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Abstract. Automatic heart sound analysis has the potential to improve the diagnosis

of valvular heart diseases in the primary care phase, as well as in countries where

there in neither the expertise nor the equipment to perform echocardiograms. An

algorithm has been trained, on the PhysioNet open-access heart sounds database, to

classify heart sounds as normal or abnormal. First, the heart sounds are segmented

using an open-source algorithm based on a hidden semi-Markov model. Following

this, the time-frequency behaviour of a single heartbeat is characterized by using

a novel implementation of the continuous wavelet transform, mel-frequency cepstral

coefficients, and certain complexity measures. These features help detect the presence

of any murmurs. A number of other features are also extracted to characterise the

inter-beat behaviour of the heart sounds, which helps to recognize diseases such as

arrhythmia. The extracted features are normalized and their dimensionality is reduced

using principal component analysis. They are then used as the input to a fully-

connected, two-hidden-layer neural network, trained by error backpropagation, and

regularized with DropConnect.

This algorithm achieved an accuracy of 85.2% on the test data, which placed

third in the PhysioNet/Computing in Cardiology challenge (first place scored 86.0%).

However, this is unrealistic of real-world performance, as the test data contained a

dataset (dataset-e) in which normal and abnormal heart sounds were recorded with

different stethoscopes. A 10-fold cross-validation study on the training data (excluding

dataset-e) gives a mean score of 74.8%, which is a more realistic estimate of accuracy.

With dataset-e excluded from training, the algorithm scored only 58.1% on the test

data.

1. Introduction

In the USA, the prevalence of valvular heart disease in the population is 0.3% for

18-44 year olds, rising to 11.7% for those aged 75 and over [1]. This means valvular

heart diseases are a significant public-health problem, whose diagnosis and treatment

is important. An important first stage in the diagnosis of such diseases is auscultation,
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where a doctor listens to the sounds generated by the heart through a stethoscope.

Experienced practitioners can determine specific problems simply from the timing,

intensity, and frequency of any heart murmurs [2]. However, current auscultation

proficiency is poor and the percentage of correct diagnoses, by auscultation alone, is

low. Mangione [3] studied the cardiac auscultation skills of trainee doctors from the

USA, Canada, and the UK. He found that, on average, the trainees produced the correct

diagnosis in 23% of cases, with a range of 0 to 58%.

If, on auscultation, the doctor hears an abnormal sound, the patient is referred for

an echocardiogram, which is performed by a specialist and then analysed by a consultant

to diagnose the valve disease. However, performing an echocardiogram is both expensive

and time-consuming. Syed et al. [4] claim that around 80% of patients referred to

cardiologists for echocardiograms have innocent heart murmurs and that this referral,

in the USA, costs $300 to $1000 per patient. Shub [5] found that in the USA, between

1986 and 1989, the number of echocardiographic studies performed increased by 143%,

costing $126 million. Despite the introduction of many more sophisticated diagnostic

methods, such as echocardiograms and colour-flow Doppler techniques, Tavel [6] claims

that cardiac auscultation still remains an important part of clinical medicine.

Since auscultation skills have declined and echocardiograms are both expensive

and time-consuming to perform, there is a need for a fast, cheap method of producing

accurate diagnoses of valvular heart diseases, especially in countries where there is

neither the equipment nor the expertise to perform echocardiograms. Here, the

possibility of automatic heart sound analysis is considered. In this system a recording

of a patient’s heart sounds, called a phonocardiogram (PCG), would be made via a

stethoscope. Then the system would produce an automatic diagnosis of any valve disease

present. This could reduce the number of missed diagnoses in the primary care phase

as well as produce more accurate diagnoses in countries where echocardiograms cannot

be performed.

There have been many previous attempts to diagnose heart diseases from PCGs.

However, as noted by Liu et al. [7], these studies suffer from a number issues such as:

not using separate test and training sets when evaluating the algorithm’s performance;

or using small, hand-picked datasets with little variety of pathologies. Also, each study

used a different dataset, making it difficult to determine the relative performance of

various approaches. To address these issues, an open-access database of heart sounds

was compiled by Liu et al. [7]. This was then used in a machine learning challenge,

run jointly by the Computing in Cardiology conference and the online resource for

physiological data, PhysioNet. In this challenge 3,153 of the recordings were released

for competitors to use as data to train their algorithms, while 1,277 recordings were

kept hidden in order to evaluate the performance of each algorithm. Full details of the

challenge are given by Clifford et al. [8].

A typical PCG classification system is described in figure 1. The main aim of this

paper is to produce an algorithm which can differentiate between normal and abnormal

PCGs. This paper gives an extended analysis of the algorithm originally described in
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our conference paper [9].

Our approach mimics that used by doctors to diagnose heart diseases via

auscultation. In traditional auscultation, doctors try to determine each individual

heartbeat, using the S1 and S2 heart sounds. They then listen for any murmurs between

S1 and S2, which can indicate pathology. They can also diagnose arrhythmia by listening

to the timing of the S1 and S2 heart sounds [2]. Using this methodology as a blueprint,

our algorithm first segments the heart sounds into S1, systole, S2, and diastole. Then,

both the temporal and spectral content of the signal are extracted. Finally, we add

features that describe the timing of S1 and S2. These features form the input to an

artificial neural network, which learns to distinguish between normal and abnormal heart

sounds.

2. Datasets

The training data in the open-access heart sounds database was obtained from a number

of different sources, and these are labelled as datasets a – f in table 1. These were all

recorded by different doctors using different stethoscopes and contain different numbers

of normal and abnormal signals. Heart sounds were labelled as normal or abnormal

by doctors using an echocardiogram (where available) as well as auscultation. Signal

quality was assessed by database’s compiler, based on whether they thought the signal

was too noisy to realistically be classified. Full details of the datasets are given by Liu

et al. [7]. The first thing of note is that dataset-e, which contains the majority of the

Dataset Recording Modality N (G) N (P) A (G) A (P)

a WAM ES 116 1 276 16

b Litmann E4000 ES 295 91 73 31

c Custom ES 7 0 20 4

d Prototype ES 26 1 26 2

e
N: Microphone or PE sensor

A: 3M Littman ES
1780 91 146 37

f JABES digital ES 78 2 31 3

Total N/A 2302 186 572 93

Table 1: Datasets in the open-access heart sounds database with their recording

modality. WAM = Welch Allyn Meditron, ES = electronic stethoscope, PE =

piezoelectric, N = normal recordings, A = abnormal recordings, G = good quality

recordings, P = poor quality recordings.

PCGs, has its normal and abnormal PCGs recorded with different sensors. This means

that it cannot reliably be used in any test/validation data, as one can not tell whether an

algorithm trained on dataset-e has learnt to distinguish between normal and abnormal

recordings or whether it has simply learnt to recognise between two different recordings
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Figure 1: Schematic of an automatic auscultation system

modalities. However, dataset-e may be used in the training data to try and improve

performance across the other datasets.

Also, it can be seen that each dataset is unbalanced. If each dataset was left as

it is, the classifier would be more likely to diagnose as normal or abnormal based on

which the majority class is in that dataset. If this heart sound analysis was done in

the real-world then the prevalence of valvular heart disease, as well as the sensitivity-

specificity trade-off for the given healthcare system, would determine the ratio of normal

to abnormal signals in the training set. However, since this is currently unknown, then

each dataset will be modified so that there are roughly equal numbers of normal and
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abnormal recordings in each dataset. To produce a dataset called “Balanced Challenge”

all the noisy signals are removed and the datasets are balanced as described in table 2.

This will help give a better idea of the accuracy of the normal/abnormal classifier.

Dataset N (G) N (P) A (G) A (P) Notes

a 232 0 276 0 Normals all repeated

b 73 0 73 0 1 in 4 normals kept at random

c 14 0 20 0 Normals all repeated

d 26 0 26 0 Nothing done

e 178 0 146 0 1 in 10 normals kept at random

f 39 0 31 0 1 in 2 normals kept at random

Total 562 0 572 0

Table 2: Composition of the “Balanced Challenge” dataset. N = normal recordings, A

= abnormal recordings, G = good quality recordings, P = poor quality recordings.

Finally, we note that if a PCG is classified as abnormal by the normal/abnormal

classifier, then it should be possible to further classify the specific pathology of the

murmur (the final step in figure 1). However, it is not possible to produce an algorithm

to do this accurately with the current dataset. Table 3 shows each dataset from the open-

access heart sounds database and the various pathologies present in the “abnormal”

recordings. It shows that each pathology is only present in one dataset (except coronary

artery disease which is present in datasets b and e). Therefore, if an algorithm was

trained, on the whole database, to recognise specific pathologies, it would not be possible

to tell if the algorithm was identifying different pathologies or simply recognising the

different recording modalities in each dataset. In order to get more specific diagnoses

of abnormal PCGs, a large database of different pathologies, all recorded with the same

stethoscope, is required.

Dataset Pathologies present (number of recordings)

a MVP (137), Benign (118), AD (17), MPC (23)

b CAD (151)

c MR (17), AS (17)

d No specific pathologies given (30)

e CAD (335)

f No specific pathologies given (33)

Table 3: Datasets in the open-access heart sounds database with the pathologies present

in the abnormal recordings. MVP = mitral valve prolapse, AD = aortic disease, MPC

= miscellaneous pathological conditions, CAD = coronary artery disease, MR = mitral

regurgitation, AS = aortic stenosis.
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3. Segmentation

To classify heart sounds as normal or abnormal, first an algorithm for segmenting heart

sound recordings into S1, systole, S2, and diastole, is used. We used the segmentation

algorithm supplied for the challenge, which was initially written by Schmidt et al. [10]

and later improved by Springer et al. [11]. This algorithm extracts a variety of features

which are then used to train a duration-dependent hidden semi-Markov model to label

the PCG. The performance of this algorithm on each of the datasets is given in table 4

(summarised from Liu et al. [7]). This shows that segmentation algorithm, in general,

works well but performs poorly on dataset c.

The reason is that it is difficult for the algorithm to segment signals containing

murmurs that suppress S1 and S2 sounds [2]. Table 5 shows the proportion of recordings

in datasets a–d that contain audible heart murmurs. Comparing tables 4 and 5, we see

that datasets containing a high percentage of murmurs and noisy signals are more prone

to segmentation inaccuracies on individual heartbeats.

Dataset Recordings correctly segmented (%) Beats correctly segmented (%)

a 71.1 88.4

b 67.1 74.1

c 32.3 58.5

d 43.6 80.5

e 86.4 90.3

f 64.9 83.1

All, no e 66.2 83.4

All 79.3 88.3

Table 4: Performance of the segmentation algorithm, no e = excluding dataset e. A

recording is said to be correctly segmented if all heartbeats in that recording are correctly

segmented

Dataset Abnormal signals (%) Signals with audible murmur (%) Noisy signals (%)

a 71.4 20.1 4.2

b 26.4 10.0 24.9

c 77.4 64.5 12.9

d 50.9 27.7 5.5

Table 5: Percentage of signals with murmurs in datasets a–d

The poor segmentation performance on recordings in datasets c and d could

propagate through to the later stages of the algorithm, creating an upper-bound on

the performance of the normal/abnormal classifier. Specifically, if the algorithm is

performing poorly on signals where there is a heart murmur, this could reduce the
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sensitivity. It should be noted that it is possible to produce an accurate PCG classifier

without segmentation [12]. However, our algorithm segments the PCG so that we can

design features for the normal/abnormal classifier that are specific to our knowledge of

murmurs and the cardiac cycle.

4. Feature Extraction

Once the heart sounds have been segmented, features are extracted to best represent

the heart sounds to the classifier.

4.1. Wavelet Transform

By listening to a patient’s heart, an experienced clinician can diagnose a wide range of

pathologies by the timing and frequency of any murmurs present [2]. Therefore, we aim

to produce a feature which shows the time and frequency behaviour over one cardiac

cycle. This is done using the continuous wavelet transform (CWT), with the Morlet

wavelet as the mother wavelet. The CWT is evaluated at 11 frequencies which are

logarithmically spaced to give a better resolution at lower frequencies, where S1 and S2

sounds. Although this is at the expense of a worse resolution at high frequencies, the

majority of heart murmurs produce broadband sounds which should show up in two to

three frequency bins in the CWT (figure 3b). Increasing the number of frequency bins

gives better resolution at the expense of increased complexity. The number of frequency

bins was optimized using the best 10-fold cross-validation score on the training data.

The CWT is then normalized, at each frequency level, by subtracting by its mean

and dividing by its standard deviation (across all time). This normalization helps to

show up any murmurs present. Figure 3a shows the raw CWT for a typical beat in

recording c0028 [7] (diagnosed as aortic stenosis by echocardiogram), in which a clear

systolic murmur can be heard. Figure 3b shows the CWT for the same typical beat

after normalization at each frequency. These figure show that the systolic murmur

(between 150 and 250 Hz) can be seen much more clearly after normalization. Following

this, the CWT is averaged into 20 time bins per heartbeat, 3 in S1, 7 in systole, 3 in

S2, and 7 in diastole. This CWT is then averaged over heartbeats which are well

correlated with each other. This is done because, while recording the sound signal,

stethoscope movements can lead to varying amplitudes, resulting in some parts of the

cardiac cycle being artificially louder than others. The beats which are well correlated

are determined by finding the two beats with the minimum euclidean distance between

their CWT coefficients at each frequency. Then any other beats within 50% of this

minimum euclidean distance, from both of the two beats, are also averaged over. This

leads to a time-frequency representation of a typical heartbeat which has 20 discrete

points in time and 11 discrete points in frequency. A typical wavelet feature vector for

a normal and abnormal recording are shown in figures 2b and 3b respectively. These

figures show that, for the aortic stenosis patient (figure 3b), between 150 and 250 Hz,
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Figure 2: A normal heart sound (c0011)

S1 Systole S2 Diastole25 Hz

45 Hz

81 Hz

144 Hz

256 Hz

456 Hz

2

4

6

8

·10−2

(a) Raw CWT for a typical beat

S1 Systole S2 Diastole25 Hz

45 Hz

81 Hz

144 Hz

256 Hz

456 Hz

−0.5

0

0.5

1

1.5

2

(b) CWT normalized at each frequency for

a typical beat

Figure 3: An abnormal heart sound (c0028 - aortic stenosis)

the sound in the systolic phase has a higher amplitude relative to the fundamental heart

sounds. This is as expected, as aortic stenosis has been shown to produce a broadband

murmur in this frequency range [13].

4.2. Mel-frequency Cepstral Coefficients:

Mel-frequency cepstral coefficients (MFCCs) have been widely used in speech recognition

[14], and have also been shown to be useful in heart sound classification [15]. In order

to calculate the MFCCs, the signal is divided into the same 20 frames in time per

heartbeat as for the CWT. Following this, a periodogram is found of each segment,

with a 10% overlap either side. A Hamming window is used to reduce spectral leakage.

The periodogram gives values for the signal power in 40 evenly spaced frequency bins
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between 0 (not inclusive) and the Nyquist frequency (inclusive). As for the CWT, this

periodogram is then averaged over beats which are well correlated with each other, at

each frequency (see section 4.1 for full details). The periodogram is then filtered using

a filter bank, in which frequencies, f , are equally spaced in the mel-scale (equation 1).

Mel = 1125 log

(
1 +

f

700

)
. (1)

The MFCCs are obtained by taking the logarithm of each of the filtered periodograms,

and then taking a discrete cosine transform (equation 2) of each of the 20 frames.

MFCC(t, k) =
N∑

n=1

log (Pfilt(t, n)) cos

(
kπ

N
(n− 0.5)

)
(2)

MFCC (t, k) gives the kth cepstral feature of the tth time frame. Pfilt(t, n) is the filtered

power at time frame t for the nth filter bank. N is the number of filter banks used.

Finally, the last cepstral feature is removed to give the final MFCC feature vector

used for classification.

4.3. Inter-beat features

The features described in sections 4.1 and 4.2 help to determine the time-frequency

characteristics of a typical beat in the PCG. However, these miss the differences in

behaviour between different heartbeats in the cycle, which can indicate pathologies

such as arrhythmia. Therefore, we add features that help to characterize this inter-beat

behaviour.

The features, which were supplied for the challenge, were used [7]. These are the

mean and standard deviation of: the length of one heart cycle; the length of S1; the

length of systole; the length of S2; the length of diastole; the ratio of systolic length to

whole heart cycle length; the ratio of diastolic length to whole heart cycle length; the

ratio of systolic length to diastolic length; the ratio of mean systolic amplitude to mean

S1 amplitude; and the ratio of mean diastolic amplitude to mean S2 amplitude.

4.4. Complexity

Features which characterise the complexity of the signal are also extracted. These have

also been used by Schmidt et al. [16]. First, a periodogram is found with 20 time

frames per heart cycle (3 in S1, 7 in systole, 3 in S2, 7 in diastole) and 5 equally spaced

frequency frames. This is obtained in the same way as for the MFCCs (section 4.2)

and is then normalized between 0 and 1. Following this, the spectral entropy (SE) is

obtained as

SE (t) = −
∑
f

Pxx (t, f) log [Pxx (t, f)] . (3)

Also the unbiased standard deviation (SD), skewness (SK), and kurtosis (KT) of the

power spectrum at each frequency, are obtained. It is found that these features only
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improve the performance marginally, which is likely to be due to the fact the similar

information is given in the features from sections 4.1 and 4.2.

The spectral entropy, standard deviation, skewness, and kurtosis make up 35

features which describe the complexity of the signal.

5. Feature Selection

Feature extraction results in a features vector of length 675. The make-up of the features

vector is summarized in table 6. Features are then normalized by subtracting their

Feature CWT MFCC Inter-beat Complexity

Length 220 400 20 35

Table 6: Make-up of the features vector

means and dividing by their standard deviations (across the whole training set). After

normalization, all features are subjected to a Student’s t-test to determine whether

they are significantly different between normal and abnormal recordings. Any feature

with a test statistic less than the student’s test statistic, from a two-tailed test at

the 5% significance level, is removed. Then, for any pair of features which are highly

correlated (a covariance greater than 0.9), one of them is removed (the one with the

lowest t-statistic). Finally, a principal component analysis (PCA) is used to reduce

the dimensionality of the features vector. The results in this paper are obtained by

projecting the features vector onto its first 50 principal components.

6. Classification

The classification algorithm is based on a fully-connected, two-hidden-layer neural

network, trained by error backpropagation [17]. The hyperbolic tangent activation

function is used for all the neurons in the network except in the final layer, where the

softmax activation function is used. The log-likelihood cost function is used. The hyper-

parameters chosen for training the networks are given in table 7. In order to militate

Parameter Value

Number of epochs 150

Mini-batch size 8

Learning rate 0.05

L2-regularization parameter 0

Momentum coefficient 0.3

Table 7: Parameters used for training the neural network

against overfitting, two types of regularization are used. The first is L2-regularization,
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where a w2 term is added to the cost function (where w is the weight along an individual

neuron) to penalize large weights in the network. The second is DropConnect, which is

described by Wan et al. [18]. For all the results here, the percentage of neurons which

are randomly removed from each layer is 20% for the neurons between the input and

the hidden layers, and 50% for the neurons between the two hidden layers and between

the second hidden and the output layers. These values were found to give the right level

of regularization and were optimized using the best 10-fold cross-validation score on the

training data.

7. Results

The results of running the normal/abnormal classifier on a number of different datasets

are shown in table 8. The scoring function used is the same as the one described by

Liu et al. [7]. Table 8 shows that using the whole dataset and Springer’s segmentation

Dataset Hand, Score % (σ) Springer, Score % (σ)

All challenge (stratified by dataset) 88.7 (2.3) 87.0 (2.3)

Balanced Challenge 81.2 (2.6) 79.1 (3.7)

Balanced Challenge, e removed from all 75.3 (4.1) 74.8 (5.1)

Balanced Challenge, e removed from test 73.3 (4.2) 71.8 (3.8)

Leave-one-out a (no e in training) 64.0 63.0

Leave-one-out b (no e in training) 66.4 64.5

Leave-one-out c (no e in training) 95.9 97.1

Leave-one-out d (no e in training) 58.7 57.3

Leave-one-out f (no e in training) 50.7 54.7

Leave-one-out a (e in training as balanced) 63.0 64.8

Leave-one-out b (e in training as balanced) 56.1 59.1

Leave-one-out c (e in training as balanced) 86.6 87.0

Leave-one-out d (e in training as balanced) 55.4 51.7

Leave-one-out f (e in training as balanced) 53.2 52.5

Table 8: Results for the normal/abnormal classifier. The first four rows are results from

10-fold cross-validations, with 10 repeats per fold. All the leave-one-out tests are the

mean of 10 repeats. σ = variance. Hand = all data segmented using hand-segmented

labels. Springer = all data segmented using Springer’s algorithm [11].

algorithm [11], our algorithm is able to achieve a score of 87.0%. However, for the

reasons discussed in section 2, this is unrealistic. An estimate of real-world performance

is 74.8%, given by the row in which the dataset is “Balanced Challenge, e removed from

all”. This is a better estimate because the data does not contain the e-dataset and the

number of normal and abnormal recordings are roughly equal. This real-world score of

75% is obtained from a sensitivity of 76% and a specificity of 74% (with the confusion
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matrix given in table 9). Balancing the dataset has helped to ensure that sensitivity

and specificity are roughly equal.

Classified as Normal Classified as Abnormal

Normal Signals 259 93

Abnormal Signals 102 324

Table 9: Confusion matrix showing results on validation data across 10 folds of cross-

validation obtained on the dataset “Balanced Challenge, e removed from all”. Note that

the number of normal signals is lower than the sum of the normal signals in datasets

a–d, and f. This is because dataset-a contains repeated normal signals. It was ensured

that (for every fold of cross-validation) any repeated signals, which were common to

both training and validation sets, were removed from the validation set.

The optimal ratio of sensitivity to specificity depends on the healthcare system

in which this algorithm is being used. In a higher-income country with a well funded

healthcare system, it may be beneficial to improve the sensitivity at the expense of

specificity. This is because the healthcare system is more likely to accept the burden of

increased referrals for echocardiogram in order to make sure that more people with heart

disease are picked up in the primary care phase. However, in a developing country, the

opposite may be true. With resources spread thinly, it may not be acceptable to refer

patients without a disease for an echocardiogram and treatment. Therefore improving

the specificity might be beneficial, even at the expense of reducing the sensitivity. It is

possible to change the sensitivity to specificity ratio of the algorithm by changing the

ratio of normal to abnormal signals in the training data.

Table 8 also shows that using the current algorithm, it is better to exclude the

e-dataset completely than to try and include it in the training data (when it is not in

the test data). Including the e-dataset worsens the performance on 2/2 10-fold cross

validation studies (by an average of 2.5%) and on 8/10 leave-one-out tests (by an average

of 4.3%). It is possible, however, that a dedicated transfer learning algorithm could make

use of the e-dataset to improve performance.

Table 8 also shows that using hand-segmented PCGs (for both the training and

validation data) improves the performance on 4/4 10-fold cross-validation studies (by

and average of 1.6%), but makes it worse and on 6/10 leave-one-out tests (by an average

of 0.17%). However, the results for the hand-segmented signal are unrealistic as real-

world test signals would have to be segmented by an algorithm.

The fact that the 10-fold cross-validation tests are significantly better than the

leave-one-out tests (excluding dataset c), suggests that the algorithm is very sensitive

to the recording modality.
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7.1. Challenge Results

When this algorithm was submitted to be evaluated on the test data, a number of

different networks were trained with a range of hyper-parameters and different training

sets. For example, a 5-fold cross-validation is done with networks trained on different

hyper-parameters. The networks are then ensembled based on their score on the

validation data and their diversity (measured by which recordings they incorrectly

classified). Each of the networks in the ensemble classifies the heart sounds. The final

classification is given by the majority.

The best result obtained by this ensemble of networks, on the test data, was 85.2%.

This was the third best performance in the challenge, with 86.0% being the best score.

This is, however, an over-estimation of real-world performance, since dataset-e was used

in the test data (see section 2 for explanation).

The updated algorithm was also scored on the test set, but the overall performance

was significantly worse (58%). This is because 69% of recordings in the test set are

from dataset-e [7], and our algorithm is no longer trained on this dataset. Performance

on unseen datasets g and i is also poor (table 10). This shows that the algorithm is

sensitive to the recording type and struggles to generalize from one dataset to another.

Table 10 shows that the updated algorithm performs significantly better on datasets

c and d. The slight reduction in the score on dataset-b does not necessarily mean that

the algorithm is performing worse. Since 35.6% of recordings from dataset-b in the test

set are labelled as noisy, any small changes in performance could be due to fortunate

classification of the pathologies underlying noisy signals [7]. The performance of the

normal/abnormal classifier on this dataset will be easier to determine when a signal

quality classifier is implemented (as in figure 1).

Dataset Original Algorithm Updated Algorithm

b 74.7% 70.4%

c 77.5% 95.0%

d 58.3% 87.5%

e 93.6% 45.9%

g 57.3% 46.6%

i 50% 49.6%

All 85.2% 58.1%

Table 10: Results on different datasets in unseen test data

8. Conclusions and Future Work

An algorithm capable of classifying heart sounds as normal or abnormal has been

developed. It starts by segmenting the heart sounds’ recording into S1, systole, S2,
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and diastole using an open-source algorithm, which is 88.3% accurate on all heartbeats

in the database. Then, a total of 675 features are extracted from a recording. The time-

frequency behaviour of the recording is characterized by using a continuous wavelet

transform (CWT). The CWT is normalized at every frequency to clearly show any high

frequency (150-450 Hz) murmurs. A key step to reduce unwanted noise and improve

robustness is to perform an ensemble average over well-correlated beats. This also

helps to militate against stethoscope movements that artificially change the recording.

Similar techniques are used to get mel-frequency cepstral coefficients, and certain

spectral complexity measures. All these features give a full picture of the time-frequency

behaviour of a typical heartbeat in the recording, which helps detect the presence of

any murmurs. Inter-beat features are added to look for differences between heartbeats

in the recording, which helps to detect diseases such as arrhythmia.

In order to deal with the varying magnitudes of the features, they are normalized

across the entire training data. To reduce overfitting, the dimensionality of the features

vector is reduced by projecting it onto its first 50 principal components. Classification

is done using a fully-connected, two-hidden-layer neural network, trained with error

backpropagation and regularized using DropConnect.

This algorithm obtained an accuracy of 85.2% on the test data, which placed

third in the PhysioNet/Computing in Cardiology challenge (first place scored 86.0%).

However, this is unrealistic of real-world performance, as the test data contained a

dataset (dataset-e) in which normal and abnormal heart sounds were recorded with

different stethoscopes. A 10-fold cross-validation study on the training data (excluding

dataset-e) gives a mean score of 74.8%, which is a more realistic estimate of accuracy.

Obtaining more specific diagnoses of abnormal heart sounds was considered.

However, it was shown not to be possible with the current database. Specific diagnoses

will require a large database of different pathologies, all recorded with the same

stethoscope.

The current algorithm classifies any input signal as normal or abnormal. However,

if a doctor makes a poor quality recording then it would be better to recognize this

and tell them to re-record the signal. Therefore, an algorithm will be developed that is

capable of recognizing a good quality recording from a poor quality one.
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