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We study the coalescence of a drop with its bulk phase in fluid–fluid demixing
colloid–polymer mixtures. Such mixtures show behaviour analogous to molecular
fluid–fluid systems, but the interfacial tension is between 105 to 107 times smaller
than in the molecular case. Such an ultralow interfacial tension has several important
consequences and offers significant advantages in the study of droplet coalescence.
The coalescence process can be divided into three consecutive stages: (i) drainage
of the continuous film between droplet and bulk phase, (ii) rupture of the film, and
(iii) growth of the connection. These stages can be studied within a single experiment
by optical microscopy thanks to the ultralow interfacial tension in colloid–polymer
mixtures, which significantly changes the relevant characteristic length and time
scales. The first stage is compared with existing theories on drainage, where we
show several limiting theoretical cases. The experimental drainage curves of different
colloid–polymer mixtures can be scaled and then show very similar behaviour. We
observe that drainage becomes very slow and eventually the breakup of the film is
induced by thermal capillary waves. The time it takes for a certain height fluctuation
of the interface to occur, which turns out to be an important parameter for the
kinetics of the process, can be directly obtained from experiment. During the third
stage we observe that the radius of the connecting neck grows linearly with time
both for gas bubbles and liquid droplets with an order of magnitude that is in good
agreement with the capillary velocity. Finally, partially bleaching the fluorescent dye
inside the liquid droplet reveals how the surface energy is transformed into kinetic
energy upon coalescence. This opens the way for a more complete understanding of
the hydrodynamics involved.

1. Introduction

The process of droplet coalescence is frequently observed in everyday life. Whenever
two miscible liquid drops or a liquid drop and its liquid bulk come into contact they
may coalesce. The coalescence reduces the total interface area and is driven by the
interfacial tension. The phenomenon has been studied since the 19th century, starting
with Thomson & Newall (1885), and it is a classical example of a free-surface problem
in fluid dynamics. It has important consequences, e.g. the droplet size distribution in
rain is (among other processes) determined by the coalescence probability (see for
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Figure 1. Schematic drawing of the consecutive stages – film drainage, film rupture, and neck
growth – of droplet coalescence from left to right, top to bottom. Shown is the drainage of
the continuous phase (i) (top row), the first connection is made (ii) and the radius of the neck
grows in time (iii) (bottom row).

example Brandes, Zhang & Vivekanadan 2004). It is of practical importance as well; in
many industrial applications – such as printing and sintering processes – coalescence
plays a crucial role (to be either avoided or induced), see for example Frohn & Roth
(2000). Recent developments in the field of microfluidics (see for example reviews by
Stone, Stroock & Ajdari 2004; Squires & Quake 2005; Haeberlea & Zengerle 2007), in
which fluids are manipulated on a microscopic level and miniature chemical reactions
can be carried out on a chip, provide a further need to study this phenomenon.

Here, we focus on the three consecutive stages in droplet coalescence: (i) film
drainage of the continuous phase between the droplet and the free interface, (ii)
rupture of the film, i.e. the formation of the first connection between drop and bulk,
and (iii) extrusion of the droplet material into its bulk phase, see figure 1 for a
schematic of these steps. The first stage (i) has been studied for quite some time,
for example Brown & Hanson (1967), Hartland (1969a ,b,c), and Hartland, Yang &
Jeelani (1993), although it still poses some theoretical difficulties (Jones & Wilson
1978). In many studies the drainage is followed close to the point of film rupture (ii),
and step (ii) is studied in relation with step (i) (Jeffreys & Hawksley 1962; Brown &
Hanson 1967); furthermore, the role of van der Waals forces has been investigated
(Vrij 1966; Chen et al. 2004). Recently, significant theoretical (Eggers, Lister & Stone
1999) and numerical (Duchemin, Eggers & Josserand 2003) progress has been made in
the description of the neck growth, step (iii), and in understanding the singularity that
occurs during coalescence. Recently, the initial viscous coalescence has been observed
experimentally (Yao et al. 2005; Thoroddsen, Takehara & Etoh (2005); Aarts et al.
2005b) and in dissipative particle dynamics simulations (Iancu 2005), as well as the
inertial coalescence (Mechaca-Rocha et al. 2001; Wu, Cubaud & Ho 2004), which
follows the viscous coalescence.

We make use of the properties of colloid–polymer mixtures to follow the details
of coalescence in time with microscopy. Phase-separated colloid–polymer mixtures
are well known to display behaviour analogous to molecular fluid–fluid systems. In
addition, such mixtures are also used in industry, for example in the food industry
(Dickinson & Walstra 1993). The origin of the phase separation in colloid–polymer
mixtures lies in the entropy-driven attraction between the colloids, which is mediated
by the polymers (Asakura & Oosawa 1954; Vrij 1976). The coexisting phases are a
phase rich in colloids and poor in polymer and a phase poor in colloid and rich in
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polymer. We will refer to these phases as being colloidal liquid and colloidal gas, or
simply liquid and gas phases respectively. After preparing a sample in the two-phase
region individual droplets of either the liquid or the gas coalesce with their bulk phase
at the final stages of phase separation (Aarts, Dullens & Lekkerkerker 2005a). This
allows us to study this process.

The main advantage of using colloid–polymer mixtures over molecular fluids has
its origin in the ultralow interfacial tension of demixed colloid–polymer mixtures.
Following Rowlinson & Widom (1982) and De Gennes (1979) we find that the typical
magnitude of the interfacial tension γ is proportional to

γ ∼ kBT

d2
(1.1)

with kBT the thermal energy and d the typical length scale at the interface, similar
to the particle diameter σc far away from the critical point. This order of magnitude
has been confirmed in experiments by Vliegenthart & Lekkerkerker (1997), de Hoog
& Lekkerkerker (1999), Chen, Payandeh & Robert (2000), de Hoog & Lekkerkerker
(2001) and Aarts, van der Wiel & Lekkerkerker (2003), theoretically by Vrij (1997),
Brader & Evans (2000), Brader et al. (2002), Moncho-Jorda, Rotenberg & Louis
(2003) and Aarts et al. (2004a) and recently in computer simulations by Vink &
Horbach (2004a ,b).

This ultralow interfacial tension has several important consequences. First, the
equilibrium thermal roughness of the interface LT =

√
kBT/γ (Mandelstam 1913;

Buff, Lovett & Stillinger 1965), which is due to the thermally excited capillary waves,
can become of the order of (sub)microns. Furthermore, in our systems these waves
are overdamped with a characteristic decay time of the order of (tens of) seconds
(Jeng et al. 1998). Therefore, the thermal capillary waves can be directly observed
with optical microscopy, for which we found good agreement with the standard
capillary wave model (Aarts, Schmidt & Lekkerkerker 2004b), and it is thus possible
to study step (ii), the rupture of the film, on the scale of thermal capillary fluctuations.
Furthermore, from the Reynolds number Re = ρuL/η with ρ the mass density, u the
velocity, L the characteristic length and η the viscosity, we can estimate at what length
inertia becomes as important as viscous dissipation. At small length and time scales
the velocity u of interface motion is always proportional to u ∼ γ /η (Probstein 2003).
At Re = 1 inertial terms are expected to become important, i.e. at lengths

Lη =
η2

ργ
, (1.2)

and times

tη =
L

u
=

η3

ργ 2
. (1.3)

For ordinary water with γ = 73 mN m−1, η = 1 mPa s, and ρ = 1 g ml−1, inertial terms
come into play at Lη = 10−8 m, which is reached in tη =2 × 10−10 s, an intractably short
time and length. Thus, the initial viscous regime of step (iii) is hard to observe in
the laboratory for ordinary molecular liquids. To tackle this problem it is in principle
possible to follow two routes: either increase the viscosity or decrease the interfacial
tension. Here, we follow the latter option and decrease the interfacial tension between
a factor 105 and 108 compared to the interfacial tension of water. In addition, this
allows us to explore the role thermal fluctuations play in the process of droplet
coalescence.
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We show results for several colloid–polymer mixtures: one mixture of silica colloids
and poly(dimethylsiloxane) polymer in cyclohexane, and two different mixtures of
poly-(methylmetacrylate) colloids (PMMA) and poly(styrene) polymer in decalin,
described in detail in § 2, where also the statepoints are indicated. These yield
similar results, which points to generic behaviour. The consecutive steps are described
in § 3 for step (i), § 4 for step (ii) and § 5 for step (iii). Conclusions are drawn
in § 6.

2. Experimental system and technique

Three different mixed colloid–polymer dispersions have been used. The first system
was originally prepared by Verhaegh et al. (1996). The colloids are commercially
available ludox spheres (Ludox AS 40 % Dupont) coated with stearyl alcohol (1-
octadecanol, Merck, zur synthesis) providing steric stabilization following the method
by Helden, Jansen & Vrij (1980). The particles were dispersed in cyclohexane. The
(dynamic light scattering) radius Rc of the particle was 13 nm with a polydispersity
of 19 % and the density was 1.60 g ml−1 as determined by de Hoog & Lekkerkerker
(1999) and de Hoog (2001). The molecular weight Mw of the poly(dimethylsiloxane)
polymers (abbreviated as PDMS, supplier: Janssen) was 91.7 kg mol−1 (Mw/Mn = 1.9,
with Mn the number average molecular weight) and the density was 0.976g ml−1.
The polymer’s radius of gyration in cyclohexane was determined as 14 nm
(de Hoog & Lekkerkerker 1999; de Hoog 2001). We will refer throughout this paper
to this system as system 1 with characteristics SPC13, i.e. Silica Poly(dimethylsiloxane)
in Cyclohexane with the radius of the colloid equal to 13 nm.

In addition to the system above, two fluorescent poly(methylmethacrylate) PMMA-
colloids + poly(styrene) polymer dispersions were used. In the preparation of PMMA
we followed the method of Bosma et al. (2002) slightly modified by using decalin
(Merck, for synthesis) as solvent. The particles are stabilized by poly(12-hydroxy
stearic acid). The fluorescent dye, 4-methylamino-ethylmethacrylate-7-nitrobenzo-
2-oxa-1,3-diazol, is covalently linked to the methylmethacrylate monomers and is
therefore incorporated in the particle. The (dynamic light scattering) radius Rc

was 25 nm and the polydispersity was less than 10 %, estimated from scanning
electron microscopy images. The particles were dispersed in decalin. As polymer,
commercially available poly(styrene) (PS, Fluka) was used with a molecular weight
of Mw = 233 kgmol−1 (Mw/Mn = 1.06) and a radius of gyration Rg in decalin of ∼14
nm as estimated from data in the literature (Berry 1966; Vincent 1990).

The second PMMA dispersion consisted of larger PMMA colloids labelled with
the same dye and higher molecular weight polymer. The (static light scattering) radius
Rc of the colloids in decalin was 71 nm and the polydispersity was around 10 %.
As polymer, polystyrene (Fluka) with a molecular weigth of Mw = 2000 kg mol−1

(Mw/Mn < 1.2) has been used; its radius of gyration in decalin is estimated to be
43 nm from data in the literature (Berry 1966; Vincent 1990).

Throughout this paper we will refer to the first PMMA-PS dispersion as system
2 with characteristics PPD25, i.e. PMMA Poly(styrene) in Decalin with the radius
of the colloid equal to 25 nm. The second PMMA-PS dispersion is referred to as
system 3 or PPD71, i.e. PMMA Poly(styrene) in Decalin with the radius of the colloid
equal to 71 nm. A summary of the physical properties of these systems can be found
in the Appendix. Throughout the text we refer to several different statepoints the
characteristics of which can also be found in the Appendix. The crucial point is that
given (1.1) the interfacial tension strongly decreases going from system 1 to system 3
such that a wide range of ultralow interfacial tensions can be explored.
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Samples were prepared in several types of optical cuvettes by mixing colloid- and
polymer-stock dispersions and diluting with the dispersing solvent. Since all densities
are known, mass fractions can be directly converted to volume fractions. For colloids
we use

φc =
4

3
πR3

cnc

with nc the number density of colloids. For polymers it is customary to use the coil
volume and with the molecular weight of the polymers we obtain

φp =
4

3
πR3

gnp =
4

3
πR3

g

mp

MW

Na,

where np is the number density of polymers, mp the mass of polymers per total
volume and Na Avogadro’s number. Now, φp = 1 corresponds to the so-called overlap
concentration. After preparing a colloid–polymer mixture, the system is homogenized
either by hand or with a vortex, which is a reproducible way of homogenizing the
mixture; the reproducibility has for example been checked by measuring the demixing
kinetics several times after homogenization. Phase separation typically takes between
15 min and a couple of hours depending on the precise statepoint.

To study the colloid–polymer mixtures we used a transmission light microscope
(Nikon Eclipse E400), placed horizontally such that in each image gravity points
downwards. The setup allows monitoring using transmission light microscopy as
well as laser scanning confocal microscopy (LSCM). In the transmission mode a
CCD camera can be attached, which has a maximal capturing rate of 50 frames
per second. In the LSCM mode a confocal scanning laser head (Nikon C1) was
mounted on the microscope with a maximal capturing rate of about 1 full frame per
second. Although slower in capturing, the confocal microscope has the advantage
that the contrast is considerably increased. The resolution of light microscopy is of
the order of the wavelength of light. For the lower magnifications this results in
roughly 1 µm, whereas the confocal microscope with the highest magnification has
an optical in-plane resolution of ∼0.2 µm; the depth of focus in this case lies around
0.5 µm (Webb 1996). This means that most quantities have an uncertainty of the order
of 1 µm, although in case of the thermal waves, where an oil immersion objective
with a high numerical aperture was used, we have located the interface with subpixel
accuracy (Aarts et al. 2004b), i.e. below 0.2 µm. Furthermore, by changing the focus
the apparent size of the drop changes and the largest size corresponds to the midplane
of the drop. In addition, using the transmission light microscopy mode the midplane
of the drop is also defined by the sharp change in contrast.

Finally, note that the systems used are chemically carefully tailored and it is difficult
to prepare them in large quantities (say more than a few ml). In addition, they are
dispersed in volatile liquids making traditional methods of determining densities
and viscosities more cumbersome or practically impossible. A little evaporation, for
example, changes the statepoint or makes a sample in the gas phase demixing. In
some cases, several techiques have been used to determine the interfacial tension;
for example, for system 2 PPD25, the interfacial tension has been determined by
measuring the density difference and then the capillary length in several ways: by
analysing the shape of a drop resting at the interface as will be explained later (see
equation (3.5)) and the shape of the interfacial profile close to a wall (Aarts 2005).
From these methods the interfacial tension is found to be 0.16 µN m−1. Furthermore,
for this system the viscosities of liquid and gas phases were measured with an Anton
Paar Physica MCR300 rheometer and we found ηL = 31 mPa s and ηG = 8 mPa s, see
also the Appendix.
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Figure 2. Step (i) in droplet coalescence in system 1 SPC13 as observed with transmission
light microscopy (a–d) and system 3 PPD71 statepoint III as observed with laser scanning
confocal microscopy (LSCM) (e–h). (a–d) The image size is 264 × 264 µm2 and Rd = 26 µm.
As time proceeds the shape of the drop as well as the bottom interface become distorted (b).
The thin film drains very slowly (c, d) and after about 14.5 s from panel (a) the drop coalesces.
(e–h) The image size is 48 × 48 µm2 and Rd = 10 µm. The gas bubble displays similar behaviour
to the liquid drop.

3. Film drainage

In the first stage of droplet coalescence the drop approaches the bulk phase, see
figure 2. Here, we show results for system 1 SPC13 (top row; silica colloids and
poly(dimethyl-siloxane) polymer in cyclohexane), and for system 3 PPD71 (bottom
row; large PMMA colloids and poly(styrene) polymer in decalin). Initially, both the
drop and the interface of the bulk phase (this interface is hereafter referred to as
the surface) are undistorted, figure 2(a, e). In the vicinity of the surface, however, the
droplet slows down and both the drop and the surface are distorted, see figure 2(b, f ),
which happens at relatively large distance as in the numerical investigations by Chi
& Leal (1989). At longer times (figures 2c, d and 2g, h) the deformations become
more pronounced and the film drains very slowly until it ruptures.

Far away from the bulk phase a droplet of radius Rd sediments or rises at constant
velocity us . It will not be deformed if the capillary number Ca

Ca =
ηus

γ
, (3.1)

remains smaller than unity (Stone 1994). The sedimentation velocity us is proportional
to g�ρR2

d/η and we thus obtain from the capillary number the Bond number Bo

(Stone 1994)

Bo =
g�ρR2

d

γ
, (3.2)

with g acceleration due to gravity and �ρ the buoyancy. Thus, we do not expect
deformations if Bo < 1, i.e. Rd < Lc ≡ √

γ /g�ρ, the capillary length. The capillary
length is of the order of 10–30 µm for colloid–polymer mixtures instead of 1–3 mm for
molecular fluids. In experiment most droplets remain spherical while sedimenting†,

† We here use ‘sedimenting’ as a general term, which also applies for rising gas bubbles.
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even drops with Rd slightly larger than Lc (figure 2a, e). A more precise treatment of
the sedimentation velocity of a viscous sphere surrounded by a viscous medium leads
to (see e.g. Lamb 1932)

us =
2

3

g�ρR2
d

ηo

ηo + ηi

2ηo + 3ηi

. (3.3)

Here, ηo is the viscosity outside the drop and ηi is the viscosity inside the drop. If ηi ≫
ηo the well-known Stokes friction for a hard sphere is obtained: f = F/us = 6πηoRd

with F the force acting on the sphere. If ηi = 0 we obtain the friction for an air
bubble: f =4πηoRd .

For a solid sphere approaching a solid or free non-deformable surface exact
treatments are given in Happel & Brenner (1986), which describe both the undistorted
fall of (3.3) and the velocity close to the surface. The friction factor can be written
as f = 6πηoRdλ with λ(h/R) the correction to the Stokes friction. When h/Rd ≪ 1,
where h is the minimal distance between sphere and surface, it becomes

λ =
Rd

h
and λ =

1

4

Rd

h
(3.4a, b)

for a solid surface and for a planar free surface, respectively. These limiting equations
can also be found from lubrication equations, see Reynolds (1886) and Charles &
Mason (1960). Note that the factor 4 difference between a solid and a fluid interface
is often observed in these types of problems. For a solid sphere approaching a
deformable surface Hartland (1968) has derived expressions from lubrication theory
valid for small sphere–surface separations. He finds that h ∝ t−1/2. These results were
later confirmed by Jones & Wilson (1978).

However, in the experiment both the fluid drop and the fluid interface become
distorted at a certain separation (figure 2), which is approximately the drop diameter.
Furthermore, fluid circulates in the drop since it has a finite viscosity, which tends to
speed up drainage compared to a solid sphere, and there is some constriction in the
film thickness at its periphery, which slows down drainage. These last two effects are
treated by Jones & Wilson (1978), who point out that these effects are not captured in
simple lubrication theories. They predict several asymptotic regimes, which have been
confirmed by Yiantsios & Davis (1990) using extended lubrication theories. However,
the recent work of Nemer et al. (2004, 2007) shows the importance of subtleties
overlooked in the earlier work. No full analytical treatment can be obtained and the
main problem in comparison with the present experimental data is that the asymptotic
limits become valid only for very small separations (Yiantsios & Davis 1990).

In figure 3 we show the minimal drop–surface separation h as a function of time
t . The time t = 0 is defined at h = 2Rd , i.e. t(h = 2Rd) = 0. The event for a liquid drop
in system 1 SPC13 is plotted in figure 3(a), which corresponds to figure 2(a–d). The
top curve (plusses) is the minimal distance between drop and surface, the middle
curve (open circles) is the distance between drop and (initially) undisturbed surface
and the bottom curve (open squares) is the position of the surface with respect to
its undisturbed position, see the inset of figure 3(a). In figure 3(b) a similar event is
plotted, but in this case for a gas bubble (open symbols and plusses) and for a liquid
drop (filled circles) in system 2 PPD25 (small PMMA colloids and poly(styrene)
polymer in decalin). The difference in time scales between (a) and (b) is considerable
and stems mainly from the difference in gas–liquid density contrast, which is much
larger in system 1 SPC13, figure 3(a). In (b) the difference between gas bubbles and
liquid droplets is a result of the difference in viscosity, where the liquid viscosity ηL is
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Figure 3. (a, b) Interface positions as a function of time for drops in (a) system 1 SPC13
and (b) 2 PPD25 (see the Appendix). (a) The event for a liquid drop with Rd = 26 µm. The
inset explains what the symbols denote, see also the text. (b) The event for a gas drop with
Rd =15 µm (symbols as in (a)) and for a liquid drop with Rd = 16 µm (for clarity, only filled
circles corresponding to the circles in (a)). (c) Minimal separation for liquid drops as defined
in the inset of (a) in terms of 2Rd as a function of reduced time. Data of systems 1, 2 and 3
follow a very similar curve (six different data sets are shown). The inset shows an enlargement
for t > 0 on a log-plot. Results are added for gas bubbles (G) (three different data sets). These
generally lie below the liquid drop curves (L). (d) The correction to the Stokes friction factor
as a function of h/2Rd . At distances h < 2Rd the friction increases rapidly. The solid curve
comes from theory for a solid sphere sedimenting on a free non-deformable surface (Happel
& Brenner 1986), which reaches the asymptotic value of (3.4b). The solid curves in (a–c) are
linear fits to the first data points.

larger than the gas viscosity ηG. However, the shapes of the curves are very similar.
In all cases the displacement is initially linear with time. For the events plotted
in (b) the viscosities and density difference have been measured precisely, see the
Appendix, and the initial linear velocities of the rising gas bubble and falling liquid
droplet are in good agreement with equation (3.3). For example, we find for the liquid
drop 4.3 µms−1 from experiment and 4.2 µms−1 from (3.3); for the gas bubble this is
1.2 µms−1 and 1.1 µms−1.

In figure 3(c) several data sets for liquid drops are rescaled by plotting h/2Rd vs.
t × F/f 2Rd , with f following from (3.3), an approach similar to the one followed
by Mohamed-Kassim & Longmire (2003). Thus, the initial slopes are scaled by
taking the density difference as well as the inner and outer viscosity into account.
We then clearly observe that data from systems 1, 2, and 3, for statepoints with
different interfacial tensions and for different drop diameters ranging from 13 to
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52 µm follow a very similar curve. The difference in the surface tension is easily
one order of magnitude, which makes the agreement between the data for t > 0
somewhat remarkable, since the distortions are considerable and surface tension is
expected to play a role here as well through the Bond number (Jones & Wilson
1978). This scaling implies that the problem strongly depends on h/2Rd , the fluid
viscosities and the density difference. An enlargement of the data shows, however,
that there is sufficient experimental scatter in the data to make it hard to say if
there is a systematic variation as a function of viscosity contrast. The inset also
shows data for rising gas bubbles, which follow a similar curve, albeit the drainage
is faster in this dimensionless plot. This is in line with numerical investigations by
Chi & Leal (1989). They predict a restriction at the periphery when the viscosity
contrast is larger than 1 as opposed to the situation with a contrast smaller than
1, as had previously been observed in extensive experiments (Hartland 1967, 1969c).
Although the general shapes of the drops seem to be governed by the Laplace
pressure (see also the discussion below), the difference in viscosity contrast leads
to subtle but important differences in the film profiles during drainage. Note that
the system does not display any rebounding, i.e. no oscillation in the interface
positions is observed. This rebounding is observed in systems where inertia cannot
be neglected as in the work by Mohamed-Kassim & Longmire (2003) on impacting
droplets.

In figure 3(d) we plot the Stokes’ correction λ as a function of h/2Rd . The data are
obtained by averaging and then differentiating the curves for liquid drops of system
2 PPD25. Here, we took the minimal drop–surface separation curves corresponding
to the plusses in the inset of figure 3(a). Far away from the surface λ is a constant
with value 0.93 in agreement with (3.3), just below the Stokes value of 1 for a
hard freely sedimenting sphere. Considerable differences start occurring for h/2Rd =1
and below. For such times t > 0 the friction increases due to solvent backflow, i.e.
flow from the gap between the drop and the interface to the bulk, and drop and
surface deform. The increase in friction is in reasonable agreement (within 20 %)
with predictions by Happel & Brenner (1986) for a solid sphere approaching a
non-deformable free surface. This is somewhat remarkable since the problem tackled
in Happel & Brenner (1986) is a related but different one. It appears as if the
vicinity of the interface induces rigid-like behaviour. Although many approximate
and asymptotic solutions have been given in the literature (see for example Stone
1994 and references therein), it is difficult to use these on our data since it is unclear
when exactly the solutions may be applied. One possibility of gaining further insight
into the drainage problem is to compare these data with the approach of a solid hard
sphere towards exactly the same surface. This approach is followed in de Villeneuve,
Aarts & Lekkerkerker (2006), where it is observed that at small separations the
same correction to Stokes’ law is obtained, thus reducing the complexity of the
problem.

At very small h the velocities become very low. Here, the shape of the drop depends
on the interfacial tension and the density difference alone (Hartland 1969a; Princen
& Mason 1965). This exterior problem can be solved within a quasi-static treatment
and the shape (figure 4) is set by

γ

g�ρ
≡ L2

c =
l − z

2(2/a − 1/b)
. (3.5)

Here, 1/b and 1/a are the curvatures at and opposite to the apex. This relation can
be derived by considering the pressure balance, PA = PB and PC = PD , since points in
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Figure 4. Explanation of the notation used in the derivation of (3.5) and an example of a
liquid drop with Rd = 19 µm, a =28 µm, b = 24 µm and l − z = 20 µm (system 2 PPD25) from
which the capillary length can be obtained.

the same phase at the same height are in mechanical equilibrium. We find that

PB = PC − ρLlg +
4γ

a
− 2γ

b
, (3.6)

and

PA = PD − ρLzg − ρG(l − z)g, (3.7)

from which (3.5) readily follows. From these simple geometric quantities the capillary
length can be obtained. For example, from the shape of the droplet shown in figure 4
(system 2) the capillary length is 18 µm to be compared with 17.6 µm found by
analysing the interfacial profile close to a vertical hard wall (Aarts & Lekkerkerker
2004; Aarts 2005).

4. Film breakup

The role of thermally excited capillary waves (Mandelstam 1913; Buff et al. 1965)
in the second stage of droplet coalescence has long been a topic of speculation, first
started by Vrij (1966) and Scheludko (1967). The mechanism of the breakup of the film
between drop and bulk phase (step (ii)) is elusive in molecular fluids; here it is evident
that thermal capillary waves induce the spontaneous breakup, which occurs when
two opposite bulges at the two interfaces meet (not necessarily symmetrically), see
figure 5. This equilibrium surface roughness can be directly observed by microscopy
due to the ultralow interfacial tension, which gives rise to a large thermal length LT .
For clarity figure 5 also displays the typical images we obtain for the free interface, i.e.
without an approaching or coalescing droplet. The probability for two bulges meeting
depends on the interface roughness and on the interface correlation length and time.
The question is what time does it take for a height fluctuation h � h∗ to occur on a
certain surface area. Heights are with respect to the mean interface height.

From experiment it is possible to obtain the waiting times at a free interface
as a function of the observed length L, where we have followed ideas from von
Smoluchowski (1916) and Becker (1966). After locating the interface position (Aarts
et al. 2004b), which for example can be done by writing the total intensity along
one column as the sum of the intensity of the liquid phase times the height of the
liquid phase and the intensity of the gas phase times the height of the gas phase, or
by fitting a tangent hyperbolic function through the intensity along a single column,
which leads to very similar results, we construct a space–time plot in the following
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Figure 5. Coalescence of colloidal liquid droplets with the bulk liquid phase in system 3
PPD71. Top row, coalescence of a droplet of diameter 16.5 µm for statepoint I (far away from
the critical point); middle row, coalescence of a droplet of diameter 21.8 µm for statepoint
IV (close to the critical point). The three consecutive steps of the coalescence event can be
followed in time (as indicated, where t = 0 now corresponds to the instant of film breakup).
Clearly, the capillary waves at both interfaces induce the breakup of the confined gas layer.
The white circle marks the typical shape as predicted by Eggers et al. (1999). In the series in
the middle row, the arrow denotes the place of film breakup. In this case, a second connection
is made and the gas phase is being trapped in the liquid phase. The bottom row shows a
typical image (17.5 × 85 µm2; statepoint II) obtained for the free interface. The focal (viewing)
plane is perpendicular to the interface (see inset). The bright spots at the right indicate the
surface location.

manner: if h(x, t) > h∗ the value is 1 (white), otherwise it remains 0 (black), see
figure 6(a) for an example of statepoint II of system 3 PPD71 with h∗ =0.41 µm.
Next, we divide the system along x in a number of patches with length L. If at
any point in this patch a white pixel is found the complete patch turns white, which
means that at that time in that patch a fluctuation of at least the predefined height
has occurred. This leads to images as in figure 6(b), which is for the same statepoint as
in (a), but now with h∗ = 0.82 µm. In this case we took L =17.5 µm. We now identify
the waiting time θ(h∗) as the average time for which the patches are 0. We can thus
write

θ(h∗) =
M�t

k
, (4.1)

where M is the total number of white patches, �t the time between subsequent
patches and k the number of jumps from 0 to 1. In constructing the waiting times it
was found that these are very sensitive to noise. To cope with this we have averaged
over 1000 frames. Furthermore, along the x coordinate we span 140 µm, but only the
inner 105 µm is used (i.e. we left out two columns of 17.5 µm on each side), which



286 D. G. A. L. Aarts and H. N. W. Lekkerkerker

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

1

10

100

(a)

t

x

(c)

h∗ (µm)

θ (s)

t

x

(b)

Figure 6. (a) Space–time plot for statepoint II, system 3 PPD71, with h∗ = 0.41 µm. x spans
140 µm and t spans 112 s (of the maximum of 223 s). (b) Space–time plot for the same
statepoint as in (a), but for h∗ = 0.82 µm, divided into patches as explained in the text. Here,
x spans 105 µm and t spans 86 s. The patches have a length L of 17.5 µm. (c) Data points
for L = 17.5 µm and for three different statepoints: I (squares), II (circles) and III (triangles)
approaching the critical point. The filled squares are for a mirror event of the open squares
with negative excursions and plotted against |h∗|. The vertical line indicates h∗ = 1 µm.

is slightly less noisy, because of the boundary effects of the microscopy objective
used. In figure 6(c) we have plotted the times as a function of h∗ for three different
statepoints approaching the critical point, from left to right statepoints I, II, and
III. Clearly, the waiting times rise steeply as a function of h∗. Analysing negative
fluctuations, i.e. h < h∗ and h∗ < 0, leads – given the experimental uncertainty – to a
symmetric situation as shown by the filled symbols in figure 6(c), which is in line with
the observation that the height distributions are symmetrical (Gaussian) distributions
(Aarts et al. 2005c). Note that any inaccuracies in locating the interface position
will not be of importance in the construction of correlation functions, performed in
order to measure the interfacial tensions, but will show up in these single interface
position properties, possibly explaining the small discrepancy between the positive
and negative curves.

Following the ideas from von Smoluchowski (1916) and Becker (1966) it is possible
to connect the waiting times θ(s) with the height distribution P (h) through the relation

θ(s) ∼ τ

ω(h∗)
(4.2)
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where τ is a (statepoint-dependent) characteristic time and

ω(h∗) =

∫ ∞

h∗
P (h)dh. (4.3)

For h∗ >
√

〈h2〉 we can approximate the integral over the Gaussian height distribution
on the right-hand side of (4.3) by

ω(h∗) =
exp[−h∗2/2〈h2〉]
2
√

π h∗/
√

2〈h2〉
(4.4)

This expression together with (4.2) explains why the logarithm of the waiting time
increases, to a good approximation, quadratically with h∗, see figure 6(c). Moreover,
going from statepoint I to statepoint III we are approaching the critical point leading
to a decrease in γ and an increase in 〈h2〉 (statepoint I: 〈h2〉 =0.082 μm2, statepoint
II: 〈h2〉 =0.235 μm2, statepoint III: 〈h2〉 =0.646 μm2). Since the waiting depends on

the scaled variable x = h∗/
√

2〈h2〉, for a given value of h∗ the waiting time will be
smaller for larger values of 〈h2〉. This is clearly seen in figure 6(c).

Based on many observations (∼100) it is observed that in droplet coalescence the
connection is typically made at film thicknesses of ∼1 µm for samples reasonably close
to the critical point in system 3, i.e. when the separation reaches 1 µm coalescence
occurs within 1 s. As can be seen from the waiting times in figure 6(c) such a
fluctuation typically occurs in a few seconds. Since the droplet ‘sees’ a certain area,
the connection at such thicknesses does not seem unreasonable. For samples away
from the critical point the roughness is less pronounced and the film rupture occurs
at smaller separations. In such instances the size of the colloids and polymers may
come into play. In general we observe that below a certain droplet–surface separation,
drainage becomes so slow that a spontaneous connection mediated by the capillary
waves occurs faster than further drainage.

5. Neck growth

At the connection point a liquid bridge is formed and the radius of the neck
increases in time, see figure 7. The opening speed of the bridge results from a
competition between the capillary forces driving the coalescence, and the viscous
forces slowing it down. Equating these two forces (i.e. setting the capillary number
to unity in (3.1)) leads to a time dependence of the radius of the neck Rn as (Eggers
et al. 1999)

Rn(t) ∝ γ

ηi

t. (5.1)

This coalescence mechanism leads to very large speeds in ordinary molecular fluids:
for water the capillary velocity is about 70 m s−1. The full theory predicts only
logarithmic corrections to this. Eggers et al. (1999) find

Rn(t) = − γ

πηi

t ln

(

γ

ηiRd

t

)

, (5.2)

for a viscous drop in inviscid surroundings. The shape of this solution remains the
same when the viscosity of the surrounding phase is incorporated in the problem.

At longer times it is either the viscous or the inertial forces that slow down the
coalescence. This depends on the relative importance of these two forces and can be
found from the Reynolds number Re, as explained in § 1. If inertia is dominant, i.e.
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Figure 7. Neck growth in coalescence (system 2 PPD25) for a liquid drop with Rd = 15 µm
(top row, image size 59 ×59 µm2, LSCM) and a gas bubble of Rd = 16 µm (bottom row, image
size 69 × 69 µm2, transmission light microcsopy). The gas bubble breaks more symmetrically
in comparison with the liquid drop. The typical retracting shape in the top row can again be
observed (Eggers et al. 1999), see also figure 5.

Re > 1, the radius increases as (Eggers et al. 1999; Duchemin et al. 2003)

Rn(t) ∝
(

γR

ρ

)1/4 √
t, (5.3)

where R is the radius of the undeformed drop. But in colloid–polymer mixtures this
occurs at lengths Lη and times tη, on the order of metres and hours owing to the
ultra-low interfacial tension. It is therefore very unlikely that this square-root regime
will be reached. On the contrary, the first regime of viscous coalescence is very hard
to observe for molecular fluids, since the initial velocities are huge (70 m s−1) and only
by increasing the viscosity drastically and using ultrafast cameras is the initial regime
observed in molecular fluids as well (Yao et al. 2005; Aarts et al. 2005b; Thoroddsen
et al. 2005).

In figure 7 we show a coalescing liquid drop captured with LSCM (top row) and
a coalescing gas bubble captured with transmission light microscopy (bottom row)
for system 2 PPD25. Although the contrast obtained with LSCM is much better
than with light microscopy the coalescence is too fast to be followed with LSCM in
great detail. In principle, this could be solved by using system 3 PPD71, which has
even slower dynamics, but in this system first connections are often made at several
points at more or less the same time, which makes the determination of the opening
speed difficult. Furthermore, in the case of multiple connections an instability may
occur and a droplet of the film phase is trapped in the bulk phase, which can be
verified by following the drops as a function of time, as shown here for system 1 in
figure 8 (a–d), in line with ideas by Eggers et al. (1999). In addition, with LSCM it is
difficult to determine if the growth is in or out of the field of focus, see also § 2.

Finally, we observe that the coalescence can occur anywhere in the contacting drop
bulk area. For gas droplets the first connection is often made in the top of the gas
droplet, which leads to a symmetric breakup. For liquid drops the first connection
is made anywhere at this area, but more often at the periphery in line with the



Droplet coalescence 289

(a) (b)

(d) (e) ( f )

(c)

Figure 8. Coalescence of liquid droplets (system 1 SPC13). (a–d) two connections are made
and gas phase is left behind. The instabilities on the gas cylinder can be clearly observed (c, d).
The image size is 128 ×128 µm2. The total time span is 2.6 s. (e, f ) Asymmetry in growth after
a first connection at the periphery of the draining film. The image size is 128 × 128 µm2 and
the time difference is 0.26 s. The white arrows point at connections.

predictions of Jones & Wilson (1978) about the precise shape during drainage, who
show that at the periphery the drop-surface separation is minimal.

The difference between gas and liquid drops points to subtle differences in the
shape of the drop and surface during drainage (step (i)). As was observed in early
measurements reported by Hartland there is some constriction at the periphery when
the drop viscosity is larger than the surrounding viscosity, an effect that is absent for
a low-viscosity drop surrounded by a high-viscosity phase (Hartland 1967, 1969c). In
that case, the minimal distance between drop and interface is found in the centre.
These observations by Hartland were later confirmed by Chi & Leal (1989). If the
first connection is not on the central symmetry axis this may lead to an asymmetric
neck growth after a certain time, see figure 8(e, f ).

Figure 9 shows the radius of the neck Rn as a function of time. The upper data
correspond to coalescing gas bubbles, the lower data to coalescing liquid droplets.
Clearly, a linear dependence is observed with no sign of a logarithmic correction,
possibly since the logarithmic regime is expected to occur at very small times after
coalescence (Eggers et al. 1999). The slopes of the lines are 5.7 µm s−1 for the gas
bubbles and 2.1 µm s−1 for the liquid droplets. Applying the scaling relation (5.1) we
expect coalescing velocities of the order of 20 µm s−1 for the gas bubble and 5.2 µm s−1

for the liquid drop without taking the viscosity of the outer fluid into account. Thus, for
this statepoint we have 0.3γ /η for gas bubble and 0.4γ /η for liquid drop coalescence
in equation (5.1). Hence, the gas bubble is slowed down more by its relatively viscous
surroundings than the liquid droplet. Clearly, the observed velocities are set by the
capillary velocity. However, making a quantitative prediction for the viscosity ratios
such as the one in the current experiment remains a theoretical challenge.

Another point of discussion in the hydrodynamics of coalescence is where the
droplet material goes and what the flow pattern is; the surface free energy gained
is transformed into flow, which redistributes the material. By bleaching either the
coalescing drop or the bulk phase in which the drop is coalescing, it is possible to



290 D. G. A. L. Aarts and H. N. W. Lekkerkerker

0 0.5 1.0 1.5 2.0 2.5

5

10

15

t (s)

R
n
 (
µ

m
)

Figure 9. Radius of the neck Rn as a function of time for gas bubbles (open symbols; three
different events with Rd = 16, 17 and 18 µm) and liquid droplets (closed symbols; two different
events with Rd = 15 and 17 µm). The curves are linear fits to the data. The linear behaviour
can be observed up to several times ηiRd/γ , in contrast to experiments with molecular fluids
(Aarts et al. 2005b). System 2 PPD25.

0 s 13 s3 s 5 s

0 s 6 s1 s 3 s

Figure 10. By bleaching either the droplet (top row, 56 × 56 µm2) or the bulk liquid phase
(bottom row, 41 × 41 µm2) the coalescence event can be followed in great detail. After the
connection is made, the interfacial tension acts to minimize its surface and the neck grows as
a function of time. This causes the drop material to be pushed inside the bulk phase. It forms
a hemisphere and the droplet material then spreads by diffusion. System 2 PPD25.

follow the liquid material into the bulk phase, see figure 10. Clearly, the interfaces
first retract and in the next step the liquid material is pushed into the bulk phase. This
is similar to observations on viscous fluids made by Mohamed-Kassim & Longmire
(2004), where inertial terms were, however, important leading to large capillary waves
at the interfaces. In our case the coalescing drop forms a clear hemisphere independent
of where the first connection takes place. The liquid drop material then spreads due
to diffusion which is a relatively slow process. In fact, by carefully inspecting figure 10
we observe that in the top row the crucial wave fluctuation originates from the bulk
phase, while in the bottom row it originates from the droplet. Another coalescence
event also provides information. In figure 11 a liquid drop coalesces on top of a gas
bubble that is close to coalescence. Owing to the flow of the liquid material into
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Figure 11. The liquid drops push their material into the thin liquid film, which distorts the
interface at the gas bubble side as well. The image size is 84 × 84 µm2. System 2 PPD25.

the thin draining liquid film we see the film being distorted up to a level where the
interface becomes flat. These observations may contribute to a further understanding
of the hydrodynamics of coalescence.

6. Conclusion

We have shown the three consecutive stages in droplet coalescence in fluid–fluid
phase separated colloid–polymer mixtures, which are unique because of their ultralow
interfacial tension. The data can be obtained in a single system with light and laser
scanning confocal microscopy, and comparing results for three different colloid–
polymer mixtures shows that the behaviour is rather general. In stage (i) drainage
of the continuous film between droplet and bulk phase occurs. The minimal distance
between droplet and surface can be rescaled for liquid as well as gas drops by taking
the drop size, the gas–liquid density difference and the viscosities into account. Gas and
liquid drops show distinctly different behaviour; in case of the gas drops the rescaled
drainage is faster. Analysing different drops from different systems shows that the re-
sulting scaled curves are not very different. This is somewhat remarkable, given the
wide range of intermediate structures formed, ranging from a spherical drop and flat
surface to a strongly deformed drop and surface. From these data the friction factor
can be obtained. At large separations it is in good agreement with the modified
Stokes equation for a freely sedimenting/rising fluid drop, whereas it increases
considerably at small distances. There, the order of magnitude of the friction factor
is in reasonable agreement with theory by Happel & Brenner (1986) for a solid
sphere approaching a free non-deformable surface. At very small separations the
interactions between the two fluctuating interfaces are unknown; this may give rise
to a Helfrich repulsion or possibly a different kind of coupling. We have, however,
no indications that this is present.

The coalescence continues via the breakup of the film (ii), which is elusive in
molecular fluids. Here, it is observed that the breakup is a stochastic process dominated
by the thermal capillary waves. Since at these length scales and in these organic
mixtures van der Waals forces between droplet and corresponding bulk phase are
minimal (Israelachvili 1992) we do not need to invoke such forces to explain the
coalescence, more precisely the first connection. This is still an open debate in
molecular fluids (see for example Schulze, Stöckelhuber & Wenger 2001), although
experiments indicate that in molecular fluids the connection between relatively large
drops (O (cm)) is brought about solely by van der Waals forces (Chen et al. 2004). The
waiting time for a certain fluctuation to occur is crucial; it can be directly obtained
from experiment. From these measurements it is very likely that a fluctuation of
∼1 µm at a certain area occurs within a couple of seconds in the system with the
lowest interfacial tensions (system 3). We are currently incorporating these findings
in a theoretical model. In fact, going from system 1 to 3 we observe that stage (ii) is
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reached fastest in system 3 PPD71, where the interface roughness is more pronounced
and the thin intervening film does not have to drain until very small dimensions.
During the third stage (iii) we observe that the neck of the connection grows linearly
with time. This is a relatively fast process with respect to drainage over a distance of
for example the drop diameter. The order of magnitude of the coalescence velocity is
well understood from hydrodynamic scaling arguments and it is proportional to the
capillary velocity. We may conclude that the breakup itself is a stochastic process by
capillary waves and that before and after the breakup, hydrodynamics is important.
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the manuscript. This work was supported by the Stichting voor Fundamenteel
Onderzoek der Materie (Foundation for Fundamental Research on Matter), which is
part of the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands
Organization for Advancement of Research).

Appendix. Physical properties of the model colloid–polymer mixtures

These are provided in Table 1.

System 1 SPC13
Radius (nm) Density (gml−1) Mw (kgmol−1) Refractive index

Colloid silica 13 1.60 1.45
Polymer PDMS 14 0.976 91.7
Solvent cyclohexane 0.78 1.43

φc φp �ρ (g ml−1) ηL (mPa s) ηG (mPa s) γ (µN m−1)
0.21 1.59 0.233 97.1‡ 8.4‡ 0.58

System 2 PPD25
Radius (nm) Density (gml−1) Mw (kgmol−1) Refractive index

Colloid PMMA 25 1.17 1.5
Polymer PS 14 1.05 233
Solvent decalin 0.88 1.48

φc φp �ρ (g ml−1) ηL (mPa s) ηG (mPa s) γ (µN m−1)
0.076 0.50 0.053 31 8 0.16

System 3 PPD71
Radius (nm) Density (gml−1) Mw (kgmol−1) Refractive index

Colloid PMMA 71 1.17 1.5
Polymer PS 43 1.05 2000
Solvent decalin 0.88 1.48

φc φp �ρ (g ml−1) ηL (mPa s) ηG (mPa s) γ (µN m−1)

I 0.110 0.65 30 12.6 0.1
II 0.093 0.58 0.034

III 0.089 0.55 0.008
IV 0.086 0.53 0.004
V 0.150 0.70 0.096

‡de Hoog & Lekkerkerker (1999); measured at φc = 0.24, φp = 1.57.

Table 1. Summary of the physical properties of the model colloid–polymer mixtures. For
system 3 five different statepoints with different concentrations of polymer and colloid are
indicated. Viscosities of the liquid and gas phases are denoted by ηL and ηG, respectively.
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