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When a dense suspension is squeezed from a nozzle, droplet

detachment can occur similar to that of pure liquids. While in pure

liquids the process of droplet detachment is well characterized

through self-similar profiles and known scaling laws, we show here

the simple presence of particles causes suspensions to break up in a

new fashion. Using high-speed imaging, we find that detachment

of a suspension drop is described by a power law; specifically we

find the neck minimum radius, r
m
, scales like τ

2
3 near breakup at

time τ ¼ 0. We demonstrate data collapse in a variety of particle/

liquid combinations, packing fractions, solvent viscosities, and in-

itial conditions. We argue that this scaling is a consequence of par-

ticles deforming the neck surface, thereby creating a pressure that

is balanced by inertia, and show how it emerges from topological

constraints that relate particle configurations with macroscopic

Gaussian curvature. This new type of scaling, uniquely enforced

by geometry and regulated by the particles, displays memory of

its initial conditions, fails to be self-similar, and has implications

for the pressure given at generic suspension interfaces.

particle packing ∣ contact angle ∣ irrotational flow ∣ jamming

The rupture of a single volume filled with matter to produce
two unconnected volumes, a transition between two distinct

topologies, plays a fundamental role in a wide range of phenom-
ena from dripping liquids (1, 2), to breakup of nano-jets (3–5), to
metal rods pinching off (6), to black-string instabilities in general
relativity (7, 8). In biological systems, topological transitions are
equally fundamental because they govern processes like cell divi-
sion (9), endocytosis (10), and collapsing bacterial colonies (11).

Of these examples, liquid droplet formation is particularly
notable because it exhibits many of the exotic features of a topo-
logical transition, such as singularities and scaling, while being
accessible enough to warrant thorough experimental examination
(12–18). The result has been a powerful framework that charac-
terizes the final moments of pure liquid droplet detachments
using only the relative strengths of surface tension, viscous dissi-
pation, and inertial stress (1, 2). For these liquids, the initial con-
ditions become irrelevant as the system nears the singular point of
snap off. Instead, the material parameters alone assign both a
self-similar profile defining the shape of the drop and a power
law governing how this shape scales close to the final moments
of breaking.

The success of self-similarity and scaling approaches has
prompted attempts to extend pure liquid analysis to other in-
stances of free surface flows. In many cases, when the boundary
stresses originate from surface tension, the framework of pure
liquid detachment can be modified successfully and self-similar
structures govern the breakup (19–21). However, in some cases
the driving force comes from an alternative source, as in the case
of bubble pinch-off (22–24), and self-similarity breaks down: To
describe detachment, scaling laws must be used along with initial
conditions.

For suspensions, the boundary stresses can be notoriously
complex: The presence of particles within the liquid admits the
possibility of protrusions that establish a local stress scale inde-
pendent of the global mean curvature (25, 26). Although previous
work (27–30) has sought to connect pure liquids with suspensions,
these deformations leave it unclear as to whether the framework
of pure liquid breakup, specifically self-similarity and scaling, can

be used, or if suspension breakup represents a new class of topo-
logical transition outside the canon of pure liquids. We find
strong experimental evidence for the latter: The presence of par-
ticle protrusions cannot be ignored, or even treated as a small
perturbation, but instead necessitates an entirely new description
of the boundary stress and by extension a new type of topological
transition.

Results and Discussion

When a highly concentrated suspension is slowly extruded
through a nozzle, it will squeeze out as a plug and then begin
to strain near the nozzle from gravitational stress. Eventually this
stress becomes too large and the sample starts to yield. Upon fail-
ure, the suspension profile will begin to thin down to detach
(Fig. 1A). Throughout this necking process, a dense suspension
will maintain a vertically symmetric bridge profile with a steadily
decreasing minimum neck radius. Ultimately, the thinning leaves
just two particles connected by a small, vertical bridge of liquid.
At this point, the particle size acts as an intrinsic cutoff scale for
suspension thinning, because the rupture of the liquid thread be-
tween the two final particles proceeds within the solvent only.
Our study focuses on the regime prior to this final necking for
suspensions of packing fractions larger than 50%, where we show
how the breakup is driven by the interplay of particles, liquid, and
initial conditions.

Comparing the profile shape of a dense suspension (Fig. 1C) to
that of a pure liquid (Fig. 1D), the symmetry about the minimum
of the average neck profile in a suspension stands in stark contrast
to the asymmetric profile of the pure liquid in its final stages.
Early in detachment, high viscosity liquids can exhibit symmetric
profiles (1, 2), and consequently previous authors (29) have at-
tempted to connect the observed rate of thinning for the neck
with self-similar scaling predictions for high viscosity liquids.
However, while an interpretation of dense suspensions as simply
very viscous fluids is appealing from a rheological point of view
(31), quantitative description of detachment eliminates this per-
spective: As shown in Fig. 2, the neck minimum radius near
breakup, rm, decreases with time to breakup, τ, slower than
the linear scaling, rm ∼ τ, predicted near detachment for the high
viscosity limit (1, 2). Instead, rmðτÞ follows a power law rm ∼ τ

2

3

over almost two and a half decades of time (Fig. 2).
The presence of a 2∕3 scaling exponent can imply a variety of

different physics. For instance, a 2∕3 exponent results from the
force balance between inertia and surface tension, which governs
the pinch-off of inviscid liquids like water (18). Yet the simple fact
that dense suspensions can have shear viscosities on the order of
1 Pa s (32, 33) makes a connection to inviscid pinch-off counter-
intuitive. Further, barring an initial transient regime, the bridge
profile for inviscid pinch-off is markedly asymmetric (18). Other
systems displaying a 2∕3 exponent that are always symmetric in-
clude clustering granular jets (34, 35) and pinching power-law
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fluids (20, 21), though in these cases the thinning mechanism is
related to types of dissipation. To discern which, if any, of these
systems are similar to dense suspension pinch-off, we systemati-
cally changed material properties and initial conditions searching
for indicative variation in the thinning power law.

Varying these experimental conditions can delay the onset of
this scaling but not eliminate it: Early time behavior of rmðτÞ can
be material dependent (Fig. 3A) and/or vary with initial condi-
tions, such as changes in nozzle size (Fig. 3B). When the packing

fraction is reduced we find that the early stages of detachment
mimic the behavior of a pure liquid of matched effective viscosity
(Fig. 3C), in agreement with previous work (27, 29). Yet it should
be noted that this regime, being far from breakup, depends
strongly on initial conditions, and therefore even the pure liquid
cannot be described by simple scaling arguments. Instead, where
scaling arguments do describe the viscous liquid, it thins as τ1,
while the suspension thins according to τ

2

3. Independence of neck
thinning from packing fraction and compatibility with 2∕3 scaling
has been suggested by authors working in the more dilute limit
(29). Further the presence of this exponent, even at such low
packing fractions, implies that for much denser suspensions,
the packing fraction is an inessential parameter in describing scal-
ing. The data in Fig. 3 show that, close to breakup, the 2∕3 scaling
exponent is even more robust and applies deep into the regime of
dense suspensions, independent of particle composition or dia-
meter, and nozzle diameter.

Examining the dependence of the prefactor of the power law
shows further disagreement with any models relating the scaling
behavior to viscous stress. Fig. 3A shows that altering the solvent
viscosity by two orders of magnitude has little to no effect on the
scaling near breakup, while decreasing the surface tension by only
threefold reduces the prefactor of the power law noticeably. The
independence of both exponent and prefactor from the solvent
viscosity over the range investigated implies that, near breakup,
viscous dissipation is inconsequential.

On the other hand, the finite particle size clearly has to come
into play as the suspension neck thins down. In the images in Fig. 1
we see that the bounding surface is littered with deformations
from protruding particles, and Fig. 3D clearly shows a depen-
dence of the power-law prefactor on particle size. In fact, even
at much lower packing fractions, particle-induced deformations

Fig. 1. Contrasting droplet formation in dense suspensions

and pure liquids. (A) Images of a suspension droplet made

from 850 μm zirconium dioxide suspended in water

(ϕ ¼ 0.63 +0.01/-0.02) detaching from a 14.5-mm diameter

nozzle. The symmetric profile maintains itself until the neck

is only one particle thick, and the small liquid bridge adjoin-

ing particles ruptures. (B) Schematic of our experimental

configuration, which uses two cameras to achieve a spatial

resolution of 4.4 μm and a temporal resolution of 10−4s.

(C and D) Comparison of 145 μm zirconium dioxide sus-

pended in water (ϕ ¼ 0.59� 0.02) (C) and pure 50 cst sili-

cone oil (D), both exiting a 4.7-mm diameter nozzle.

Each panel is an order of magnitude closer to breakup at

time τ ¼ 0. Note the asymmetry and increased elongation

exhibited by the pure fluid. See Movies S1–S3.

Fig. 2. Evolution of the minimum neck radius, rm, as a function of time to

breakup, τ, for 22-μm diameter glass particles in water (ϕ ¼ 0.61� 0.02) ex-

iting a 4.7-mm diameter nozzle. In this type of plot, time increases from right

to left. A neck width corresponding to a single particle radius, the natural

cutoff of the breakup process discussed here, is reached at the left edge

of the plot. Different power laws are indicated for comparison: τ is the power

law for viscous breakup (1, 2), τ
1

2 is the power law for bubble pinch-off (23),

and τ
2

3 is the power law predicted by Eq. 2.
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dominate the local curvature in the neck region (28). Therefore,
the local pressure at the surface may not be related to the macro-
scopic mean curvature, as in the Laplace–Young equation, but
instead to particle-induced menisci.

Altogether these results suggest that available approaches
(1, 2, 21, 30) based on liquid models cannot adequately describe
suspension behavior near breakup ( SI Text). They also call into
question recent attempts to characterize thinning near breakup
by scaling expressions derived for very viscous liquids (29). In-
stead, a new, more tailored description must be constructed that
pays attention to the microscopic deformations from particles
and at the same time acknowledges the experimental evidence
that viscous stresses are negligible.

To develop such a description, we start with the force exerted
by the liquid on a particle protruding through the surface of the
suspension. This force scales as Fp ¼ αγa where γ is the surface
tension, a the particle diameter, and α a constant of order unity
related to the contact angle and the depth of immersion (26). The
pressure on the surface from n of these particles contained within
some characteristic area A is then P ¼ αγa∕Spp, where Spp is the
surface area per particle, A

n
. This expression relates the pressure

to the particle configuration on the surface. If the surface were
flat, Spp would be, on average, a constant. However, on a surface
that is curved inward like the neck region, the physics are richer:
Surfaces with Gaussian curvature can accommodate variations in
packing (36–39) and therefore the curvature mediates a feedback
between particle packing and pressure.

The packing structure can be related directly to the Gaussian
curvature K by considering a geodesic triangulation among
n particles. Using the Gauss–Bonnet and Euler–Poincaré the-
orems and ignoring edge effects, the integral over the area is

∫KdA ¼ π
3
ð6 − Z̄Þn, where Z̄ is the mean coordination number

in the triangulation (37, 40). We now note that near the neck
minimum radius, the curvature is roughly constant. This allows
us to make the approximation K∕ðπ

3
ð6 − Z̄ÞÞ ¼ n

A
. Identifying

the right hand side of this equation as Spp and combining it with
the pressure expression gives P ¼ αγaK∕ π

3
ð6 − Z̄Þ.

Simulations of locally disordered packings on curved 2D
spaces reveal that Z̄ is set by the number of spheres that can
be brought in contact around a given sphere on the surface

(SI Text). That is, Z̄ ≈ 2π∕ arccos
�

coshð2
ffiffiffiffiffiffi

−K
p

aÞ
1þcoshð2

ffiffiffiffiffiffi

−K
p

aÞ

�

(38, 39). Because

both principle radii are always larger than the particle size, the
pressure expression can be expanded around

ffiffiffiffiffiffiffiffi

−K
p

a ¼ 0. This
leads to

P ¼ −αγ
�

1

2
ffiffiffi

3
p

a
þ ð6 −

ffiffiffi

3
p

πÞ
12π

Kaþ Oð
ffiffiffiffiffiffiffiffi

−K
p

aÞ3
�

: [1]

The first term in Eq. 1 represents the constant capillary stress
that would result from hexagonal close packing on a flat surface.
This term, while a crucial component in describing shear thicken-
ing in dense suspensions (32, 33), is constant everywhere and
therefore does not contribute to the gradient needed to create
flow. The second term, however, varies along the surface and
can drive the flow causing breakup. This result, together with
conservation of momentum, can now be used to create a scaling
argument.

The close packing of the grains will lead to stresses that
are constant along the radial direction but vary along the axial
scale due to differences in the confining pressure. This has

Fig. 3. Representative data for different solvents (A), nozzle radii (B), particle diameters (D), and a direct comparison of a suspension and a pure liquid with the

same effective viscosity (C). Comparing 22-μm glass suspended in water with 1 cst silicone oil and 100 cst silicone oil, all exiting the 2.4-mm radius nozzle, data

for two systems with comparable surface tension are more similar than data for systems with the same viscosity (A). Varying the nozzle radius between 2.4 mm,

4.3 mm, and 7.2 mm for 250 μm ZrO2 suspended in water yields prefactors ∼25∕R
1

3

0
, which similarly agree with Eq. 2 (B). Data for 150 μm and 250 μm ZrO2

exiting a 2.4-mm radius nozzle shows that the ratio of the prefactors, 0.8, is within 5% of ð150∕250Þ1

3, the ratio predicted by Eq. 2 (D). Comparison of 33-

μm polyethylene particles at packing fraction of 25% in a density matched oil with a pure silicone oil of the same effective viscosity (50 cst) (C). Early in the

breakup there is strong similarity between the suspension and the pure liquid, but near detachment the two curves diverge. In particular, as shown in the

inset, the pure liquid thins linearly with time, first in the Stokes then in the Eggers regime (1, 2). As a result, the ratio of the linear slopes in the inset is 2.4,

as predicted. The suspension, on the other hand, thins nonlinearly, decaying like τ
2

3.
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two repercussions: First, it implies that the dominant flow should
be in the z direction. Second, it produces a flow that is largely
irrotational, removing viscous stress from the flow equations,
as observed in the experiments.

Balancing the remaining stress from the gradient of the pres-

sure and the inertial force density gives (SI Text) ρ
rm
τ2
∼

ΛγaKjrm
rm

,
where Kjrm is the Gaussian curvature at the neck minimum,
and for simplicity we absorb all the numerical prefactors and α
into a new constant Λ ∝ α. Volume conservation, jamming,
and symmetry arguments can be used to show that the axial prin-
cipal radius near the minimummust converge to the initial nozzle
radius, R0 (SI Text). Therefore, Kjrm ¼ −1∕ðrmR0Þ. This lets us
write our scaling expression as

rm ∼
�

Λγa

ρR0

�

1

3

τ
2

3: [2]

Dividing both sides of Eq. 2 by the initial nozzle radius, we
obtain the nondimensional variables characterizing the intrinsic
length and time scales for the breakup process,

R̄ ¼ rm∕R0; τ̄ ¼ τ∕
�

ρR4

0

Λγa

�

1

2

: [3]

As shown in Fig. 4, applying this scaling collapses data for a wide
range of different particle types and sizes, and agrees to within a
prefactor of Oð1Þ.

Fig. 4 demonstrates that the remaining variation can be related
to the particle-solvent chemistry. Glass, the material most easily
wet by water, has the largest prefactor, polystyrene, which is the
most hydrophobic material, has the smallest prefactor, and zirco-
nium dioxide, which is mildly hydrophobic, exhibits an intermedi-
ate value. This dependence is fully consistent with our model
because a more realistic representation of the force Fp ¼ αγa
on a particle from the liquid treats α not as a constant but includes
an explicit dependence on the solid-air contact angle, θ, and the
immersion angle, ϕ, measured from the top of the protruding
sphere to the contact point with the liquid (26). Explicitly,
α ¼ sinðϕÞ sinðθ þ ϕÞ. To show this quantitatively, we vertically
shift representative data from Fig. 4A onto a single curve (Fig. 4B)
and plot the values forΛ required for this collapse as a function of
measured solid-air contact angle θ (Fig. 4B, Inset). Because
Λ ∝ α, better wetting, and thus larger solid-air contact angle θ,
increases Λ and thus the prefactor in Eq. 2. Moreover, a fit to
ΛðθÞ allows us to extract estimates for the immersion angle
and the numerical constant, resulting in ϕ ∼ 50° and Λ ≈ 3α.

Inspection of Eqs. 2 and 3 allows us to establish a connection
with the breakup scaling in inviscid liquids (18), where early in
detachment the same 2∕3 exponent is observed and the nondi-

mensionalized variables are R̄ ¼ Rm∕R0, and τ̄ ¼ τ∕½ρR
3

0

γ
�12. Such

τ̄ is reproduced by Eq. 2 when R0∕a ¼ 1. This predicts a suspen-
sion to behave like an inviscid liquid in the limit that the particle
diameter approaches the scale of the nozzle. In other words, be-
havior similar to a molecular liquid is recovered not for vanishing
particle diameter but once the particles become clearly visible to
the naked eye!

Though at first glance paradoxical, the validity of this argu-
ment emerges when the role of surface tension is considered.
For a pure liquid, the characteristic length for surface tension
is related to the curvature induced by the droplet hanging from
the nozzle. For the suspension, surface tension creates pressure
from small particle menisci. If the mean curvature from each
meniscus becomes comparable to the mean curvature from
the sagging pendant drop, these two pressure scales converge.
Fig. 5A shows that this is indeed what happens: As the particle
size approaches the nozzle diameter, in this case 0.7 mm
diameter zirconium dioxide particles in a 4.7 mm nozzle, the
scaling of the neck minimum conforms to that of a pure inviscid
liquid.

The analogy can be pushed even further and tested on the axial
evolution of the neck. During the early stages of inviscid liquid
pinch-off the axial curvature scale stays constant (18). Therefore,
if a suspension of large particles in a density matched solvent truly
duplicates both the radial and axial behavior of a pure liquid dur-
ing the early stages of break off, images from the two situations
should match up when appropriately synchronized to the same
time τ̄. Fig. 5B demonstrates this explicitly by superimposing vi-
deo images from pure water and a suspension of 0.7 mm diameter
polyethylene particles in water. The boundaries from the pure
fluid provide an excellent envelope for the average profile of
the suspension.

The fact that force and length scales are intrinsically regular-
ized by the finite particle size leads to two very remarkable fea-
tures of this detachment. First, given that the forces involved
are not divergent implies that the pressure expression derived
here is generic and can be used to describe the stress at arbitrary
suspension interfaces. A Laplace–Young type equation, modified
to describe suspensions, could facilitate progress in constructing
continuum descriptions for suspensions engaging in a variety of
flows. For instance, a continuum description of boundary stresses
could aid modeling technologies like inkjet printing (15, 41, 42),
the fabrication of DNA microarrays (43), and omnidirectional

Fig. 4. (A) Dimensionless neck minimum radius as a function of dimensionless time. Data shown are 22 μmglass (blue diamonds) in water (solid) and oil (open)

exiting a 4.7-mm nozzle, zirconium dioxide in water (red) with 150- and 250-μm particles exiting a 4.7-mm nozzle (triangles and light circles, respectively), as

well as an 8.6-mm nozzle (diamonds and dark circles, respectively), and 200-μm polystyrene in water exiting a 4.7-mm nozzle (gold diamonds). The data

collapses to within a prefactor of Oð1Þ. The remaining banding of the data demonstrates a material dependence of the power-law prefactor resulting from

different particle-solvent combinations. (B) Forcing a collapse by to a single τ
2

3 power law (see Eq. 2) shows that the prefactor is directly related to the measured

contact angle. (Inset) Dependence of the parameter Λ in Eq. 2 on liquid-particle contact angle θ.
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printing (44), or more fundamental problems like the shear thick-
ening in suspensions (32, 33) or jamming transitions in colloids
mediated by capillary arrest (25).

Second, much like in bubble detachment (22–24), the system
retains a memory of its initial conditions, specifically the initial
nozzle radius, even though it undergoes a topological transition
at detachment. Both systems are able to retain this memory
through the help of an intrinsic length scale, which terminates
the detachment before forces independent of the initial condi-
tions diverge. In the case of bubbles this cutoff is provided by
the asymmetry length scale (22) whereas for suspensions conti-
nuum modeling breaks down at the particle size. Moreover,
the fact that the axial principal radius saturates implies that, also
like bubble pinch-off, this type of detachment cannot be cast into
a self-similar scaling class. Future work might examine the role of
memory in this detachment process by imbedding asymmetries in
the nozzle shape and analyzing the impact these have on the dro-
plet profile.

Our findings show that droplet formation by suspensions bears
similarities to pure liquid breakup but is not encapsulated by that
theory. Particle deformations of the surface are not a perturba-
tion that can be ignored through a limit case but rather provide a
crucial ingredient to the force balance. A meaningful connection
to pure liquids only exists far from the eventual singularity in the
pure liquid, when the forces are comparable in scale to those of
the suspension and the initial conditions are still relevant. Con-
sequently, the system retains a memory of its initial conditions

and fails to be self-similar even in the moments directly before
breakup.

Materials and Methods

Our experiments employed two high-speed cameras synchronized to obtain

a sufficiently large field of view together with high spatial resolution in the

neck region (Fig. 1B). A Phantom v7.9 (Vision Research) was fitted with a

Micro-Nikkor 55 mm 1∶2.8 lens and Nikkon PK-12 ring extender to achieve

a spatial resolution of 35 μm per pixel. A Phantom v7.3 was equipped with a

bellows and macrolens giving 4.4 μm per pixel. Backlighting was provided by

three Dedolight units (one for the camera imaging the large scale evolution,

two for the bellows camera). This lighting allowed for shutter speeds around

100 μs for the large scale camera and 50 μs for the bellows camera.

Nondensity matched suspensions were prepared from soda lime glass

(MoSci), zirconium dioxide (Glen Mills), and polystyrene particles (Grinding

Media Depot) suspended in water or in different viscosity silicone oils (Clear-

co). For density matching, 1 g∕mL polyethylene particles (Cospheric) were

used in 20 cst silicone oil (Sigma Aldrich). The suspension was extruded from

a variety nozzles at a constant rate by a syringe pump (Razel Scientific R99-E).

Flow rates in the range of 10−4 mL∕s kept the extrusion process quasi-static.

To prevent fluctuations owing to variations in ambient conditions, the

laboratory was controlled to stay at ð50� 5Þ% humidity and at ð72� 1Þ °F.
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SI Text

Constant Axial Radius of Curvature. In a pure liquid, the axial length
scale surrounding the minimum neck radius can become arbitra-
rily small, leading to universal structures which characterize the
detachment process (Fig. 1C). Conversely, dense suspensions un-
der detachment have a simpler structure: The axial curvature
around the minimum stays fixed at a value set by the initial nozzle
radius (Fig. S1). Here, we show both quantitative measurements
of the axial curvature and present a basic model explaining how
the axial curvature gets fixed as a consequence of constraints and
volume conservation.

Near the neck minimum, the radius for a detaching suspension
is approximately quadratic with the distance along the axis of
symmetry z from the bridge minimum radius location which de-
fines z ¼ 0. By fitting a parabola to this region, we can extract a
quantitative measure of the axial curvature scale at the neck mini-
mum zm ¼ ∂ 2r

∂z2 (Fig. S2 A–C). Very early on, when the suspension
has hardly been strained by gravity, this length scale is extremely
large, owing the to cylindrical shape of the extruded plug. Then,
when the strain from gravity becomes significant, the hanging
plug develops a small indent on the profile, leading to a small
axial length scale. This dent then widens as the drop detaches,
increasing zm. However, the widening gap quickly asymptotes
to a fixed curvature. Plotting zm with rm against τ shows that
the value of this asymptote is set by the initial nozzle radius
and, as shown in Fig. S2D, plotting zm

R0

instead reduces all the
asymptotes to zm

R0

≈ 1.
To explain this fixed value, we consider the volume, V , which

actually deforms during detachment. Measuring the initial length
of the catastrophically deforming region suggests V ≈ πR3

0
. Be-

cause this same region also makes up the subsequent bridge pro-

file, then we also have V ¼ ∫ lðτÞ
−lðτÞπrðzÞ2dz ¼ ∫ l

−lπðrm þ 1

2

z2

zm
Þ2dz

where the integrand comes from approximating the bridge profile
as parabolic and 2lðτÞ is the length of the deformed region. We
can estimate l by recognizing that any region outside the de-
formed zone must, by definition, have a radius equal to the initial

nozzle’s. Therefore, we can say R0 ¼ rm þ 1

2

l2

zm
or alternatively,

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2zmðR0 − rmÞ
p

. Evaluating the volume integral and setting

it equal to the initial volume, we find that πR3
0
∼ 2πðr2mlþ rm

3zm
l3þ

1

20z2m
l5Þ. Finally, by substituting in the expression for l, and solving

for zm we find

zm ∼
225R0

8ð1 − rm
R0

Þð3þ 4ðrmR0

Þ þ 8ðrmR0

Þ2Þ2 : [S1]

Taking the limit as rm∕R0 → 0 results in zm → R0. That is, as the
drop thins down, the axial curvature scale saturates around R0.

Plotting Eq. S1 with the data for rm and zm shows good qua-
litative agreement: There is an initial, cylindrical regime when the
minimum radius is large, followed by a small dent regime with a
local minimum in curvature and finally the drop enters the
asymptotic regime. This agreement is quite good in spite of
the simplicity of our model, asserting that the basic physical con-
cepts governing the axial curvature scale are well represented. In
particular, a model strictly using volume conservation and the
fixed radius at the two symmetric boundaries is sufficient to lead
to a fixed axial curvature scale approximately equal to R0.

Granular Packings on Curved Surfaces.While there is an abundance
of literature on locally ordered packings embedded in curved

spaces, very little has been said about the disordered equivalent.
Moreover, the model we developed to describe droplet detach-
ment in dense suspensions features the hypothesis that particle
arrangement on the surface of a 3D packing couples to Gaussian
curvature. Specifically, we argue that in regions of high curvature,
both the surface area per particle Spp and the mean coordination
number Z̄ are altered by the Gaussian curvature, K. To strength-
en this hypothesis, we perform simulations of granular sphere
packings, and by both triangulating the particles and computing
the surface area per particle, we find that ensemble averages
of these values do depend on the Gaussian curvature in a simple
way.

To keep a strong correspondence between the simulations and
the experiments, the surfaces we use for packing are extracted
directly from the experiment. We find that, to a good approxima-
tion, the dimpled bridge profile describing a detaching drop can
be enveloped by a hyperboloid of one sheet (Fig. S3 A and C). To
emulate the detaching drop, we randomly fill a large cylindrical
space with spheres until the excluded volume prohibits the addi-
tion of spheres. Next, we remove all the spheres with centers out-
side of a bounding hyperboloid, which is slightly bigger than the
bridge profile. To emulate the surface tension, we add elastic
walls on along the boundary of the hyperboloid and allow them
to press in the spheres along the edge. Because the packings are
supposed to relate to configurations that exist for fractions of a
second, we press the spheres in while reseting the velocities every
few cycles. Doing so prevents spheres from artificially escaping
into the bulk, and ensures that the surface area associated with
each particle is equilibrated only through collisions.

For analysis, we construct a contracted boundary by shrinking
the radius of the hyperboloid by some amount, δ. Specifically, δ is
chosen so that, when the hyperboloid used to construct the pack-
ing is contracted inward by δ, the angle connecting the top of a
protruding sphere to the surface matches the experimentally es-
timated value of 50°. Moreover, shifting the radius by a constant
also ensures that, like in the experiment, the axial radius of cur-
vature is left invariant during the contraction. One minor com-
plication that arrises from this boundary definition is that the
Gaussian curvature deviates from that of an exact hyperboloid.
Instead, if the hyperboloid used for the packing is defined by
r 2

rm
− z2

z2m
¼ 1, then the shape defined by r → r − δ will have a cur-

vature K ¼ z2m
ffiffiffiffiffiffiffiffiffiffi

z2þz2m
p

ðδðzmrmÞ−
ffiffiffiffiffiffiffiffiffiffi

z2þz2m

p
Þðz2ð1þðrmzmÞ

2Þþz2mÞ2
. In this form, the expres-

sion for a real hyperboloid’s Gaussian curvature is recovered
if δ → 0.

Fig. S3 A and B and D and E show side by side comparisons
of the experimental data and the simulation used to emulate
it. The images illustrate the strong qualitative similarities be-
tween the profiles, and the shapes and distributions of particle
deformations.

By constructing two types of simulations, one describing the
early stages of scaling and the other late in detachment, we
can explicitly examine the packing structure for the surface of in-
terest. Conformally mapping the points on the surface to a disk
and performing a Delaunay triangulation gives us the coordina-
tion numbers for each particle (Fig. S3 C and F). Moreover, by
binning positions along the axis of symmetry, we can define Spp

for a given height along the hyperboloid. Bins are chosen to be
one particle radius apart from each other. To avoid unphysical
boundary effects, we throw out the first three bins from the
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boundary. If our model is correct, then both of these parameters
should be impacted by the curvature.

After ensemble averaging 1,000 simulations we find strong evi-
dence that both the coordination number and surface area per
particle depend on the Gaussian curvature (Figs. S4 and S5), par-
ticularly for profiles associated with scaling. In this regime, K is
an excellent replacement for Z̄

Spp
across the surface (Fig. S4).

Further the surface area per particle and coordination number
both clearly relate to the curvature of the shape (with Z̄ ≈ 6.3).
Conversely, just before the onset of scaling when the curvature is
smaller, these features are qualitatively similar, albeit less pro-
nounced. At this point in time, Z̄ is lower at 6.1 and features
in Spp are less obvious. However, we still find that K is still an
excellent replacement for π

3
ð6 − Z̄Þ∕Spp (Fig. S5).

These simulations also allow us to calculate exactly how Z̄ de-
pends on K. The simplest guess is that the spheres simply pack as
tightly as possible on the surface. This would require that the co-
ordination number for each particle is given by the number of
spheres that can be packed in contact around a central sphere,

or 2π∕ arccos cosh 2
ffiffiffiffiffiffi

−K
p

a
1þcosh 2

ffiffiffiffiffiffi

−K
p

a
. In the limit that

ffiffiffiffiffiffiffiffi

−K
p

a is small, this

expression can be expanded out to second order in
ffiffiffiffiffiffiffiffi

−K
p

a as

Z̄ ≈ 6 − 6
ffiffi

3
p

π
Ka2. Plotting values for Ka2 from the simulations

against Z̄ shows good agreement with the linear behavior, but
the slope of the line is a factor of two too large (Fig. S6A).
We interpret this result by noting the 3D nature of the packing.
When the spheres are pressed in by the elastic walls, particles in
the bulk can mediate an interaction between particles actually on
the surface. This can create an the effective radius that can be
anywhere between one to two times the actual particle radius
(Fig. S6B). Our measured increase would suggest the physically

acceptable effective radius of ∼
ffiffiffi

2
p

a.
Altogether these results provide strong support for the equa-

tions used in deriving our scaling relations: they confirm that both
early and late in the scaling regime, K ¼ π

3
ð6 − Z̄Þ∕Spp and show

that Z̄ is set simply by the densest packing of circles, with an ef-
fective radius created by particles interacting through the bulk.
Moreover, the strength of this agreement suggests that these re-
sults may be generic statements about granular sphere packings,
independent of the assembly process; however, further investiga-
tion is needed to be certain.

Derivation of the Scaling Relation. Starting with the simple pressure
expression derived in the text and the Navier–Stokes equations,
we derive a scaling relation for rmðτÞ.

We start by identifying the characteristic axial and radial length
scales associated with the flow. Because the pressure is all loca-
lized around the neck minimum radius, the natural choice for the
radial length scale is rm. To find the characteristic z length scale,
we note that the axial radius of curvature is a fixed value, R0.
Because the axial radius of curvature near the neck minimum
is defined by 1∕R0 ¼ ∂ 2R

∂z2 , we can identify the characteristic length
for z as

ffiffiffiffiffiffiffiffiffiffiffi

R0rm
p

.
To simplify the full Navier–Stokes equations we make some

assumptions about the flow from both symmetry and the granular
nature of the suspension. First, because the shape of the detach-
ing drop is cylindrically symmetric, we assume that all gradients in
the ϕ direction as well as vϕ vanish. This implies that any vorticity
to the flow (∇ × ~v) is given by one component:∇ × ~v ¼
ϕ̂ð∂vr∂z −

∂vz
∂r Þ. In order for this quantity to be large, there must

be a large rotation associated with velocities as viewed in the
r, z plane. However, if this were to happen, flow would eventually
need to push into either the bounding fluid or the jammed bulk
outside of the neck minimum area. For either case to occur, there
would need to be a pressure from the bulk larger than the
confining stress. Because any pressure in the bulk is created by
force chain propagation from the boundary, this cannot not hap-
pen. Additionally, the presence of a large rotational flow would

require some sort of a pressure gradient along the r direction.
Again, the presence of force chains will suppress any radial pres-
sure gradients. Altogether, these observations suggest that to a
good approximation ∂vr

∂z −
∂vz
∂r ∼ 0. In other words, we assume

the flow is irrotational.
Using these results, we can greatly simplify the Navier–Stokes

equations:

ρ

�

d ~u

dt
þ ~u·∇ ~u

�

¼ −∇P þ μ∇2 ~u [S2]

∇· ~u ¼ 0. [S3]

If we rewrite the vector Laplacian and exploit the volume con-
servation Eq. 3, we have

ρ

�

d ~u

dt
þ ~u·∇ ~u

�

¼ −∇P − μ∇ × ð∇ × ~uÞ: [S4]

The last term must vanish if the flow is irrotational, reducing to
inviscid flow. We note, again, that the experimental results are
independent of solvent viscosity during the detachment, thereby
supporting the assumption of irrotational flow. The Navier–
Stokes equations now can be written as the Euler equations
for this flow:

ρ

�

d ~u

dt
þ ~u·∇ ~u

�

¼ −∇P: [S5]

Inserting the characteristic length and time scales gives the scal-
ing relation for uz.

ρ
uz

τ
∼

P
ffiffiffiffiffiffiffiffiffiffiffi

R0rm
p [S6]

Using the irrotational flow assumption, ∂vr
∂z ¼

∂vz
∂r , we can argue

that vr
ffiffiffiffiffiffiffiffi

rmR0

p ∼ vz
rm
. We can now rewrite the scaling relation in terms

of the measured variable, rm.

ρ
ur

τ
∼

P

rm
[S7]

ρ
rm
τ2

∼
P

rm
[S8]

Inserting the pressure expression derived in the main text gives
the scaling relation which collapses our data:

rm ∼
�

Λγa

ρR0

�

1

3

τ
2

3: [S9]

Rheological Characterization. In this section we review some basic
features of dense suspension rheology and present data collected
from both parallel plate and Couette cell geometry rheometers.
We find, in agreement with the literature, that the zero shear limit
viscosity of dense suspensions diverges near jamming. More gen-
erally, we find that for dilute suspensions, a single viscosity value
can adequately describe the behavior of the bulk, whereas shear
stress typically depends on shear rate nonlinearly when the sus-
pension is dense. Finally we interpret these results in the context
of present fluid pinch of literature. We conclude that the detach-
ment models presently available in the literature cannot charac-
terize dense suspension snap-off.
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Fig. S7 plots viscosity against shear rate for suspensions made
from 33 um polyethylene in a 20 cst solvent oil of the same density
(1.01 g∕mL). The data were acquired using a Couette cell geo-
metry. Each curve is at a different packing fraction and a mea-
surement consists of a sweep from low shear rate to high and then
back to low to ensure the system was in a steady state. We note
that the basic effect of the particles is to increase the magnitude
of the solvent viscosity. Indeed, plotting the magnitudes of visc-
osity against the packing fraction shows that the data can be well
fit by a Krieger–Dougherty model (S1), μ ¼ μ0ð1 − ϕ∕ϕjÞ−n
where μ0 is the solvent viscosity, ϕj is the jamming packing frac-
tion and n is some Oð1Þ exponent. Our data is well fit with the
correct solvent viscosity (fit viscosity was 19.7 cst), ϕj ¼ 0.57
and n ¼ 1.62.

Up to ϕ ¼ 0.5, the viscosity of the suspension is essentially
independent of shear rate. That said, one might attempt to char-
acterize the breakup, as is standard in pinch-off literature, using
the Ohnesorge number, Oh ¼ μ∕

ffiffiffiffiffiffiffi

lγρ
p

where l is the character-
istic length scale of the problem. This dimensionless number
compares the relative importance of viscous dissipation to inertia
and surface tension.

We think that this approach is of little value for suspensions.
First consider a ϕ ¼ 0.5, μeff ¼ 1;000 cSt suspension detaching
from a 2.35 mm radius nozzle (Fig. S8). Suppose the relevant
length scale is rm. Because rm ≤ R0 we have Oh ≥ 2. This char-
acterization states the viscosity is always at least as relevant as
surface tension and inertia, yet the observed 2∕3 scaling demon-
strates the opposite. In fact, because a pure oil with a viscosity of
50 cSt will exhibit linear scaling near detachment (Fig. 3C), the
Oh estimate would predict that, given all other parameters are
fixed, any suspension with a packing fraction above ϕ ¼ 0.25
should display linear scaling near breakup. This is again incom-
patible with the data: The suspensions withϕ ¼ 0.25 (see Fig. 3C)
and denser (S2) all show a regime compatible with 2∕3 scaling.
Altogether these results suggest that the standard Ohnesorge
number does not appropriately characterize the breakup of sus-
pensions, even in the dilute limit.

Now consider packings closer to jamming. For dense suspen-
sions, the viscosity fails to be a single material parameter and in-
stead begins to depend sensitively on packing fraction and shear
rate (S3). While the scale of the viscosity can jump over an order
of magnitude depending on a single percent of packing fraction,
the typical lower bound estimate for the viscosity is still tremen-
dously large. For instance at a shear rate of 100∕s, a suspension at
ϕ ¼ 0.55 made of 100 μm glass in water has a viscosity, surface
tension and density all within about 40% of glycerol (S4). To us,
this makes it all the more surprising that the snap-off of this sus-
pension is characterized by 2∕3 scaling.

One could argue that it would be more relevant to consider a
local estimate for Oh and use the particle size as the relevant
length rather than rm. Again the data suggests against this. Con-
sider the two oil based suspensions in Fig. 3A. Using the particle
size (22 μm), solvent viscosity (100 cP∕1 cP), surface tension

(20 mN∕m) and the density (1.8 g∕cm3), the Ohnesorge number
is 3.5 for the 100 cP solvent and 0.035 for the 1 cP solvent. The
fact that the curves fall on top of each other for the regime di-
rectly before snap-off suggest this local measure for the Oh does
not capture the relevant physics.

Moreover, we could push all of these arguments further by not-
ing that the flowing suspension should not have a viscosity lower
than that of the solvent. Thus, if the solvent alone were outside
the inviscid regime, then the suspension should not behave invis-
cidly. The suspension of glass particles in 100 cP oil shows this
reasoning is again incorrect: while a 100 cP oil will detach as a
viscous liquid, a suspension’s behavior is much more similar to
the inviscid case.

Finally we consider the possibility that the detachment is char-
acterized by models developed for generic power-law fluids. In
these models (S5, S6) the neck minimum radius thins with the
same exponent, which relates the shear rate to the shear stress.
For suspensions, this approach is troubled on a few counts. First,
the exact nature of the shear exponent is highly dependent on
packing fraction (S3). As the drop detaches, it forms more surface
area. As particles emerge from the bulk and protrude through
this area, the internal packing fraction must drop. That said,
the idea of associating a single 2∕3 exponent when the shear
rheology exponent can change dramatically seems questionable.
Second, the same 2∕3 exponent holds into the dilute limit, where
the suspensions are effectively Newtonian, from a rheological
point of view. If the 2∕3 exponent had emerged from power-
law fluid behavior, then it should change when the suspension
becomes sufficiently dilute. Last, the bridge profile is predicted
to be self-similar for power-law fluid models, whereas the profile
for suspension pinch off is not.

To our knowledge, these approaches summarize the extent of
quantitatively predictive models rooted in rheological measure-
ments, which are potential candidates for describing suspension
pinch off. Evidently each of them is lacking in some respect. Es-
timates comparing the viscous to inertial and surface tension
scales developed for pure liquids do not seem to relate to the
detaching suspension, regardless of whether they are used on
the global or local scale. Moreover, models developed for power
laws are questionable as well because the shear rate to shear
stress exponent in dense suspensions is highly sensitive to packing
fraction and the same exponent persists when shear stress be-
comes proportional to shear rate.

We speculate that the inadequacy of these models is related to
the fact that the boundary conditions that confine a suspension
are essential in dictating its shear response. The free surface
boundary associated with pinch off is fundamentally different
from the boundary conditions of any standard shear rheometer:
in snap-off the geometry and internal stress control each other.
This difference in boundary condition may also lead to a differ-
ence in shear stress response, which causes these approaches to
fall short.
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Fig. S1. Images for dense suspensions of 250 μm zirconium dioxide particles suspend in water exiting a 4.7 (Left), 8.6 (Center), and 14.5 (Right) mm diameter

nozzles. Circles representing the axial radii of curvature have been drawn on top, making it clear that the radius of each circle is comparable to the radius of the

nozzle. Moreover, if the images are scaled by their respective initial radii, then superimposing the edges from all three leads to an overlap of the roughly

parabolic structure (see Inset).
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Fig. S2. (A–C) rm (light symbols) and zm (dark symbols) for dense suspensions of 250 μm zirconium dioxide particles suspend in water exiting 4.7 mm (A),

8.6 mm (B), and 14.5 mm (C) diameter nozzles. Initially, the drop has an infinitely large axial radius of curvature zm, due to the undeformed, cylindrical shape.

This radius decreases as the drop begins to detach, hits a minimum, and then increases asymptotically to a value set by the initial nozzle radius. (D) Plotting the

dimensionless principle radii, rm∕R0 and zm∕R0, collapses the data to the same order of magnitude and shows good qualitative agreement with the model

represented by Eq. S1.
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Fig. S3. (A and D) Photographs taken from our experiment showing the bridge profile at the onset of scaling (A) and deep in the scaling regime (D). Drawn in

white are the hyperboloids used as walls in generating our simulated packings. (B and E) Data from the simulations in both regimes rendered to be backlit.

Comparing the simulated results in the center to the experimental data on the left shows that the bridge profile is well represented as is the general density

and size of deformations. The dimensions of the hyperboloid have been drawn in for reference with lengths nondimensionalized by the particle diameter

(145 μm). (C and F) The same simulation data with coloring based on coordination number.

Fig. S4. Ensemble average of ð6 − Z̄Þ∕Spp (A), Z̄ (B), and Spp (C) associated with a bridge profile deep into the scaling regime. The z axis corresponds to the axis

of symmetry and rðz ¼ 0Þ ¼ rm. Deep in the scaling regime Z̄, Spp, and
6−Z̄
Spp

are all clearly related to the curvature. There is excellent agreement between 6−Z̄
Spp

and

3

π
K, as required by our model (A). Further Z̄ is set by the curvature (B): curved regions feature more nearest neighbors while regions with no curvature have six

nearest neighbors. Finally, we note that Spp starts to increase in the regions with curvature but then quickly decreases at the neck minimum (C). We attribute

this minimum to finite size effects since for this simulation the neck is merely two diameters across.

Miskin and Jaeger www.pnas.org/cgi/doi/10.1073/pnas.1111060109 5 of 9

http://www.pnas.org/cgi/doi/10.1073/pnas.1111060109


Fig. S5. Ensemble average of ð6 − Z̄Þ∕Spp (A), Z̄ (B) and Spp (C) for a bridge profile at the onset of scaling. Values measured for ð6 − Z̄Þ∕Spp still show good

agreement with 3

π
K (black line) (A) and there remain more nearest neighbors on average in the regions of high curvature (B). The surface area per particle

appears to slightly increase around the neckminimum, as anticipated by our model (C). The relatively shallow slope presumably relates to the fact that this data

is for the onset of scaling, where curvature effects are just beginning to be relevant.

Fig. S6. (A) Ensemble average of the coordination number as a function of curvature and sphere radius. Note the largest four points correspond to values

from the simulation data in Figs. S4 and S5 whereas the lowest two were obtained from additional simulations performed on the highly curved hyperboloid

(Fig. S3 E–F) with smaller spheres (asmall ¼ 0.2alarge). The linear trend displayed by the data is anticipated for the densest packings of circles on a curved space;

however, the slope of the line is larger than anticipated. This is due to the 3D nature of the packing, which can mediate particle interactions creating an

effective radius. (B) An illustration of how particles interacting through the bulk can be given an increased effective radius.
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Fig. S7. (A) Viscosity vs. shear rate for suspensions with packing fractions from 0.1 to 0.5. The suspensions are made from 33 μm polyethylene in a density

matched 20 cSt oil. In this regime, the viscosity is sufficiently constant over a range of shear rates and monotonically increases with packing fraction.

(B) Effective viscosity of suspension against the packing fraction. The viscosities are well fit by a Krieger–Dougherty model with a jamming packing fraction

of 0.57 and an exponent of 1.62.
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Fig. S8. rmin vs. τ for a ϕ ¼ 0.5 suspension of 33 μmpolyethylene in 20 cSt silicone oil. The effective viscosity of the suspension should be near 1,000 cSt, yet the

breakup is much more compatible with 2∕3 scaling than with linear scaling. Note that for the ϕ ¼ 0.5 suspension, it was too difficult to predict where the final

pinch off will take place, and so using the two camera setup was not possible. This limited our resolution to that of a single camera. This decreased our temporal

resolution, and to compensate we averaged over points.

Movie S1. Front light movie of a suspension droplet made from 850 μm zirconium dioxide suspended in water detaching from a 14.5 mm diameter nozzle.

The symmetric profile maintains itself until the neck is only one particle thick, and the small liquid bridge adjoining particles ruptures. The remaining tendril

then forms a small satellite drop.

Movie S1 (MOV)
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Movie S2. Back light movie combining data from our two camera setup of pure 50 cst silicone oil detaching from a 4.7 mm diameter nozzle. The profile of

the drop starts symmetric, but as thinning continues turns over into an asymmetric self-similar scaling profile. Note that the neck minimum radius data

corresponding to this movie may be found in Fig. 3C.

Movie S2 (MOV)
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Movie S3. Back light movie combining data from our two camera setup of 145 μm zirconium dioxide particles suspended in water detaching from a 4.7 mm

diameter nozzle. Unlike the viscous pinch off, the profile of the detaching drop remains symmetric right up to the final moment of rupture.

Movie S3 (MOV)

Movie S4. Movie juxtaposing 0.71 mm polyethylene (ρ ¼ 1.0 g∕mL) in water (Top) and pure water (Bottom). Edges detected from the pure water images have

been superimposed on the suspension images. With lengths rescaled by the initial nozzle diameter and videos appropriately synchronized, the fluid profile

envelopes the suspension data because the scales describing particle driven pressure and Laplace–Young pressure are comparable.

Movie S4 (MOV)
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