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Abstract

Recent single-cell RNA-seq protocols based on droplet microfluidics use massively multiplexed barcoding to enable

simultaneous measurements of transcriptomes for thousands of individual cells. The increasing complexity of such

data creates challenges for subsequent computational processing and troubleshooting of these experiments, with

few software options currently available. Here, we describe a flexible pipeline for processing droplet-based transcriptome

data that implements barcode corrections, classification of cell quality, and diagnostic information about the droplet

libraries. We introduce advanced methods for correcting composition bias and sequencing errors affecting cellular and

molecular barcodes to provide more accurate estimates of molecular counts in individual cells.

Background
RNA-seq protocols have been optimized to enable

large-scale transcriptional profiling of individual cells.

Such single-cell measurements require both improved

molecular techniques as well as effective ways to isolate

and process a large number of cells in parallel. While

single-cell RNA-seq (scRNA-seq) remains a challenging

technique, several solutions are being increasingly

applied, most notably techniques based on droplet

microfluidics such as inDrop [1], Drop-seq [2], and the

10x Chromium platform. In these approaches, cells are

encapsulated in water-based droplets together with bar-

coded beads and necessary reagents within an oil-based

flow. This allows the RNA material extracted from each

cell to be contained within the droplet and tagged by a

unique cellular barcode (CB) carried on the bead.

InDrop and similar approaches pool material from

different cells to prepare the library, and rely on compu-

tational analysis to recognize the reads originating from

the same cell based on the CB contained in the read

sequence. The reads also carry a random barcode—a

unique molecular identifier (UMI) [3, 4]—that can be

used to discount the redundant contribution of reads

originating from the same cDNA molecule as a result of

library amplification. As such, the primary aim of the

data-processing pipeline, including the one presented

here, is to provide accurate estimates of the number of

molecules that have been observed for each gene in each

measured cell—a molecular count matrix. Accurate

estimation of such a matrix is crucial, as it commonly

provides the starting point for all downstream analysis,

such as cell clustering or tracing of cell trajectories.

Several factors complicate the estimation of this

molecular count matrix, well beyond simple parsing of

the read sequences. First, the procedure must separate

reads originating from droplets containing real cells

from contributions of empty droplets which can amplify

extracellular background transcripts and significantly

outnumber the real cells. Some of the droplets may

contain damaged or fragmented cells, which complicates

such separation. The procedure must also address

problems stemming from sequencing errors, particularly

errors within the CB or UMIs which result in misclassifi-

cation of reads. Similarly, skewed distribution of UMIs

can lead to biased estimation of molecular counts.

Finally, as droplet-based scRNA-seq protocols are still

relatively new, detailed diagnostics and multiple quality
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control steps are typically needed to ensure high-quality

measurements and identify likely sources of problems.

Given the current lack of such general processing pipe-

lines for droplet-based scRNA-seq, we have set out to

provide an open-source implementation.

Results
We have developed a high-performance pipeline to per-

form initial pre-processing and analysis of droplet-based

scRNA-seq data. The pipeline characterizes the quality of

a library using a wide range of diagnostic indicators, filters

out artefactual cellular barcodes, evaluates and corrects

for potentially confounding effects of uneven UMI cover-

age, and corrects for UMI and cellular barcode sequencing

errors based on molecular similarity measures that do not

require prior knowledge of the possible barcode se-

quences. It is designed to be used with different alignment

methods and provides configuration options to accommo-

date alternative scRNA-seq protocol designs.

Uneven UMI frequency distribution distorts molecular

count estimation

In UMI-based protocols, the expression magnitude is typ-

ically estimated as a number of unique UMIs associated

with a given gene in a given cell. If the space of possible

UMI sequences is limited, it becomes possible for two

separate molecules of the same transcript to be labeled by

the same UMI. To account for such UMI collisions, Fu et

al. originally proposed a correction based on assumption

of uniform distribution of UMIs in the overall dataset [3].

Such correction is rarely used, given relatively large num-

bers of possible UMIs. Examining droplet data from differ-

ent protocols, however, we find that UMI frequency

distribution tends to be highly skewed, with a small

fraction of UMIs contributing to a disproportionately large

number of molecules (Fig. 1a, b, Additional file 1: Figure

S1). The outlier UMIs with the highest frequencies show

lower diversity of nucleotides (Fig. 1a, Additional file 1:

Figure S2A). Such biases may arise due to errors generated

during the library construction protocol or truncated

barcode constructs. Even when such erroneous UMIs are

filtered out, the overall UMI distribution remains signifi-

cantly skewed (Additional file 1: Figure S1B,F), suggesting

that a more advanced approach is needed to correct for

the impact of UMI collisions. In implementing corrections

for the UMI collisions, we therefore moved away from the

assumption of a uniform UMI distribution and modeled

the true UMI frequency distribution (see “Methods”). This

a

b

c

Fig. 1 Skewed distribution of UMIs leads to increased number of UMI collisions. a Distribution of UMI occurrence frequencies across all genes is

shown for mouse embryonic stem (ES) cells (dataset 1). The top-right inset shows position-specific nucleotide frequencies of the outlier UMIs

(highlighted by gray shading on the main plot). Significant skewness of the UMI distribution decreases the effective pool of UMIs. b Proportions

of different nucleotides in the UMI sequences are shown as a function of the overall UMI frequencies (x-axis orders UMIs so that most frequently

occurring UMI sequences have low rank) for the mouse ES cells (dataset 1). с Estimated number of UMI collisions as a function of the true gene

expression level (x-axis) is shown for different UMI lengths (simulated by trimming 10-nucleotide UMIs; see text). The estimates based on the

uniform and empirical UMI distributions are shown. The 10x Chromium human post-transplant BMMC dataset (dataset 7) was used. For short

UMIs, the number of collisions observed at highly expressed genes can be comparable to the true number of molecules. Longer UMIs decrease

the number of collisions
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approach is effective at correcting UMI collisions on

simulated data (Additional file 1: Figure S2B) and, as we

will demonstrate in the next section, provides notable

improvements on real data.

Errors in UMI sequence lead to overestimation of

molecular counts

An error introduced into a UMI sequence during the

library preparation can be mistakenly interpreted as an

additional molecule. Computational corrections have

been proposed to avoid such overestimation. The sim-

plest such approach [5] omits for a given gene all UMIs

that have an adjacent UMI sequence (Hamming distance

equal to 1) with a larger number of reads (as in [6] we

refer to this method as cluster). Indeed, the probability

of two molecules of the same transcript in the same cell

being labeled by UMIs of Hamming distance 1 is low,

given sufficient size of the UMI pool relative to the

number of molecules of that transcript (see “Methods”).

However, for moderately expressed genes the observed

number of such events exceeds the expected frequency

by a factor of ~ 40 (Additional file 1: Figure S3), suggest-

ing that most adjacent UMI occurrences are erroneous.

A more complex, network-based solution [6] (referred

to here as directional) considers a UMI to be erroneous

if it has an adjacent UMI with more than twice the num-

ber of reads.

An alternative approach, implemented in the 10x

Chromium Cell Ranger pipeline [7], uses UMI base call

quality to distinguish erroneous UMIs. Examining differ-

ent droplet-based datasets, we find that the fraction of

UMI errors that can be distinguished by lower base call

quality varies between datasets, within the range of

29.4–85.6% (Additional file 1: Figure S4). This suggests

that a substantial fraction of UMI errors may originate

during PCR amplification or other library preparation

steps preceding the sequencing itself. Base call quality

would not be informative in such cases. Furthermore,

the existing methods do not consider the total number

of molecules for a given gene, even though the probabil-

ity of observing adjacent UMIs by chance increases.

Such increase is further exacerbated by an uneven distri-

bution of UMI frequencies described in the previous

section. For instance, for the inDrop Bone Marrow

dataset (dataset 11; see “Methods”), the probability of

observing adjacent UMIs under the empirically observed

distribution is up to 20% higher than under the uniform

distribution (Additional file 1: Figure S5A).

To improve the accuracy of UMI filtering, we devel-

oped a Bayesian approach to estimate the posterior

probability of a UMI being erroneous based on the gene

expression magnitude, the observed number of adjacent

UMI sequences, the prior distribution of UMIs, as well

as the base-call quality in the position of the nucleotide

substitution (see “Methods”). To evaluate performance

of different UMI correction approaches, we used artifi-

cially trimmed UMIs, where the expected ground truth

would be known with high certainty. Specifically, we

used the 10x post-transplant bone marrow mononuclear

cell (BMMC) data (dataset 7), which has relatively long

10 bp UMIs [8]. Given the lower rate of accidentally

observing UMIs at Hamming distance 1 in these longer

UMIs, we applied the cluster UMI filtering procedure to

obtain benchmark ground truth expression estimates for

the dataset. We then simulated datasets with shorter

UMIs by trimming the UMI sequences, comparing the

resulting molecular count estimates to the correspond-

ing full-length benchmark values (see “Methods”). As

nucleotide diversity can vary depending on the position

in the UMI, we used two versions of trimming: from the

front of the UMI sequence and from the back. Both sce-

narios showed significant excess of UMI collisions com-

pared to what is expected from the uniform distribution

(Additional file 1: Figure S5B). More collisions were ob-

served under the front trimming scenario leading to

more collisions than with back trimming, indicating

lower sequence diversity towards the end of the UMI.

While errors in the UMI sequences lead to

over-estimation of the molecular abundance, UMI colli-

sions lead to underestimation. The probability of such

collisions increases for shorter UMIs, which results in

pronounced underestimation of molecular counts at

short UMIs (Fig. 2a, Additional file 1: Figure S6). Con-

versely, overestimation due to sequencing errors is

more apparent at longer UMIs. Comparing different

UMI collision correction methods, we find that the

proposed approach based on the modeling of the em-

pirical UMI frequency distribution shows much better

performance than correction based on the uniform

UMI distribution assumption (Fig. 2b). We then com-

pared different methods for correcting UMI sequence

errors (Additional file 1: Figure S7). In addition to the

standard cluster algorithm [5], we also evaluated a

variant that disallows merging of UMIs of equal sizes

(cluster-neq). We found that the Bayesian approach pro-

posed here significantly outperforms existing methods

(Fig. 2c, Additional file 1: Figure S8). The impact of both

collision and sequencing error corrections is most notable

for genes within the high expression range, and for data-

sets with short UMIs (Fig. 2b, Additional file 1: Figure S8).

Therefore, for datasets with moderate sequencing depth

and long UMIs, analysis can use cluster or directional

algorithms, which are also implemented in the developed

pipeline, to reduce computational time.

To further compare the accuracy of UMI corrections

introduced by different methods, we examined the

distribution of edit distances between two random UMIs

following different corrections, comparing it with the
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expected analytical estimate of the edit distance distribu-

tion. Such validation was originally proposed by Smith

et al. [6] in describing the directional method. Figure 2d

shows that, in contrast to other correction methods, the

distribution of edit distances after the Bayesian correc-

tion closely resembles the theoretical estimation. The

differences in probabilities are most notable for edit

distances of 1 and 2.

Correction of the cellular barcode sequence errors

The number of different cellular barcodes (CBs) in a

droplet-based library normally exceeds the number of

actual encapsulated cells by several fold (Additional file 1:

Figure S9). Similar to issues encountered for UMIs, add-

itional CBs can result from sequence errors introduced

during library construction or sequencing. This would

result in material from one droplet being mistakenly split

up into several different CBs. Alternatively, additional CBs

may also be empty droplets that did not encapsulate a real

cell, but instead captured background RNA or cell debris

together with an indexing bead [9]. To evaluate whether

this is a significant factor, we examined the read compos-

ition in published 10x [10] and Drop-seq [2] datasets (data-

sets 4 and 12) with mixtures of human and mouse cells

(see “Methods”). We found that in these experiments, back-

ground barcodes contained a constant ratio of mouse and

human reads, consistent with the idea of extracellular back-

ground admixture (Fig. 3a, Additional file 1: Figure S10).

However, the absolute abundance was dependent on the

total size of each barcode, suggesting more complex

Fig. 2 Comparison of UMI collision and sequencing error correction methods. Comparison of UMI collision adjustment and UMI correction algorithms

is shown using the 10x post-transplant BMMC dataset (dataset 7). a The scatter plot shows percentage error (y-axis) in estimation of the molecular

counts for different genes using computationally trimmed UMIs (down to 6–9-nucleotide lengths, as designated by color) from their original

10-nucleotide length, as a function of the full-length UMI estimate (x-axis; see “Methods”). The line shows spline-smoothed dependency with the 95%

confidence band. Points show median y value for a given x. The errors result from two opposing trends, with UMI sequencing errors inflating the

resulting count estimates, and UMI collisions deflating the estimates. Shortened UMIs result in a larger number of collisions. b The effect of different

UMI collision corrections is shown on the 6-nucleotide trimmed UMIs. c Comparison of different UMI sequence error correction methods is shown for

the 8-nucleotide trimmed UMIs. UMI collisions were corrected using an empirical approach in all cases except for “no correction”. d We estimated

theoretical distribution of edit distances (x-axis) between two randomly sampled UMIs. The theoretical probability of observing a given edit distance is

shown as a number above each edit distance group. The histograms show relative absolute difference between this theoretical distribution and

observed distributions after the different UMI correction algorithms. For each method and edit distance, the y-axis shows the absolute difference

between the observed and theoretical distribution, expressed as a fraction of the theoretical probability of observing that edit distance. e Dependency

of the magnitude of UMI correction (y-axis) on the expression magnitude without correction (x-axis) is shown. Each point represents a single gene

within a cell, pulled across all cells. Genes with expression magnitude < 10 were omitted
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interaction with library preparation and processing. Fur-

thermore, we were not able to reconstruct a uniform back-

ground “transcriptome”, as the identity of the admixed

transcripts varied considerably among different barcodes.

We first examined methods for correcting CB

sequence errors. In doing so we considered two

scenarios: one where a list of possible valid CB se-

quences is known (e.g., 10x or inDrop), and another

where CBs can be an arbitrary nucleotide sequence

(e.g., Drop-seq). Pre-designed CB sequences are typic-

ally evenly spaced in the sequence space, and replacing

an erroneous CB with the closest matching valid CB se-

quence is an effective strategy. The space of potential

valid CBs can be further narrowed down by taking into

account that the valid CB shouldn’t have fewer counts

than the erroneous CB. However, if the list of possible

valid CBs is unknown, or if there are many similar CBs

(e.g., short barcodes), the number of possible merge

targets increases significantly (Fig. 3b). To accurately

determine the probability that two CBs originated from

one CB, we used UMI–gene composition similarity,

which evaluates the likelihood that two independent

cells will end up producing equivalent UMI–gene com-

binations (see “Methods”). This method was compared

with the simpler approach, which, for every CB, checks

if another CB exists with similar CB sequence (Ham-

ming distance ≤ 2) and containing more molecules, and

then merges such CBs.

To compare the two approaches, we again examined

the 10x [10] and Drop-seq [2] human/mouse mixture

datasets (datasets 4 and 12). As the list of real barcodes

is known for the 10x data, we compared the merges

introduced by the two approaches with the list of real

barcodes. The proposed molecular content-based merge

algorithm outperforms the simple approach (Table 1)

and shows performance similar to the scenario when the

list of true barcodes is known. The proposed approach

also reduces the fraction of CBs erroneously merged

across the two organisms to negligible levels, while such

a fraction is notable with the original method. The

differences become more pronounced for larger datasets.

For instance, analyzing the 10x 33k peripheral blood

mononuclear cell (PBMC) data (dataset 10) [11], 10x

Cell Ranger identifies 33,148 real cells, making use of

the known barcode list. Reanalysis using the proposed

merge procedure (without the knowledge of true

barcodes) identifies 31,164 cells containing at least 100

genes. By comparison, the simple approach over-merges,

yielding only 12,388 cells at the same minimal gene

number threshold. Despite the low false-positive merge

rate, the proposed approach can increase the number of

molecules per cell (up to 15%; see Fig. 3c).

Recognizing damaged or low quality cells

The number of molecules associated with a given CB gen-

erally provides reasonable criteria for selecting real cells

Fig. 3 Correcting for cellular barcode errors. a The number of molecules mapping to human and mouse genomes in a human–mouse Drop-seq

dataset (dataset 12) is shown for each cell (points) on a log scale. The plot shows annotations of high-confidence cells for each organism, doublets,

and background barcodes. b The number of equidistant adjacent CBs of larger size (i.e., number of molecules) is shown for each of the observed CBs

in the mouse embryonic stem cell dataset (dataset 1). The main plot shows adjacent CBs selected from an a priori known set of valid CB sequences.

The inset shows counts of adjacent CBs selected from all CB sequences observed in the dataset. c To illustrate the effect of CB corrections, the plot

shows the increase in number of molecules per CB (x-axis) following a CB merge correction procedure, relative to the original size. The 10× 8k PBMC

(dataset 13), Drop-seq human–mouse mixture (dataset 12), and inDrop BMC (dataset 11) datasets are shown
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[1, 7]. Similarly, CBs with very few associated reads likely

represent empty droplets. However, classifying CBs in the

intermediate range poses a challenge. The intermediate

size CBs likely contain damaged or dying cells from which

relatively little mRNA material could be recovered [9].

This complicates the optimization of a size separation

threshold. Such low-quality cells could also cover a range

of sizes, making the use of a single size cutoff ineffective.

Classification of low quality cells was examined by

Ilicic et al. [9], where a support vector machine (SVM)

classifier was trained based on examination of cell

morphology from microscopy data prior to lysis and li-

brary preparation. As such data are difficult to obtain for

droplet-based techniques, and an existing SVM cannot

be directly applied to different protocols or cell types,

we aimed to develop a self-contained approach that

would not require high-quality experiments for training.

While the true labels for low- and high-quality cells are

not available, we argued that large cells initially include

a large fraction of high-quality cells and small cells in-

clude a very low fraction of high-quality cells. We then

aimed to train a classifier to distinguish high-quality

cells based on a limited set of technical features (see

“Methods”), taking into account that the initial labels of

the training set will contain some fraction of errors. The

tolerance of different classifiers to training set errors can

vary considerably. We evaluated performance of several

appropriate approaches (KDE [12], Random Forest [13],

and Robust Gaussian Processes [14]; see “Methods”). In

addition to the cross-validation score, we measured

robustness of the classifiers with respect to: removal of a

random 20% of the training data (fivefold cross-validation;

Table 2); introduction of artificial noise into the data

(Additional file 1: Figure S11A, B); and narrowing/widen-

ing of the thresholds used to separate large and small cells

for the initial label assignment (Additional file 1: Figure

S11C). Based on the resulting performance and runtime

complexity (e.g., Robust Gaussian Processes has a high

complexity of O(n3) relative to the number of samples) we

chose the Kernel Density Estimation (KDE) classifier.

Cell size-based thresholding approaches, such as the one

implemented by the Cell Ranger software, can provide a rea-

sonable guess for the initial separation of high-quality cells.

We implemented a modified threshold-selection method

that does not require assumptions about the number of true

cells. For most datasets, the determined thresholds are

similar to those chosen by the Cell Ranger approach; how-

ever, the difference was notable for some datasets. For

instance, for the 10x human BMMC dataset (dataset 8), the

threshold determined by our approach recovers 1105

additional cells that show subpopulation-specific expression

signatures (Fig. 4, Additional file 2: Table S4). We note that

these additional cells are not evenly distributed across differ-

ent subpopulations but preferentially augment certain sub-

populations, such as the non-dividing subgroup of pre-B

cells (expressing both IGLL5 and CD37). The cells in these

populations show smaller average library sizes (number of

detected molecules), explaining their over-representation

within the tail of the cell size distribution. For details on cell

type annotation see Additional file 1: Figures S12–S14 and

Additional file 2: Tables S1–S3.

KDE-based quality scores refine identification of

high-quality cells around size-based thresholds (Additional

file 1: Figures S15 and S16). While the quality scores overall

show expected correlation with cell size, some of the

smaller cells are able to attain high scores, and some of the

large cells are assigned low scores (Additional file 1:

Figure S15A). For the 10× 8k PBMC dataset (dataset 16),

the quality scores pick up an additional 170 cells relative

to the size threshold determined by Cell Ranger (Add-

itional file 1: Figure S15B,C, Additional file 2: Table

S5). When compared to our own threshold-determination

method, the quality scores correctly filter out poor-quality

cell clusters (Fig. 5). In the context of inDrop mouse

Table 1 Analysis of merge targets on human–mouse mixture datasets

Dataset Merge type Number of merges Fraction of mixed merges Similarity to merge with barcodes

10x Poisson 8999 0.58% 99.74%

10x Known barcodes 8985 0.62% 100%

10x Simple 21,827 32.96% 20.67%

Drop-seq Poisson 15,186 0.83% –

Drop-seq Simple 26,154 8.74% –

Table 2 Fivefold CV comparison of classifiers

Classifier Sensitivity on CV (%) Specificity on CV (%) Stability on class 1 (%) Stability on class 0 (%)

KDE 90.4 (±0.8) 91.1 (±3.4) 89.8 (±2.9) 97.3 (±1.3)

Random Forest 89.6 (±2.3) 92.7 (±1.6) 87.3 (±7.3) 97.7 (±1.3)

Robust GP 87.7 (±2) 94.8 (±2.2) 85.3 (±0) 99.3 (±0.5)

Mean ± standard deviation values are shown. Here, class 1 is high-quality cells, class 0 is low-quality cells

Petukhov et al. Genome Biology  (2018) 19:78 Page 6 of 16



pancreatic cells [15] (Additional file 1: Figure S17, Additional

file 2: Table S6) and the inDrop mouse BMC dataset (data-

set 11; Fig. 6, Additional file 2: Table S7), quality scores re-

cover additional cells that show expression patterns

consistent with the major subpopulations.

Discussion
Droplet-based microfluidics protocols and other high--

throughput methods are enabling production of large

single-cell RNA-seq datasets (103–106 cells). Complex

barcoding schemes employed by such methods require

in-depth computational analysis to achieve accurate re-

covery of molecules associated with different cells and

genes. In order to avoid collisions of cellular barcodes,

large numbers of cells necessitate longer CBs, increasing

the probability that a sequence error will be introduced

into a CB during the bead construction steps [1], library

preparation procedures, or library sequencing. We show

that for many such errors there are multiple equidistant

CBs from which the molecule may have originated. The

implemented solution, which merges CBs based on the

probabilistic assessment of the molecular overlap between

the CBs, provides accurate correction even in cases when

the set of possible valid CBs is not known in advance.

Errors affecting molecular barcodes (UMIs) pose a

similar challenge, which in this case is driven by

a

b d

c

Fig. 4 Selection of the optimal size threshold for the 10x BMMC dataset. These plots show comparison of dropEst and 10× Cell Ranger strategies

for initial selection of number of real cells in the 10x BMMC dataset (dataset 8). a The distribution of molecular mass across CBs of different sizes.

The y-axis shows the number of UMIs per cell multiplied by the number of cells with a similar number of UMIs. The cells are ranked by their size

(number of UMIs), with the largest cells positioned near 0 (see “Methods”). Such “molecular mass” plots can be used to estimate the number of

real cells in a dataset. Here, the peak centered around x = 1200 represents real cells. The vertical dashed lines show size-based thresholds, as determined by

Cell Ranger (red) and dropEst (green). dropEst threshold admits 1105 additional cells. b The heatmap shows gene expression profiles of cluster-specific

genes for the cells that were admitted by both 10x and dropEst thresholds. Expression levels of different genes (columns) are shown by color. Cells (rows)

are grouped by cluster (see cluster bar on the right), and then ordered descending by number of molecules (the depth bar on the right). Genes (rows) were

clustered using hierarchical clustering. See “Methods” for details. c Similar to b, the heatmap shows expression of the same genes in the set of an

additional 1105 cells admitted by the dropEst threshold procedure. The additional cells show expression patterns consistent with their assigned clusters.

d t-SNE visualization of the 10x BMMC dataset. All cells which pass both Cell Ranger and dropEst thresholds are shown as circles. Cells which were

admitted only with the dropEst threshold are shown as triangles
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increasing sequencing depth of individual cells. This has

been recognized by earlier studies [5], and several cor-

rection strategies have been proposed. We show that the

overall distribution of UMI sequence occurrences is not

uniform, and the resulting bias reduces the effective

UMI space leading to increased number of UMI colli-

sions in well-expressed genes and deflated molecular

counts. Some of the UMI errors appear to result from

occurrence of aberrant library molecules incorporating

mononucleotide primers, such as poly(T) into the UMI

position. On the other hand, point mutations in UMIs

and aberrant base calls can lead to inflated molecular

counts. While most UMI errors can be mitigated experi-

mentally by increasing the UMI length, we show that

taking into account empirical distribution of UMI fre-

quencies allows adjustment for both UMI collision and

sequence error effects.

Even with corrections of CB sequence errors, most of

the CBs encountered in the current droplet-based datasets

do not represent real cells. These additional molecules

may originate from empty droplets capturing extracellular

background. Indeed, examination of mouse–human data-

set mixtures suggests that smaller CBs have a higher

cross-organism contamination fraction than one would

expect from extracellular background. In addition to

empty droplets, some of the low-magnitude CBs may

represent damaged, dying, or dead cells, as well as cells

that were not successfully measured for other reasons.

The challenge of identifying damaged cells has been

previously examined by Ilicic et al. [9] in the context of

the Fluidigm C1 protocol, where the proportion of

low-quality cells is typically in the range of 10–40%. This

fraction can be much higher in the inDrop data (e.g., 90%

of CBs), and obtaining microscopy-based labeling for the

classification is challenging given the rapid flow within the

devices. We instead explored application of fault-tolerant

classifiers to identify technical features consistent with an

imperfect initial separation of high-quality cells based on

the size criteria alone. Such an approach is able to pick up

relatively large cells that resemble poorly measured cells

a b

c

d

Fig. 5 Filtration of low-quality cells for the 10× 8k PBMC dataset. This figure shows the result of the KDE-based algorithm for the filtration of

low-quality cells on the 10× 8k PBMC dataset (dataset 13). a t-SNE visualization of the cell subpopulations; only cells which either passed the size

threshold or have a quality score > 0.9 are shown. Cells passing the dropEst size threshold and having a quality score ≥ 0.1 are shown with circles.

A few cells falling below the size threshold but with a high (> 0.9) quality score are shown with triangles. Cells passing the size threshold but with

a low (< 0.1) quality score are considered as filtered and are shown with black crosses. Most filtered cells originated form three distinct clusters,

marked by a high fraction of intergenic or mitochondrial reads and a low number of reads per UMI (see labels). b–d Distributions of distinguishing

characteristics (x-axes) are compared between clusters of low quality cells and the real cell population. Here, we consider a cell to be real if it passes

the size threshold and has a quality score > 0.9
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based on their technical features, and rescue some of the

smaller cells that look consistent with the high-quality tail

of the cell distribution.

Conclusions
Overall, we hope that the developed pipeline will facilitate

analysis of droplet-based single-cell RNA-seq data, provid-

ing helpful diagnostics (see Additional file 3: Supplementary

Note 1 for an example of a dropEst pipeline report) and im-

proving the accuracy of the resulting expression estimates.

Methods
The dropEst pipeline operates in three phases: i) identifier

parsing phase; ii) read mapping phase; and iii) filtering

and quality control phase. The first phase takes as an

input FASTQ files containing paired-end read and index

data. The output of this phase is a modified FASTQ file

with reads which can be aligned to a transcriptome refer-

ence during the second phase using a standard

splice-aware aligner (e.g., STAR [16] or TopHat 2.1.0 [17],

which was used in our work). The third phase takes BAM

files with the aligned reads [18] and a gene annotation file

in GTF format. BAM files produced by the 10x Cell

Ranger pipeline can also be provided when running this

stage. The result of pipeline is an R-readable file that

contains molecular count matrix and other processed

information, as well as a report with diagnostic informa-

tion on the library. Sample runtimes for different pipeline

steps are shown in Additional file 2: Table S8.

Correction of UMI collisions

In cases when the number of UMIs per gene is compar-

able to the total UMIs pool size, the gene expression

level will be underestimated [3] and needs to be

adjusted by taking UMI collisions into account. Fu et

al. [3] assumed uniform distribution of UMI

probabilities, and then the number of unique UMIs

expected for number of molecules n from a UMI pool

of size m is k =m[1 − e−(n/m)], thus n ¼ −m ln ð1− k
m
Þ .

To account for a non-uniform UMI distribution

observed in the droplet datasets, we estimated n(k,m)

by modeling the collisions process. Let’s assume that

we have a gene with k distinct UMIs Gk and a

distribution of UMI probabilities P(ui). In this case, the

probability of observing a new distinct UMI is pðu0∉GkÞ

¼
Pm

i¼1pðuiÞ � ð1−pðuiÞÞ
nðkÞ . The expected number of

collisions prior to obtaining a new distinct UMI is equal

to p(u' ∉Gk)
−1 and n(k + 1) = n(k) + p(u' ∉Gk)

−1. Thus,

we can use a step-by-step procedure to estimate n(k) ∀

k ∈ 1 :m.

To validate the developed method, we simulated UMI

collisions using a bootstrap procedure (Additional file 1:

a

b

c

Fig. 6 Filtration of low-quality cells for the inDrop mouse BMC dataset. This figure shows the result of the KDE-based algorithm for filtration of

low-quality cells in the inDrop mouse BMC dataset (dataset 11). a, b Similar to Fig. 4b, c, the heatmap shows expression of cluster-specific genes

in cells with high quality scores (> 0.9) that were identified above the size-based threshold (a), and “rescued” below the size-based threshold (b).

c t-SNE visualization of the dataset, similar to Fig. 5a
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Figure S2). To do so, we estimated the number of

collisions by sampling UMIs from the common distri-

bution one by one, until the expected number of dis-

tinct UMIs was reached.

Correction of UMI sequence errors

To determine whether two UMIs represent technical varia-

tions (sequencing errors) of the same UMI, we use a Bayes-

ian approach to estimate the number of errors within each

gene within each cell by maximal likelihood. To do so, we

can model the process of generating UMI composition.

Given two UMIs within a gene, we considered the fol-

lowing features:

� U, sequence of the first UMI.

� u, sequence of the second UMI.

� R, number of reads for the first UMI.

� r, number of reads for the second UMI, r ≤ R.

� NS, number of adjacent (Hamming distance of 1)

UMIs for the UMI U with the number of reads r' :

r' ≤ R.

� NL, number of adjacent UMIs for the UMI U with

the number of reads R' : R' > R.

� Sg, number of UMIs in the gene.

� q, mean Phred quality score of the distinguishing

position for the UMI u. Here, we use mean value as

we already include parameter r, which is strongly

correlated with the total (sum) quality score.

Let us denote:

� #Errors is the number of erroneous UMIs

� #Real is the number of real UMIs

We can divide set Ω of all adjacent UMIs into two

sets: ΩE and Ω¬E, which means erroneous and real

UMIs, respectively. We aim to estimate:

p #Errors ¼ kð Þ ¼
X

ΩE : ΩEj j ¼ k;

Ω¬E: Ω¬Ej j ¼ Ωj j−k

p ΩE;Ω¬Eð Þ:

The probability of the state with separation ΩE, ΩR

within a gene of size Sg is:

p ΩE ;Ω¬Eð Þ ¼ pðR; r!; q!;NS

¼ dim r!
� �

;NL;U ; Sg ;Err ΩEð Þ;¬Err Ω¬Eð ÞÞ ¼

¼ p q!j r!;R;NS;NL; Sg ;Err ΩEð Þ;¬Err Ω¬Eð Þ
� �

�

�p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL; Sg
� �

�p r!;R;U ;NS;NL; Sg
� �

Here, event Err(ΩE) means that all UMIs from ΩE

were generated from U by an error ðErrU ;u0∀u
0∈ΩEÞ. We

can omit pð r!;R;U ;NS;NL; SgÞ as it doesn’t depend on

the separation ΩE, Ω¬E. We can also assume independ-

ence of properties of ΩE and properties of Ω¬E:

Thus:

p ΩE ;Ω¬Eð Þ ≈ p q!j r!;R;U ;NS;NL; Sg ; Err ΩEð Þ;¬Err Ω¬Eð Þ
� �

�

�p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL

� �

¼

¼ p qΩ¬E

��!j r!;R;U ;NS;NL; Sg ;¬Err Ω¬Eð Þ
� �

� p qΩE

�!j r!;R;U ;NS;NL; Sg ; Err ΩEð Þ
� �

�

�p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL; Sg
� �

Let us make the following independence assumptions:

�

�

�

�

p ΩE;Ω¬Eð Þ ≈ p qΩ¬E

��!j¬Err Ω¬Eð Þ
� �

� p qΩE

�!j Err ΩEð Þ
� �

�

�p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL; Sg
� �

Also, we can assume distributions of #Errors and

#Real to be independent. Then, we can write the last

part as:

p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL; Sg
� �

¼

¼ p #Errors ¼ ΩEj jð Þ; #Real ¼ Ω¬Ej jð Þj r!;R;U ;NS;NL; Sg
� �

¼

¼ p #Errors ¼ ΩEj jj r!;R;U ;NS;NL; Sg
� �

� p #Real ¼ Ω¬Ej jj r!;R;U ;NS;NL; Sg
� �

Let us make the following additional independence as-

sumptions:

�

�

�

p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL; Sg
� �

¼
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¼ p #Errors ¼ ΩEj jjrΩE

�!
;R;NS

� �

� p #Real ¼ Ω¬Ej jjU ;NS;NL; Sg
� �

As several erroneous UMIs can have the same se-

quence, we adjust the overall probability:

p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL; Sg
� �

¼ p #Real ¼ Ω¬Ej jjU ;NS;NL; Sg
� �

�

�
X

i¼ ΩEj j

NS

p #ErrorsT ¼ ið Þ; #Collisions ¼ i− ΩEj jð ÞjrΩE

�!
;R;NS

� �

where p(#Collisions) is the probability that the number of

erroneous UMIs which have the same sequence is equal

to #Collisions. #ErrorsT is the total number of errors, in-

cluding those that were not observed. We can assume that

:

p Err ΩEð Þ;¬Err Ω¬Eð Þj r!;R;U ;NS;NL; Sg
� �

¼ p #Real ¼ Ω¬Ej jjU ;NS;NL; Sg
� �

�

�
XNS

i¼ ΩEj j
p #Collisions ¼ i− ΩEj jj#ErrorsT ¼ ið Þ

� p #Errors ¼ ijrΩE

�!
;R;NS

� �

:

which yields a complete formula for the overall

probability:

p ΩE;Ω¬Eð Þ ≈ p qΩ¬E

��!j¬Err Ω¬Eð Þ
� �

� p qΩE

�!j Err ΩEð Þ
� �

� p #Real ¼ Ω¬Ej jjU ;NS;NL; Sg
� �

�

�
XNS

i¼ ΩEj j
p #Collisions ¼ i− ΩEj jj#ErrorsT ¼ ið Þ

� p #ErrorsT ¼ ijrΩE

�!
;R;NS

� �

Direct estimation of the distribution p(#Errors = k)

= ∑ p(ΩE,Ω¬E) requires an exhaustive search over all

subsets of Ω, which takes O(2|Ω|) operations, making it

computationally intractable. To optimize this estimation,

let us assume that we can estimate p(u ∈ΩE). Further-

more, we can assume that event (u ∈ΩE) is equal to (u

′ ∈ΩE) ∀ u′ : p(u′ ∈ΩE) ≥ p(u ∈ΩE). The opposite would

be true as well: event (u ∉ΩE) is equal to (u′ ∉ΩE) ∀ u′ :

p(u′ ∈ΩE) < p(u ∈ΩE). Thus, we can order all UMIs ac-

cording to this probability and reduce the search space

to O(|Ω|). In practice, we don’t even need to estimate

p(u ∈ΩE), because for a fixed U it depends only on two

parameters: r and q. Moreover, it decreases exponentially

with increasing r (see explanation below), but there is no

such fast dependency for q. So, we can order UMIs by

descending r (first), and then by q (second).

Estimating probabilities

Estimation of the quality probabilities

Components of qΩ
�! can be assumed to be independent.

Thus:

p qΩE

�!j Err ΩEð Þ
� �

¼
Y

u∈ΩE
p qjErrU ;u

� �

; p qΩ¬E

��!j¬Err Ω¬Eð Þ
� �

¼
Y

u∈Ω¬E
p qj¬ErrU;u

� �

:

Distribution p(q| ¬ErrU, u) can be estimated as p(q|

¬ErrU, u) ≈ p(q), since an event ¬ErrU, u does not by itself

gurantee that u is real as u can be produced by an error

from a UMI other than U. Though distribution p(q) is

continuous, we estimated quantized version of this

distribution through the following procedure. First, we

estimated k uniformly distributed quantiles. All quantiles

with the difference in indexing variable q less than 10−5

were assumed to be equal and merged. Then, each value

of q was rounded off to the nearest quantile. As a result

we obtained a discrete distribution with no more than k

possible values of the indexing variable. In this work we

used k = 15.

To estimate p(q| ErrU, u) we created a training sam-

ple, which contained only pairs of UMIs where u

occurred because of an error in U. Such a set was as-

sembled by choosing genes containing two adjacent

UMIs only. The theoretical probability p(u,U| Sg = 2,

¬Err(U, u)) is negligible. We therefore expect almost all

such events to have occurred because of an error in

U. Such a training sample is representative because q

is independent of Sg. Because values of q are discrete

following the quantization, estimation of p(q| ErrU, u)

becomes straightforward.

Estimation of the number of real UMIs

Probability p(#Real = |Ω¬E||U, NS, NL, Sg) depends on

the large numbers of parameters, making the training

approach impractical. We use theoretical estimation

of p(#Real | U,NL, Sg) (see the algorithm below),

assuming that:

p #Real ¼ Ω¬Ej jjU ;NS;NL; Sg
� �

¼ p #Real ¼ Ω¬Ej jjU ; #Real≤NS;NL; Sg
� �

¼

p #Real ¼ Ω¬Ej j j U ;NL; Sg
� �

PNS

n¼0p #Real ¼ n j U ;NL; Sg
� � :

Let us denote the following notations:

� L, length of an UMI.

� NUMI, total number of possible UMIs (in most cases

is equal to 4L).

� K, maximum number of the adjacent UMIs (in most

cases is equal to 3L).

� pAdjacent = pAdjacent(U), probability to observe an

UMI, adjacent to U. It is equal to
X

u∈AdjacentðUÞ

pðuÞ.

� N′, total number of real adjacent UMIs for the

UMI U.
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To estimate the distribution of p(#Real| Sg,U,NL) we

use the following assumption:

P #Real≥njSg ;U ;NL

� �

¼ P N 0
≥nþ NLjSg ;U ;N 0

≥NL

� �

¼
P N 0

≥nþ NLjSg ;U
� �

ΣK
k¼NL

P N 0
≥kjSg ;U

� � :

The distribution p(N′| Sg,U) was estimated by model-

ing the process of picking UMIs from a pool. Suppose

that we have already picked s UMIs, and we have k

different adjacent UMIs. Let us denote this state as (k, s).

This state can occur in one of the following situations:

1. We were previously in the state (k, s − 1) and picked

a UMI which was not a new adjacent UMI (i.e.,

either a previously observed adjacent UMI or not

an adjacent UMI). The probability of such a pick is

ð1− K−k
K

pAdjacentðUÞÞ.

2. We were previously in a state (k − 1, s − 1) and

picked an UMI which is a new adjacent UMI. The

probability of such a pick is K−k−1
K

pAdjacentðUÞ.

The model above can be evaluated using dynamic pro-

gramming. To do so we build a matrix T = {tk, s}, each

cell of which contains the weighted sum of the neighbor-

ing bottom-left and left cells in the matrix T (see

example in Table 3). Such matrices would need to be

computed for each UMI present in the dataset. However,

the asymptotic complexity of this approach is O(Sg ∗ #

UMI ∗ K) in terms of both time and memory, which

would be prohibitive for large datasets. To optimize it

we employed the following solution. The matrix T de-

pends on U only through pAdjacent(U), and the rate of

change of the function within a cell is proportional to

pAdjacent(U) + o(pAdjacent(U)). Thus, we assume p(N′| Sg,

U) to be a piecewise constant function from pAdjacent(U)

and perform a quantization by this probability. A

quantization step Δp = 0.01 was used.

Estimation of the number of erroneous UMIs

To estimate pð#ErrorsT ¼ ijrΩE

�!
;R;NSÞ we can assume

that an erroneous UMI can occur with some constant

probability pE in each read. Thus, pðrΩE

�!jR;ErrðΩEÞÞ ¼ p

ðrEjR; ErrðΩEÞÞ , where rE is the total number of reads

across all erroneous UMIs: rE ¼
P

u0∈ΩE
r0 . Probability

p(rE| R, Err(ΩE)) was approximated by a binomial distri-

bution with number of trials n = R + rE. Parameter pE
was estimated using the same training set as for p(q|

ErrU, u): pE ¼

P

g:Sg¼2
r

P

g:Sg¼2
ðrþRÞ

. Afterwards, we can estimate

distribution of the number of errors as:

p #ErrorsT ¼ ijrΩE

�!
;R;NS

� �

¼
p rijR; Err ΩEð Þð Þ

P

r∈rΩE

�!p rjR; Err ΩEð Þð Þ
;

where ri is ith component of vector rΩE

�!.

The problem of estimation of total number of colli-

sions can be formulated as follows: find the distribution

of number of distinct UMIs (#Errors) after picking

#ErrorsT UMIs from the pool of all adjacent UMIs. It’s

the same problem that we solved when estimating

p(N′| Sg,U). But in this case probability pAdjacent(U) is

equal to 1:

p #Collisions ¼ ij#ErrorsT ¼ kð Þ

¼ p N 0 ¼ k−ijSg ¼ k; pAdjacent Uð Þ ¼ 1
� �

:

Iterative procedure of UMI sequence error correction

After the estimation of the decision boundary, all UMIs

that are determined to be erroneous are removed. This

changes the input parameters Sg, NL, and NS of the algo-

rithm. Therefore, to perform a precise filtration, the

Table 3 Dynamic programming matrix with distributions of the number of adjacent UMIs

Sg
K

1 2 3 … Sg

0 1 1 − pNeighb (1 − pNeighb)
2 ... ð1−pNeighbÞ

Sg−1

1 0 pNeighb ð1−pNeighbÞ � pNeighb þ

þpNeighb � ð1−pNeighb
K−1
K
Þ

… t0;S−1 � pNeighb þ

þt1;S−1 � ð1−pNeighb
K−1
K
Þ

2 0 0 p2Neighb
K−1
K

… t1;S−1 � pNeighb
K−1
K
þ

þt2;S−1 � ð1−pNeighb
K−2
K
Þ

… … … … … …

k 0 0 0 … tk−1;S−1 � pNeighb
K−kþ1

K
þ

þtk;S−1 � ð1−pNeighb
K−k
K
Þ

… … … … … …

K 0 0 0 … tK−1;S−1
pNeighb
K

þ tK;S−1

Here, K is the maximum number of adjacent UMIs, Sg is the maximum number of molecules per gene. A cell tk, s of the matrix contains probability of observing k

adjacent UMIs for a fixed UMI in a cell of size s

Petukhov et al. Genome Biology  (2018) 19:78 Page 12 of 16



procedure is run iteratively.This does not add a signifi-

cant amount of runtime complexity because: i) dynamic

programming matrices are calculatd only once, since the

gene size cannot increase during filtration; ii) for genes

with a small number of UMIs, the procedure converges

after one or two iterations.

Validation

UMI trimming

The UMI error correction algorithms become less

effective as the number of molecules per gene in-

creases. To model such situations, we used the 10x

post-transplant BMMC dataset, which has 10-bp

UMIs and relatively small sequencing depth. We then

simulated more saturated measurements by trimming

UMIs to shorter lengths. The information about each

UMI consists of its sequence, the number of reads

per UMI, and the mean base-call quality for each nu-

cleotide in the sequence. By trimming both the nu-

cleotide sequence and the quality vector we obtain a

new, shorter UMI. After trimming, sequences of some

UMIs become identical, which naturally models UMI

collision events. All such UMIs are merged by sum-

ming their number of reads and calculating the

weighted mean of base-call quality vectors (the weight

of each vector is equal to its number of reads). For

most of the analyses, we trimmed UMIs from the end

(back trimming). However, to test for variation of nu-

cleotide diversity along the UMI length, we also

trimmed UMIs from the front (see “Results”).

Distribution of Hamming distances between UMIs of the

same gene

Errors in UMI sequences lead to more frequent oc-

currence of adjacent UMIs. Yet, simply omitting all

adjacent UMIs would also be incorrect, as the prob-

ability of adjacent UMI occurrence is non-negligible

for shorter UMIs and highly expressed genes. Thus,

to assess the quality of UMI error correction methods

we followed Smith et al. [6] and analyzed distribution

of Hamming distances between UMIs within the same

gene. To do so we first estimated all pairwise dis-

tances between UMIs within each gene within each

cell, pooling all distances together. Next, we estimated

frequencies of each distance value P(ED = k), and

compared it with the theoretical distribution P∗(ED =

k) of such distances. The theoretical distribution was

estimated by random sampling of UMI pairs from a

common UMI distribution. The relative difference be-

tween the observed distribution and the theoretical

one ðjPðED¼kÞ−P�ðED¼kÞj
P�ðED¼kÞ Þ was compared for different cor-

rection algorithms.

Correction of cellular barcode sequence errors

CB sequence errors split a fraction of the molecules ori-
ginating from one cell into smaller CBs. Given that the
number of reads per UMI is generally higher than one,
the smaller CBs will contain some of the same gene–
UMI combinations as the true CB. In other words, the
smaller CBs will have similar molecular composition—
the set of cell unique genes–UMI combinations. We use
composition similarity as a criterion for determining
whether the two barcodes should be merged. The size of
the compositional intersection between two independent
cells is modeled using Poisson distribution with the
mean dependent on the UMI distribution and the num-
ber of molecules associated with the CBs.

Let us denote Sc, g as the set of all UMIs detected for

gene g in a cell c. The number of common gene–UMI

pairs for cells i and j can be estimated as Ci; j ¼
Pm

k¼1

j Si;k∩S j;k j . Thus, expectation would be ECi; j ¼ E
Pm

k¼1

j Si;k∩S j;k j¼
Pm

k¼1 E j Si;k∩S j;k j . The expectation of the

UMI intersection (i.e., the number of shared UMIs) for a

pair of genes can be estimated as ECi; j ¼
X

u∈UMIs

ð1−

ð1−pðuÞÞjS
0
i;k jÞ � ð1−ð1−pðuÞÞjS

0
j;k jÞ, where S0j;k is the num-

ber of UMIs in a gene adjusted for UMI collisions. It is

important to note that the expected number of shared

UMIs needs to be calculated only once for each pair (Si,

Sj) : Si ≤ Sj. Having estimated ECi, j we can then assume

that Ci, j follows Poisson distribution with the mean

equal to ECi, j. Using this estimated distribution, we then

perform a statistical test for hypothesis H0: the observed

size of the intersection S∗intersection was obtained by

chance. The P value of this test is the tail probability of

the Poisson distribution P
λ̂
ðSintersection≥S

�
intersectionjEi

!
; E j
!

;

PUMIÞ, where λ̂ is the estimated intensity parameter.

The implemented pipeline uses this test to compare

each cell Ci with all other cells Cj that 1) have a higher

total number of molecules (Sj ≥ Si) and 2) whose CBs

have a Hamming distance from the CB of Ci that is

lower than a fixed constant. In the presented results this

distance constant was taken to be 2. Bonferroni correc-

tion was used to account for multiple comparisons.

To compare merge algorithms, we evaluated their

quality on 10x [10] and Drop-seq [2] human–mouse

mixture datasets (datasets 4 and 12) using the following

procedure. First, we filtered out all cells that had < 30

genes for 10x and < 20 genes for Drop-seq. Next, for

each cell we determined the most likely organism,

assigning cells to the genome for which they had more

molecules. Next, we chose the largest cells and consid-

ered them as real. The exact choice of number of real

cells did not have a notable impact on the results. We

used 6000 cells for 10x and 1000 cells for Drop-seq. In

comparing merge algorithms we counted the number of
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merges performed between different organisms. Only

merges to real cells were counted.

Classifying damaged or low-quality cells

Classification algorithm

The implemented approach for classification of damaged

and low quality cells can be split into three tasks: (i) cre-

ation of the training sample, i.e., establishing the initial

class labeling; (ii) feature selection; and (iii) application

of the classifier algorithm.

The initial class labels were assigned based on the cell

size. To do so, the dataset was split into three parts: ‘big’

cells, ‘intermediate’ cells, and ‘small’ cells. To determine

the borders of big and small cells we used the plot

log(#UMI in cell) vs log(cell rank) (Additional file 1: Fig-

ure S10C). This heuristic is based on an observation that

the left part of such a plot has a negative second deriva-

tive, followed by a linear part, and a third part of the

plot has a positive second derivative. We implemented

an automated procedure that locates the upper (tU) and

the lower (tL) position of the linear part. The cells with

size smaller than tL were then assigned the initial label

of ‘low-quality’ cells. The top 75% of the cells with size

larger than tU were assigned the initial label of ‘high-qu-

ality’ cells. The remaining cells were labeled as ‘un-

known’. Alternatively, the initial label borders can be

specified manually, for instance based on the shape of

the log(#UMI in cell ∗ # Cells) vs log(#UMI in cell) plots

(Additional file 1: Figure S10A, B).

Two types of features could be potentially considered

for distinguishing quality cells: biological features (e.g.,

expression levels of genes belonging to different GO cat-

egories [19, 20]), and technical features (e.g., different

statistics on the sequenced data). We expect most bio-

logical features to be dataset- and cell type-specific [9],

with the exception of the mitochondrial fraction, which

has appeared as a robust indicator of cell death across

most datasets [9]. Therefore, in choosing classifier fea-

tures we limited consideration of biological features only

to the “fraction of UMIs on mitochondrial reads”. The

following technical features were also utilized:

1. Mean number of reads per UMI.

2. Mean number of UMIs per gene.

3. Fraction of low-expressed genes (genes with one

molecule).

4. Fraction of intergenic reads.

5. Fraction of not-aligned reads (optional feature, as it

typically has to be calculated during the identifier

parse phase).

Given the initial labeling and the feature set, the cell

classification problem was considered as a problem of es-

tablishing robust classification in the presence of training

label noise [21]. We compared three classifiers: Kernel

Density Estimation classifier [12], Random Forest [13],

and Robust Gaussian Processes Classifier [14]. Following

evaluation of robustness we chose the KDE classifier with

Normal Scale bandwidth selector [22] (the implementa-

tion provided by the R package ‘ks’ was utilized [23]). The

computational complexity of the KDE classifier estimation

has exponential dependency on the dimensionality of the

feature space. We therefore reduced the feature space by

using the first three principal components of the feature

space for classification. To increase the algorithm robust-

ness, we used sparse robust principal component analysis

[24] (R package ‘pcaPP’) with sparsity level λ = 1.

The algorithm’s performance can be improved by

labeling cells with very high fractions of mitochondrial

and intergenic reads as ‘low-quality’. This can be done

prior to classifier training, or simply as an additional

filter after classifier training. To choose between these

two options we employed the following condition: if the

intergenic or mitochondrial fraction contributes to any

of the first three PCs with the loading ≥5%, we assume

that the algorithm is able to distinguish between high/

low fraction values, and labeling for the corresponding

fraction can be done prior to the classifier training.

Otherwise, labeling is done after the training. The

extreme fraction thresholds we determined as m + 4a,

where m is the 20% trimmed mean mitochondrial (or

intergenic) fraction across cells in the dataset, and a is

the median absolute deviation of the corresponding

fraction.

Validation of the results

Validation of the algorithm was based on the assumption

that the rescued cells (i.e., cells with low numbers of mole-

cules, which would be filtered with size-threshold-based al-

gorithms) should have similar gene expression patterns to

the real cells. As a first step, KDE classification was per-

formed for all cells that passed a pre-defined threshold on

the minimal number of expressed genes. The threshold

value was taken to be 20 for the inDrop datasets and 50 for

the larger 10× 8k PBMC dataset. Cells that had a quality

score less than 0.9 and the number of molecules less than

tU were filtered out (omitted). Next, we annotated cell types

and performed differential expression analysis for each type.

We selected several cell types (i.e., cell clusters) that showed

substantial cell differences between the threshold-based

and KDE filtration, and generated gene expression heat-

maps for all cells in these clusters, showing the most differ-

entially expressed genes for each cluster (see “Results”). To

plot such gene expression heatmaps we: (i) normalized

molecule counts for each gene by the total number of

molecules detected in a given cell; (ii) transformed expres-

sion values to their rank values within a gene; and (iii)
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normalized by the total number of cells on the plot

(to obtain values in the [0; 1] range). A similar

procedure was used for t-SNE visualization of gene

expression in Additional file 1: Figures S12–S14. To

choose cluster-specific genes we used the following

procedure:

1. For each cluster we identified differentially

expressed genes by comparing it against every other

cluster using the Seurat R package [25].

2. For each differential gene we counted the number of

clusters where it was detected. No more than 50 genes

with the largest number of clusters were picked.

3. Only genes that were expressed in > 60% of the

cells in at least one of the clusters were shown.

Mouse bone marrow inDrop measurements

Whole bone marrow cells were isolated from

11-week-old C57Bl/6 male mice (Jackson Laboratory).

The epiphysis/metaphysis fraction from long bones was

collected, crushed, cut into small pieces, and digested

using Collagenase I (STEMCELL Technologies) with

agitation for 30 min at 37 °C. Bone marrow cells were

filtered through a 70-μm filter. Red blood cells were

lysed using Ack-lysis (ThermoFisher Scientific) on ice

for 5 min, quenched with Media 199 (ThermoFisher

Scientific) supplemented with 2% fetal bovine serum

(ThermoFisher Scientific), and spun down at 500 g for

5 min. Cells were stained for 30 min with the red blood

cell marker TER119 (Biolegend) and cells were sorted

using DAPI (ThermoFisher Scientific) as a live/dead via-

bility marker. Live whole bone marrow cells (400,000;

negative for TER119) were sorted into medium 199

(ThermoFisher Scientific). Before inDrop encapsulation

cells were counted using a Cellometer (Nexcelom

Bioscience). Cell viability was over 90%.

InDrop processing

The concentration of cells was adjusted to 300,000

cells/ml by adding PBS to the sorted cells. The cell

suspension was then mixed 1:1 (v/v) with PBS con-

taining 30% OptiPrep Density Gradient Medium

(Sigma D1556) to obtain 150,000 cells/ml in 15%

Optiprep. Using four microfluidics pumps and a poly-

dimethylsiloxane (PDMS) microfluidic device, about

10,000 cells were co-encapsulated with barcoded poly-

acrylamide beads and a reverse transcription mixture

containing Superscript III into water-in-oil droplets,

according to a published protocol [26]. The library

preparation and quality control procedures were car-

ried out as described [26]. Indexed libraries were

pooled and sequenced on a Next-seq 500 system

(Illumina) at 2 pM concentrations.

Mouse–human cell line mixture inDrop measurement

CK1750 mouse lung cancer cells (Carla Kim laboratory,

Boston Children’s Hospital) and K562 human immortalized

myelogenous leukemia cells (ATCC) were mixed at a 1:1

ratio to obtain 70,000 cells/ml in PBS containing 15%

Optiprep. About 3000 cells were co-encapsulated with bar-

coded polyacrylamide beads and a reverse transcription

mixture containing Superscript III into water-in-oil drop-

lets; and a library was prepared according to a published

protocol [26]. The library was sequenced on a MiSeq sys-

tem (Illumina).

Availability and requirements
Name: dropEst

Homepage: https://github.com/hms-dbmi/dropEst

OS: linux, OS X

Programming language: C++, R

License: GPL-3.

Additional files

Additional file 1: Supplementary figures with legends. (PDF 4377 kb)

Additional file 2: Supplementary tables. (PDF 41 kb)

Additional file 3: Example of the report, generated by the pipeline.

(PDF 544 kb)
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7. Human post-transplant bone marrow mononuclear cells (900 cells, 10x

Genomics AML035 post-transplant BMMCs [7, 8]).

8. Human frozen bone marrow mononuclear cells (2000 cells, 10x Genomics
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13. Human 8k PBMCs (8000 cells, 10x Genomics human 8k PBMCs from a
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license): https://github.com/hms-dbmi/dropEst [32].
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The code to reproduce the figures in this paper is also available on github:
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