence no change would be required

for that event analysis.

2) CALCULATIONS FOR MODEL DSDS

The DSDs used in the above calculations were ob-

tained in a subtropical environment during a particular

rainy event (i.e., the baiu front in Okinawa, as men-

tioned earlier). In this section, we examine how the

DSDs in other climatic regimes would affect the com-

parisons between the true shapes and the approximated

oblate spheroids. To this end, distributions of DSDs

representing 1) continental convective and 2) tropical

convective rain regimes were generated. The DSDs

were based on the normalized gamma distribution char-

acterized by the normalized intercept parameter (Nw in

mm�1 m�3), the median volume diameter (D0 in mm),

and the shape factor (�). For case 1, values of log10(Nw)

used were in the range 3.37 � 0.52, D0 in the range 2.3

� 0.52 mm, and � in the range 2.35 � 2.08. For case 2,

the corresponding ranges were 4.27 � 0.43, 1.58 � 0.36,

and 3.4 � 2.3, respectively. These values were obtained

from previously published studies (Bringi et al. 2003,

their Fig. 11) and are given here in Table 2. Over 2000

DSDs were generated for each of the two cases, with

rainfall rates exceeding 100 mm h�1 for 20% of the

cases for rain type 1, and 10% of the cases for rain type

2. The DSD parameters were uniformly distributed

within their respective ranges. Other input parameters

for the T-matrix calculations were kept the same as

before.

FIG. 4. Comparisons of (a) ZH, (b) Zdr, (c) Kdp, (d) AH, (e) Adp, and (f) LDR using the contoured

shapes (x axis) and the approximated oblate spheroids ( y axis). For the first five parameters, equations

for the best fitted lines are given.
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The resulting comparisons are shown only for Zdr

since the other radar parameters were found not to be

affected by the shape difference between contoured

and oblate (as was the case discussed earlier using the

measured DSDs). Figure 5 shows Zdr � Zdr (oblate)

� Zdr (most probable contoured) versus D0 for DSD

cases 1 and 2, as well as the measured DSDs from the

baiu front event. The errors are within �0.1 dB for D0

	 2 mm whereas for larger D0 values, a trend is ob-

served where the oblate approximation shows a bias of

up to �0.3 dB. For the tropical convective case (case 2)

and the measured DSDs, Zdr were largely negli-

gible, owing to the smaller D0 and hence the lack of

drops in the resonance region. The effect of increasing

Dmax—the maximum diameter over which the integra-

tion is performed—was also examined, but this did not

affect the resulting comparisons significantly. Apart

from Zdr, other radar parameters remain unaffected by

the nonoblate shapes (errors are not shown here).

c. Calculations at S and X bands

We now consider the drop shape effects at two other

radar frequency bands, namely, S and X bands. For S

band, it is well known that resonances occur at 12–15

mm, which is outside the range of raindrop sizes,

whereas for X band the resonance occurs in the 3–4-

mm range, but the higher absorption dampens the reso-

nance effect when compared with C band. Similar to

Fig. 3b, the single particle Zdr comparisons between

oblate and contoured shapes are shown in Figs. 6a and

6b for S band and X band, respectively. As in the C-

band case, the differences are essentially negligible ex-

cept near the resonance region, which is apparent/

relevant only for X band. The other important polari-

metric parameters, Kdp and Adp, showed negligible

shape differences (thus not shown here).

The integrated effect over the whole DSD ranges for

the two model-based cases and the measured baiu front

case was examined for all parameters. Here we show

the effect on Zdr, similar to Fig. 5 earlier for C band.

Figures 7a and 7b shows the Zdr versus D0 for S band

and X band, respectively. The biases are smaller com-

pared with C band, the highest values being �0.15 dB

at S band and �0.2 dB at X band. Because of the sys-

tematic nature of the error, the most probable shapes

are recommended for the Zdr calculations for DSDs

with relatively high D0 values (�2.5 mm), while the

other parameters can be derived using their oblate ap-

proximations.

Unusual DSDs with large D0 values exceeding 3–4

mm have been observed, for example, along the leading

FIG. 5. Zdr � Zdr (oblate) � Zdr (most probable contoured) vs

D0 for DSD cases 1 and 2, as well as the measured DSDs, calcu-

lated at 20°C.

FIG. 6. Comparisons of single particle Zdr for (a) S band and

(b) X band.

TABLE 2. Range of values for the gamma DSDs used as input to

the T-matrix calculations.

Case log10(Nw) D0 �

1 3.37 � 0.52 2.3 � 0.52 2.35 � 2.08

2 4.27 � 0.43 1.58 � 0.36 3.4 � 2.3
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edge of severe convective cells (Schuur et al. 2001) with

accompanying low rain rates. Ryzhkov and Zrnić

(1995) also report on such unusual DSDs causing ex-

cessive attenuation at S band in Oklahoma convective

storms and attributed to giant rain drops. Very large

Zdr values (6–8 dB) have also been observed at C band

(Meischner et al. 1991; Carey et al. 2000) due to “big

drops.” In such cases we would expect more differences

in the radar parameters between the contoured shapes

and the approximated oblate spheroids.

d. Temperature effects

The effect of drop temperature (via the dielectric

constant) on polarimetric radar parameters has been

studied extensively using oblate shapes (e.g., see Bringi

and Chandrasekar 2001, chapter 7 and references

therein). Notable are the temperature effects on Zdr

and on specific attenuation, with much less effect on

Kdp and Adp, especially at C band (e.g., Keenan et al.

2001).

C-band calculations at other temperatures for model-

based DSD cases 1 and 2 as well as the measured DSDs

indicate the same conclusions as before; that is, the

oblate shape approximation generally applies. The Zdr

biases due to shape effects were found to reduce with

decreasing temperature. Figure 8 shows the Zdr versus

D0 for temperature of 1°C. Compared with the 20°C

case in Fig. 5, the biases are generally smaller, for D0 �

2 mm, the largest bias being �0.2 dB.

5. Conclusions

Drop shapes derived from the fast line-scanning cam-

eras of a two-dimensional video disdrometer are pre-

sented in terms of probability contours. They indicate

that the shapes begin to deviate from oblate spheroids

for drop diameters larger than 4–5 mm, the larger drops

having more flattened base, in good agreement with the

equilibrium (nonoblate) shape model of Beard and

Chuang (1987). Deviations from the B–C model shapes

were found for diameters larger than 6 mm, but overall

the 2DVD data from the 80-m fall experiment are the

first demonstration of the good agreement between the

most probable contoured shapes and the B–C model

shapes for large drops.

The measured contours were fitted to a modified

conical equation with four parameters to represent the

most probable shapes. Scattering calculations were per-

formed using the T-matrix method to derive the com-

plex scattering amplitudes for forward and backscatter

for H and V polarizations at C band. The normalized

backscatter cross sections were compared with the

equivalent Mie theory for spherical shapes. Beyond 5

mm, the H and V polarization curves lie on either side

of the Mie curve while below 5 mm, the H-polarization

curve lies close to the Mie curve. Resonance effects are

FIG. 7. Zdr vs D0 for the same DSDs as in Fig. 5, calculated at

20°C for (a) S band and (b) X band.

FIG. 8. Zdr vs D0 for the same DSDs as in Fig. 5, calculated at

1°C for C band.
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visible in the 5.5–7-mm region. Computations of single

particle Zdr, Kdp, and Adp using an equivalent oblate

spheroid shape approach show good agreement with

those using the contour shapes except within the reso-

nance region.

Calculations were made at C band using the contour

shapes to derive ZH, Zdr, Kdp, AH, and Adp for over

1600 one-minute DSDs measured during a subtropical

rain event. These were compared with the correspond-

ing calculations using approximated oblate spheroid

shapes. Agreement for all five parameters except Zdr

was good for this event, which was characterized by

maximum drop sizes no more than 5 mm. The Zdr

showed a slight underestimation when using the oblate

spheroid approximation.

Calculations were also made for model DSDs based

on gamma distributions, the parameters for which were

chosen to represent (case 1) continental convective and

(case 2) tropical convective rain regimes. For the con-

tinental convective rain case, with its D0 values ranging

up to 2.8 mm, the approximated oblate spheroid calcu-

lations tended to systematically underestimate Zdr val-

ues by up to �0.3 dB. The effect of increasing Dmax was

also examined but this did not significantly affect the

results.

Single particle calculations at S and X bands show

similar comparisons to C band; that is, Zdr is the only

parameter that is affected by the oblate shape approxi-

mation mainly in the resonance region at X band (3.5–5

mm). Integration over the various DSD cases showed a

systematic underestimation for Zdr when using the ob-

late shapes for the larger D0 values (up to �0.15 dB at

S band and �0.2 dB at X band).

Calculations were also performed at C band for the

full range of DSDs at temperatures of 1° and 20°C. The

temperature effects on Zdr were such that at lower tem-

peratures, closer Zdr agreement between the contoured

shapes and the oblate approximations were found even

for larger D0 values, mainly because at lower tempera-

tures the higher absorption tends to dampen the reso-

nance effects.

Our calculations of Zdr using the most probable con-

toured shapes versus the equivalent oblate shapes show

that at S band the oblate approximation is sufficient

even for DSDs with large D0 values (up to around 3

mm). At C band we recommend that for high accuracy

the use of the most probable contoured shapes be used,

especially for D0 values �2.5 mm, since the oblate ap-

proximation systematically underestimates Zdr by up to

�0.3 dB. At X band the underestimation is in between

the S- and C-band values and the oblate approximation

appears to be sufficient even for large D0 values (up to

around 3 mm). We note, however, that unusual DSDs

with very large D0 values (�3 mm) can accentuate the

difference between the contoured shape and the oblate

spheroid equivalent, for example, as can occur along

the leading edge of severe convective cells or aloft due

to “big drop” zones inferred for example by Ryzhkov

and Zrnić (1995) and measured by Schuur et al. (2001)

at S band, and inferred by Meischner et al. (1991) and

Carey et al. (2000) at C band.

Our calculations support the oblate spheroid shapes

using a composite of axis ratio versus D relations given

by (2) and (3) that covers the range 0.7 	 D 	 8 mm.

In particular, this is sufficient to derive the various Kdp-

based attenuation-correction schemes and the subse-

quent rainfall estimation at S, C, and X bands.
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APPENDIX

Contour Smoothing of 2DVD Hydrometeor

Image Data

The 2DVD cameras record the front and side view

shadow contours of each hydrometeor falling through

the sensor area with a resolution fine enough to result

in negligible quantization errors for both drop cross

sections and drop volumes. However, the quantization

effects can play a role in the determination of drop

canting angle and hence a suitable contour smoothing

algorithm needed to be developed and implemented.

Careful analyses of various methods suggested that

the contour smoothing algorithm should be based on

the following principles: the 2DVD data describe a par-

ticle’s contour using a run length code, indicating start

and end of shadow for each scan line. The quantization

introduced by the pixel size (about 0.2 mm in the hori-

zontal as well as in the vertical) causes an uncertainty

range, represented by appropriately selected control

points on its inner and outer boundary. After applying

standard polygon smoothing techniques on the inner

and outer set of control points, the smoothed shape of

the particle is obtained in terms of the weighted means

of the inner and outer smoothed uncertainty range

boundaries. Weighting coefficients are found from cali-

bration sphere comparisons; they deviate only margin-

ally from the 50% mean of inner and outer boundary

vectors.
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a. 2DVD data type

The 2DVD employs two line scan cameras, with data

preprocessed so that the user obtains the information

on whether or not a specific camera pixel at a certain

time was shadowed. At typical rain drop fall velocities

(	10 m s�1), this results in a grid resolution finer than

0.2 mm, leaving a small uncertainty range in which the

true shadow contour could lie. For illustration, Fig. A1

shows a sample of an object (e.g., a cube falling through

the measuring area) shadowing exactly two pixels for

the duration of two line scan periods. A camera pixel

grid is indicated by gray lines and the pixel centers are

marked by crosses. The black crosses indicate transi-

tions from illuminated to shadowed line portions (first

illuminated pixel) or vice versa (first shadowed pixel).

Whereas Fig. A1a reflects an outline immediately fol-

lowing from the run length code generated by the

2DVD, Fig. A1b shows the inner and outer uncertainty

boundaries as dashed lines and their 50% mean indi-

cated by the solid black line, the latter providing the

best possible estimate of the simple 2 � 2 pixels sample

object’s true contour.

b. Control points on uncertainty range boundaries

The inner and outer boundaries of uncertainty range

are polygons with horizontal or vertical edges. These

polygons generally have both inward (concave) and

outward (convex) pointing corners even for a fully con-

vex object like an oblate spheroid. As control points,

the outward pointing corners of the outer boundary and

the inward pointing ones of the inner boundary are

chosen.

Figure A2 gives an illustration: the gray lines repre-

sent the digitizing grid, the black crosses mark the tran-

sition pixels, and the straight light-gray lines indicate

inner and outer boundaries of the uncertainty range.

The black dots are the control points chosen on the

outer and inner boundaries.

In principle, the method has been formulated and

implemented for particles with concave sections in their

silhouette also (e.g., irregularly shaped hailstones and

snowflakes). However, satisfactory results are usually

obtained for particles with purely convex silhouettes

only, such as those of raindrops.

c. Smoothed contour of control point sets

Having obtained the sets of control points, standard

contour smoothing techniques are applied. Relevant lit-

erature describes a variety of algorithms, most of them

offering specific advantages and disadvantages depend-

ing on the problem to be solved. As a basic criterion,

discrimination between approximation and interpola-

tion methods is made, determining if the set of points to

be connected by a smooth contour is to be part of the

resulting curve (interpolation) or just close to it (ap-

proximation).

In practice, a closed curve is normally made up of

several segments. Therefore, it is important to consider

the way these segments are connected at the joining

points. Generally speaking a curve provides nth-order

parametric continuity Cn at a point P, if the first n

derivatives of the two segments, connected at P, match

at this point.

Table A1 lists standard image processing methods

implemented and evaluated for 2DVD contour

smoothing. Validity comparisons performed include

cross-checks of canting angle results against known

FIG. A1. (a), (b) Illustration of 2DVD data representing an

object passing through the measuring area and shadowing an area

of 2 � 2 pixels for two line scan periods. The first shadowed and

the first nonshadowed pixel of each scan line is marked by a black

cross. Whereas (a) immediately follows from the run length code

information provided by the 2DVD, (b) shows processed data

indicating the uncertainty boundaries (dashed) and their 50%

mean (� best possible estimate of true shadow contour).

FIG. A2. View of an oblate spheroid. The light gray lines rep-

resent the digitizing grid; black crosses indicate the run length

coded transitions; straight gray lines show inner and outer bound-

ary of uncertainty range; their control points are shown as black

dots. The solid lines represent the smoothed contour (method

explained below) of control points.
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mean canting angles. An experiment with artificial rain

and the instrument being tilted by a known angle had

provided the required dataset.

For brevity, a detailed report on the various evalua-

tions is omitted here: finally the Akima interpolation

method was chosen for the 2DVD application.

The Akima interpolation method is characterized by

the following properties.

• The interpolants have first derivative continuity (C1)

at the data points.

• Only four coefficients have to be solved for, and

therefore this interpolation method is computation-

ally efficient.

• The Akima interpolation is a “local” method, which

means that the value at any point of the interpolant

depends only on data in the immediate neighborhood

of the point.

• Because no functional form for the whole curve is

assumed and only a small number of points are taken

into account, this method does not lead to unnatural

“wiggles.”

d. The 50% mean of smoothed uncertainty range

boundaries

To determine the average between the inner and

outer smoothed uncertainty range boundaries, the fol-

lowing steps are performed.

• Both inner and outer curves are divided into small

linear segments by determining N equidistant points

Pi (in) on the inner curve and N equidistant points Pi

(out) on the outer curve (Fig. A3). Since the number

of the linear segments defines the smoothness of the

resulting contour approximation, N must not be cho-

sen to be too small.

• The centroid PC of the inner curve is obtained in a

straightforward manner.

• Next, the points Pi of the averaged curve are deter-

mined. By coordinate geometry calculations, for each

of the N rays from Pc to the N points Pi (out) the

intersection point Pi (in)� with the inner smoothed

uncertainty range boundary is determined. For each

index i the requested point Pi is found as vectorial

mean of Pi (out) and Pi (in)�.

• Finally, all points Pi are connected with straight lines.

The smoothness of the resulting contour increases

with the number N, but so does the computing time

as well. Hence, N has to be determined as a compro-

mise between these two considerations.

e. Calibration spheres crosschecks and weighted

mean

Having obtained a contour smoothing algorithm pro-

ducing plausible graphical quality, the effect on the ba-

FIG. A4. The effect of the contour smoothing algorithm onto

area and height/width ratio of calibrations spheres’ silhouette

views. The solid lines with crosses apply to camera A and indicate

the mean values and their � standard deviations for quotients of

the smoothed contour’s area divided by the area values directly

derived from measurements (shadowed pixels). Gray lines with

circles give the same for camera B. The dashed lines represent

height/width ratios in camera A, and the dotted lines stand for

height/width ratios in camera B. All mean values deviate less than

1% from unity.

TABLE A1. Methods evaluated for 2DVD contour smoothing.

Approximation methods Interpolation methods

Bézier curves Lagrange interpolation

B splines Akima interpolation

Nonuniform rational B splines

(NUBRS)

FIG. A3. Determining 50% mean of inner and outer uncertainty

range boundary. First, the point Pi (in)� is found from the inter-

section between the line Pc to Pi (out) and the line between the

two adjacent points Pi (in) and Pi�1 (in) of the inner curve.
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sic parameters of the silhouette views, that is, area and

height to width ratio, had to be quantitatively assessed.

A calibration spheres dataset with more than 100 pieces

for each nominal diameter value from 1.5 mm upward

was analyzed, which revealed a slight tendency of the

50% mean smoothing algorithm to systematically de-

crease the area. As a countermeasure, the weights of

inner and outer boundary had to be set to 48.2% and

51.8%, respectively. The result is shown in Fig. A4 with

all parameter changes incurred by the smoothing algo-

rithm being less than 1% on average.
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