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Using a lattice Boltzmann multiphase model, three-dimensional numerical simulations have been

performed to understand droplet formation in microfluidic cross-junctions at low capillary

numbers. Flow regimes, consequence of interaction between two immiscible fluids, are found to be

dependent on the capillary number and flow rates of the continuous and dispersed phases. A regime

map is created to describe the transition from droplets formation at a cross-junction (DCJ),

downstream of cross-junction to stable parallel flows. The influence of flow rate ratio, capillary

number, and channel geometry is then systematically studied in the squeezing-pressure-dominated

DCJ regime. The plug length is found to exhibit a linear dependence on the flow rate ratio and

obey power-law behavior on the capillary number. The channel geometry plays an important role

in droplet breakup process. A scaling model is proposed to predict the plug length in the DCJ

regime with the fitting constants depending on the geometrical parameters. VC 2011 American

Institute of Physics. [doi:10.1063/1.3615643]

I. INTRODUCTION

Rapid development of microfabrication technologies has

facilitated a broad range of microfluidic applications espe-

cially in life sciences. Microdroplet technology has recently

emerged as a promising flexible platform for microfluidic

functions.1–4 The miniaturization of entire process enables

the rapid analysis of very small quantities of samples in a

portable, automated, and inexpensive format.3 Recently,

microdroplet technology has been used as microreactors for

chemical analysis and protein crystallization,5,6 as molds for

curing polymeric microspheres.7,8 Furthermore, program-

mable fluidic assays for sampling glucose concentration of

human physiological fluids9 and DNA analysis10 have been

individually demonstrated using microdroplet system. As

samples=reagents are confined in droplets so that sample dilu-

tion caused by Taylor dispersion11 can be avoided, and mix-

ing performance can be improved.12 In addition, it can avoid

sample=surface interaction and thus eliminate surface adsorp-

tion and cross sample contamination.

Many microfluidic devices have been designed to generate

uniform droplets, including geometry-dominated devices,13,14

flow-focusing devices,15–19 T-junctions,20–26 and co-flowing

devices.27,28 However, the underlying mechanisms of droplet

formation in microchannels have not been well understood,

which hinders device optimization and operation. The two-

phase flow characteristics in microchannels are determined by

flow conditions, channel geometry, and fluids properties. Guil-

lot and Colin22 experimentally observed that, for a given flow

rate of the continuous phase, the flow pattern changes from

droplets at T-junction to droplets in channel if the flow rate of

the dispersed phase increases. This indicates that for a given

capillary number Ca ¼ gcuc=r (gc, uc are the viscosity and

velocity of the continuous phase; r is the interfacial tension

coefficient), when the flow rate ratio Q¼Qd=Qc (Qd and Qc

are volume flow rate of the dispersed and continuous phases,

respectively) increases, a flow regime change occurs. With a

further increase in Q, the flow regime changes to parallel flow.

Tan et al.18 also found that the two-phase flow patterns depend

on the flow rates of the continuous phase and the dispersed

phase for the plug formation in a microfluidic cross-junction,

which is similar to the observation of Guillot and Colin.22

The channel geometry has been found to play an impor-

tant role in the droplet formation process. For example,

Garstecki et al.23 identified a squeezing mechanism due to

confined microchannel geometry in droplet formation pro-

cess, which does not exist in an unbounded flow condition.

By studying the underlying mechanisms that control the drop-

let breakup, some scaling laws have been established to pre-

dict the size of droplets produced in microfluidic devices.29,30

However, the currently available experimental data are still

sporadic. Various materials are used to fabricate the micro-

channels with diverse dimensions, and the experiments have

been performed at different flow conditions with different flu-

ids. Consequently, the information is fragmented, which leads

to inconclusive and even incompatible findings. Based on sta-

tistical analysis of the broad range of available literature data,

Steegmans et al.30 have shown that none of the scaling mod-

els, which are developed to predict droplet formation in a

microfluidic T-junction, is general enough to describe the

original data and data from other literature sources. Also,

they found that the available literature data could be better

represented by a two-step model consisting of a growth phase

and a detachment phase.

Meanwhile, experiments at such small scales are still

difficult. For example, it is challenging to accurately measure

local flow fields, droplet deformation, breakup, and coales-

cence. Numerical study can be complementary to experimen-

tal investigation. For example, Menech et al.25 numerically

identified three distinct mechanisms, i.e., squeezing, drip-

ping, and jetting in droplet formation in a T-junction. How-

ever, much effort is still required to numerically simulate
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droplet generation, transportation, and interaction with sur-

face. While the front tracking methods are not suitable for

droplet breakup and coalescence, the interface capturing

methods such as volume-of-fluid and level set methods will

experience numerical instability when interfacial tension

becomes a dominant factor in microdroplet behavior.31

Recently developed lattice Boltzmann (LB) method has

shown great potential for modeling interfacial interactions

while incorporating fluid flow as a system feature.32 It is a

pseudo-molecular method tracking evolution of the distribu-

tion function of an assembly of molecules and built upon mi-

croscopic models and mesoscopic kinetic equations.33 Its

mesoscopic nature can provide many advantages of molecu-

lar dynamics, making the LB method especially useful for

simulation of droplet dynamics.23,34–37

In this work, a multiphase lattice Boltzmann model is

employed to investigate droplet formation in microfluidic

cross-junctions. We will first present our simulation results

that reveal the influence of capillary number and flow rate ra-

tio on the flow regime transition from droplet generation at

cross-junction (DCJ), downstream of the cross-junction (DC),

to parallel flows (PF). In the DCJ regime, the influences of

capillary number, flow rate ratio, and channel geometry will

be studied in details. We will compare our simulation with

the existing models and experimental data. To our best

knowledge, this is for the first time that numerical simulations

are performed to identify the flow regimes and investigate the

effect of channel geometry on the droplet formation in micro-

fluidic cross-junctions. This study can provide useful infor-

mation for understanding microdroplet dynamics and optimal

design of multiphase microfluidic devices.

II. NUMERICAL METHOD

In the lattice Boltzmann method, a fluid is modeled as

pseudo particles, whose distribution function fi is governed

by the lattice Boltzmann equation, e.g., using the Bhatnagar-

Gross-Krook (BGK) collision operator32

fiðxþ eidt; tþ dtÞ ¼ fiðx; tÞ �
1

s
½fiðx; tÞ � f

eq
i ðx; tÞ�; (1)

where fi(x, t) is the particle distribution function in the ith ve-

locity direction at the position x and the time t, ei is the lattice

velocity in the ith direction, s is the dimensionless relaxation

time, and f
eq
i is the equilibrium distribution function as a

function of local density q and velocity u

f
eq
i ¼ wiq 1þ ei � u

c2s
þ ðei � uÞ2

2c4s
� u � u

2c2s

" #

; (2)

where cs denotes the speed of sound which is given by c=
ffiffiffi

3
p

with c¼ dx=dt being the lattice speed and dx being the lattice

length.

For the three-dimensional 19-velocity (D3Q19) model, the

lattice velocity ei and the weight coefficients wi are given as

ei ¼
ð0; 0; 0Þ; i ¼ 0;

ð61; 0; 0Þc; ð0;61; 0Þc; ð0; 0;61Þc; i ¼ 1; 2;…; 6;

ð61;6; 0Þc; ð61; 0;61Þc; ð0;61;61Þc; i ¼ 7; 8;…; 18;

8

>

<

>

:

(3)

wi ¼
1=3; i ¼ 0;
1=18; i ¼ 1; 2;…; 6;
1=36; i ¼ 7; 8;…; 18:

8

<

:

(4)

The macroscopic properties including the local density

and momentum are related to the particle distribution func-

tion fi by

q ¼
X

i

fi ¼
X

i

f
eq
i ; qu ¼

X

i

fiei ¼
X

i

f
eq
i ei: (5)

Using the Chapman-Enskog expansion for the D3Q19

model, Eq. (1) can lead to the Navier-Stokes equations in the

long-wavelength and low-frequency limit38

@tqþr � ðquÞ ¼ 0; (6)

@tðquÞ þ r � ðquuÞ ¼ �rpþr � ðq�ruÞ; (7)

where the pressure and the kinematic viscosity are given as

p ¼ qc2s and � ¼ s� 1=2ð Þc2sdt.
Currently, the most applied LB multiphase methods are

the color-fluid model,39 the pseudo-potential model,40 and the

free-energy model.41,42 In the color-fluid model, the procedure

of redistribution of the colored density at each node to separate

different phases requires time-consuming calculation of local

maxima, and the perturbation step with the redistribution of

colored distribution functions causes an anisotropic interfacial

tension that induces high spurious velocities near interface.38

The pseudo-potential model introduces the nearest-neighboring

interaction between fluid particles to describe the intermolecu-

lar potential, and the phase separation occurs with a properly

chosen potential function. Although significant advances have

recently been made,43–45 further improvements are necessary

for the pseudo-potential model to minimize spurious velocities

at interface and control numerical instability for the flows with

low capillary number and viscosity ratio. The free-energy

model suffers from the lack of Galilean invariance,32 although

the local conservation of mass and momentum is satisfied.

Based on the original color-fluid model of Gunstensen et al.,

the recent improvements have been made by Lishchuk et al.46

and Latva-Kokko and Rothman,47 which facilitate simulational

access to flow regimes of low Reynolds and capillary numbers.

In this study, we will use the improved color-fluid model,

because the Reynolds number and the capillary number are

typically small in microfluidic droplet formation.

In the original color-fluid model of Gunstensen et al.,39

“Red” and “Blue” particle distribution functions f Ri and f Bi
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were introduced to represent two different fluids. The total

particle distribution function is defined as fi ¼ f Ri þ f Bi . Each

of the colored phases undergoes the collision and streaming

operations

f ki ðxþ ei; tþ 1Þ ¼ f ki ðx; tÞ �
f ki ðx; tÞ � f

k;eq
i ðx; tÞ

sk
þ X

k
i ; (8)

where k¼R or B denotes the color (“Red” or “Blue”). The

viscosity of each fluid can be selected by choosing the

desired sk, i.e., �k ¼ c2s sk � 1=2ð Þ. Conservation of mass for

each phase and total momentum conservation require

qk ¼
X

i

f ki ¼
X

i

f
k;eq
i ; (9)

qu ¼
X

i

X

k

f ki ei ¼
X

i

X

k

f
k;eq
i ei: (10)

The additional collision operator Xk
i (perturbation step) con-

tributes to the mixed interfacial regions and generates an

interfacial tension

X
k
i ¼ AkjGj cos 2ðhi � hf Þ; (11)

where Ak is a free parameter controlling the interfacial ten-

sion, hi is the polar angle of the lattice vector ei, and hf is the

polar angle of the local color gradient G, which is defined as

Gðx; tÞ ¼
X

i

wiei½qRðxþ ei; tÞ � qBðxþ ei; tÞ�: (12)

To promote phase segregation and maintain interface, the so-

called recoloring step is applied, which enables to keep the

interface sharp, and at the same time prevents the two fluids

from mixing with each other. The colors are demixed by

maximizing the work done against the color flux q(x, t),

which is defined by

qðx; tÞ ¼
X

i

wiei½f Ri ðx; tÞ � f Bi ðx; tÞ�: (13)

The perturbation step can introduce anisotropy and high

spurious velocities at the interface. Additionally, when

applied to study creeping flows, the recoloring step can pro-

duce lattice pinning,47 a phenomenon that the interface can

be pinned or attached to the simulation lattice rendering an

effective loss of Galilean invariance. It was also demon-

strated that there is an increasing tendency for lattice pinning

as both of the capillary and Reynolds numbers decrease.48

Lishchuk et al.46 used the concept of a continuum sur-

face force (CSF)49 to model the interfacial tension. In their

algorithm, the perturbation step in the original Gunstensen

model was replaced by a direct forcing term at the mixed

region. In order to satisfy the stress boundary condition and

the continuity of velocity, a local pressure gradient is forced

throughout the interface as an additional body force F(x, t),

which is incorporated into the LB equation by the forcing

term /i(x, t) at the collision step. It has been reported that

this algorithm can greatly reduce the spurious currents and

improve the isotropy of the interface. The body force is

defined to act normal to the interface with a magnitude pro-

portional to the gradient of qN, which is given by

Fðx; tÞ ¼ � 1

2
rjrqN; (14)

where r is an interfacial tension parameter, qN is the phase

field defined as

qNðx; tÞ ¼ qRðx; tÞ � qBðx; tÞ
qRðx; tÞ þ qBðx; tÞ

; �1 � qN � 1; (15)

and j is the local interface curvature, which is calculated by

j ¼ �rs � n; (16)

where rs ¼ I� n� nð Þ � r is the interface gradient opera-

tor, and I is the second-order identity tensor. The unit normal

vector n is defined as a function of phase field

n ¼ � rqN

jrqNj : (17)

Based on the body force term given by Eq. (14), the

forcing term /i can realize the interfacial tension effect,

which is given as46

/iðx; tÞ ¼
1

c2s
wiei � Fðx; tÞdt: (18)

The calculation of partial derivatives is required to evaluate

the interface curvature and the normal vector. To minimize

the discretization error, these derivatives are calculated using

19-point finite difference stencils

@wðxÞ
@xa

¼ 1

c2s

X

i

wiwðxþ eiÞeia: (19)

In addition, the original recoloring step is modified by an

anti-diffusion scheme proposed by Latva-Kokko and Rothman,47

which can solve the lattice pinning problem and creates a sym-

metric distribution of particles around the interface so that the

spurious velocities can be further reduced. Following their

method, the post-collision, postsegregation (recolored) particle

distribution functions for the red and blue fluids are calculated by

f Ri ¼ qR
qR þ qB

fi þ b
qRqB

qR þ qB
wi cosujeij; (20)

f Bi ¼ qB
qR þ qB

fi � b
qRqB

qR þ qB
wi cosujeij; (21)

where fi denotes the post-collision, presegregation value of

the total particle distribution function along the ith lattice

direction; b is the segregation parameter and is fixed at 0.7 to

maintain a narrow interface thickness and reduce spurious

velocities;50 and also, we will show that this choice is neces-

sary to reproduce correct dynamical behavior of droplets; u

is the angle between the color gradient rqN and the lattice

vector ei, which is defined by

cosu ¼ ei � rqN

jeijjrqNj : (22)

III. RESULTS AND DISCUSSION

First, Taylor deformation is used to examine the effect

of segregation parameter b on droplet dynamical behavior. A
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droplet is placed between two parallel plates that are moving

in the opposite directions to obtain a linear shear in the

Stokes flow regime (i.e., small Reynolds number). Droplet

deformation is studied as a function of the shear rate via the

capillary number. The definitions of the Reynolds number

and capillary number are given as

Re ¼ cR2q

g
; Ca ¼ cRg

r
; (23)

where c¼ 2U=H is the shear rate with U being the velocity

of the moving plate, and H being the channel height; R is the

initial radius of the droplet. For this case, we assume that

both fluids have the same density and viscosity. The simula-

tions are run at Re¼ 0.1 for a droplet with the radius of 10

lattice cells in a system of 100� 50� 50 lattice cells. At the

steady state, the droplet is assumed to be ellipsoidal, which

is usually characterized by the deformation parameter Df,

defined as

Df ¼ a� b

aþ b
; (24)

where a and b are the lengths of the major and minor axis of

the deformed droplet, respectively. For a droplet in the

Stokes regime with a low Ca, Df follows the Taylor relation

as51

Df ¼ ð35=32ÞCa: (25)

A series of numerical simulations are performed with

b¼f0.5, 0.7, 1g and Ca varying from 0.05 to 0.3. Fig. 1

shows the time evolution of Taylor deformation parameter

for different Ca and b. We can observe that the droplet can-

not evolve to a steady state for b¼ 1, while a steady droplet

deformation can be reached for both b¼ 0.5 and 0.7. How-

ever, a small b (i.e., a large interface thickness) usually pro-

duces a large droplet deformation at a fixed Ca, which can

be clearly seen in Fig. 2. Meanwhile, the LB simulations

with b¼ 0.7 are in good agreement with the theoretical Tay-

lor relation. Therefore, we will use b¼ 0.7 in the following

simulations in order to reproduce the correct droplet

dynamics.

The geometry of cross-junction microchannel is illus-

trated in Fig. 3. The microchannel consists of a main channel

with width wd and two lateral channels with the same width

wc. The depth h is uniform throughout the channels. The dis-

persed phase water is introduced at the inlet of the main

channel, and the continuous phase oil is injected into the lat-

eral channels. Halfway bounce-back is used at the solid walls

in order to obtain no-slip boundary condition.32 We assume

that the fluids are pure single-phase at the inlets and outlet,

and the constant inlet flow rates and outlet pressure boundary

conditions are imposed following Zou and He.52 For simplic-

ity, we set the densities of both fluids equal, as the

FIG. 1. (Color online) Evolution of the Taylor deformation parameter for

b¼f0.5, 0.7, 1g at Ca¼f0.05, 0.15, 0.3g and Re¼ 0.1.

FIG. 2. (Color online) Taylor deformation parameter Df as a function of the

capillary number at Re¼ 0.1. The solid line is the theoretical Taylor relation

given by Eq. (25).

FIG. 3. (Color online) (a) The top and (b) side view of a microfluidic cross-

junction, where wd, wc are the width of the main and lateral channels, h is

the channel depth, and Qc and Qd are the inlet volumetric flow rates of the

continuous and dispersed phases.
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buoyancy-driven velocities in a typical oil-water microflui-

dic system are negligible.25

The wettability of the microchannel walls can strongly

influence droplet formation, it is therefore essential to account

for the fluid-surface interactions. We follow the assumption

made by Rowlinson and Widom53 that the solid wall is a mix-

ture of two fluids, thus having a certain value of the phase

field qNS . The derivatives of phase field near the wall boundary

can therefore be calculated using Eq. (19). Consequently, the

interfacial force term in Eq. (14) becomes dependent on the

properties of the neighboring solid lattice sites, resulting in a

special case of the wetting boundary condition. Fig. 4 demon-

strates that the assigned value of phase field at the solid wall

can be used to modify the static contact angle of the interface

at the solid surface. Approaches similar to the one described

above were also adopted by Bekri and Adler54 for the original

model of Gunstensen et al.,39 by van der Graaf et al.24 and

Liu and Zhang37 in the free-energy models and by Shan and

Chen40 in the pseudo-potential model through the fluid-solid

interaction potential. In addition, in the free-energy models,

the interaction between fluids and solid surface can be mod-

eled by a surface integral that appears in the boundary condi-

tion of the free energy.55,56 Unless otherwise stated, we

assume qNS ¼ �1 in the following simulations so that the con-

tinuous phase completely wets the wall surfaces while the dis-

persed phase is non-wetting.

The dynamical response of fluids in a microfluidic cross-

junction can be described successfully by six independent

dimensionless numbers, which are commonly defined by the

geometrical and physical parameters including the inlet widths

(wc and wd), the channel depth (h), the interfacial tension (r),

the inlet volumetric flow rates (Qc and Qd), the viscosities (gc
and gd) of the two fluids and their densities (q), where the sub-

scripts “c” and “d” denote the continuous and dispersed phases,

respectively. The capillary number (Ca), which describes rela-

tive importance of the viscous force and the interfacial tension,

is the most important parameter for droplet formation. Here, it

is defined by the average inlet velocity uc and the viscosity gc
of the continuous phase and the interfacial tension r

Ca ¼ ucgc
r

¼ Qcgc
2rwch

: (26)

Although the laminar flow is expected due to the small

length scales involved, the Reynolds number (Re) is still the

most frequently used dimensionless number to effectively

describe microfluidics. It is a measure of the ratio of the iner-

tial force and the viscous force

Re ¼ qucwc

gc
¼ qQc

2gch
: (27)

During the process of droplet formation, the continuous

phase and the dispersed phase are continuously injected with

different volumetric flow rates. The ratio of flow rates

(Q¼Qd=Qc) and the viscosity ratio (k¼ gd=gc) are two im-

portant dimensionless numbers to characterize the droplet

breakup, which has been confirmed by a wide range of ex-

perimental and numerical investigations.18,19,23,25,26,37,57 The

geometrical parameters, wc, wd, and h, lead to two additional

dimensionless parameters characterizing the geometry. One

is the ratio of the channel depth to the inlet width of the con-

tinuous phase (C¼ h=wc), and the other is the ratio of the

inlet widths of the two phases (K¼wd=wc).

Different types of droplets, namely plug droplets, isolate

droplets and satellite droplets, can be generated in the cross-

junction microfluidic devices, which strongly depend on the

various dimensionless parameters.19 In the present study, we

focus on the formation of plug droplets for a fixed fluid pair,

i.e., the viscosities of both fluids and the interfacial tension

are fixed, and examine the roles of Ca, Q, C, and K in droplet

formation.

A. The influence of Q and Ca

Before we study the influence of geometrical parame-

ters, we focus on a reference cross-junction with wc¼ 10dx,

wd¼ 20dx, and h¼ 10dx, so that C¼ 1 and K¼ 2. We choose

a fixed fluid pair with the interfacial tension r¼ 0.06 and the

viscosity ratio k¼ 1=6. The simulations are performed in a

229� 61� 11 lattice system and each lattice spacing dx cor-

responds to 10 lm. We examine the grid independence with

several different flow conditions and find that the mesh

refinement will lead to results variations not more than 5%.

Four different capillary numbers, i.e., Ca¼ 0.002, 0.004,

0.006, and 0.008 are used in the simulations, and the corre-

sponding Reynolds numbers are 0.1, 0.2, 0.3, and 0.4. For

each capillary number, the flow rate ratio is varied over a

broad range so that the different flow patterns are observed.

As shown in Fig. 5, three typical flow patterns are identi-

fied for different flow rate ratio at a fixed capillary number.

At the low flow rate ratio Q, the droplets are formed at the

cross-junction (DCJ) due to the squeezing mechanism. When

we increase Q, droplets are found to pinch-off at DC, form-

ing a thread that becomes unstable after a distance of laminar

flow. This distance will increase with Q. As the flow rate ra-

tio Q increases to a critical value, the stable PF are observed,

where the three incoming streams co-flow in parallel to the

downstream without pinching. In addition, the transitions

from DCJ to DC and from DC to PF are influenced by the

capillary number. As Ca increases, the threshold value of

flow rate ratio at which the transition occurs decreases, and

the width of the DC regime also decreases. The different

flow patterns were first observed experimentally by Guillot

and Colin in a microfluidic T-junction,22 in which the transi-

tion from droplets forming at a T-junction to stable parallel

flow depends on the flow rate of both phases. Recently, Tan

et al.18 also reported the similar observations in a

FIG. 4. (Color online) The different contact angles obtained through adjust-

ing the phase field qNS at the solid wall. The values of qNS are taken as

qNS ¼ �0:75;�0:5; 0; 0:5; 0:75f g along the direction of arrow.
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microfluidic cross-junction. In the following simulations, we

will focus on the DCJ regime so that our simulations can be

compared with the existing experimental work.

Based on the experimental observation of plug forma-

tion at microfluidic T-junctions, Garstecki et al.23 argued

that at low Ca, the final length of a plug is determined by

two steps. First, the thread of the dispersed phase grows until

it blocks the continuous phase liquid. At this critical

moment, the “blocking length” of the plug is equal to the

channel width, i.e., Lblock¼wc. Afterwards, the increased

pressure in the continuous phase liquid begins to “squeeze”

the neck of dispersed thread. Assuming that the neck with a

characteristic width d squeezes at a rate approximately equal

to the average velocity (uc) of the continuous phase. During

this time, the plug continues to elongate at rate ud ¼ Qd

wch
with

an equivalent growth of plug volume at rate Qd. So the

“squeezing length” of the plug is Lsqueeze � d
uc
ud ¼ dQ.

Therefore, the final length L of the plug can be expressed as

L

wc

¼ Lblock þ Lsqueeze

wc

¼ wc þ dQ

wc

¼ 1þ xQ; (28)

where x¼ d=wc is a fitting constant related to the thinning

width. Their experimental data agree well with this scaling

law when the constant x is unity. Recently, Xu et al.29 com-

pared the other experimental data and found that the

“blocking length” Lblock is not always equal to wc but is also

dependent on the channel geometry, i.e., Lblock¼ ewc. Con-

sidering this, the scaling law, Eq. (28), can be modified as

L

wc

¼ eþ xQ; (29)

where e is also a fitting constant that is mainly dependent on

the channel geometry.

Fig. 6 shows the formation of plugs in the DCJ regime

as a function of flow rate ratio for Ca¼ 0.002. The

FIG. 5. (Color online) (a) Droplet flow

regimes as a function of flow rate ratio

Q and capillary number Ca (k¼ 1=6,
C¼ 1, and K¼ 2), where symbols indi-

cate different regimes (~: DCJ, ^: DC,

and h: PF) and (b) representative drop-

let formation at Ca¼ 0.004 and Q¼ 0.6

(DCJ), 2.5 (DC), and 3 (PF). Note that

the dash and dash-dot-dot lines in (a) are

to clearly distinguish the different flow

regimes.

FIG. 6. (Color online) Formation of plugs as a function of flow rate ratio for

Ca¼ 0.002, Re¼ 0.1, k¼ 1=6, C¼ 1, and K¼ 2.
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monodisperse plugs are found to be regularly generated. The

plug length increases with Q, and the formation of plugs will

switch to the DC regime when Q is beyond 2.2. Also, the dis-

tance between two neighboring plugs decreases when the

flow rate ratio increases. Fig. 7 plots the non-dimensional

length of plugs formed in the DCJ regime against the flow

rate ratio for Ca¼ 0.002, 0.004, 0.006, and 0.008. For each

capillary number, our simulation results are found to obey

the scaling law given by Eq. (29). Meanwhile, Eqs. (28) and

(29) show that the plug lengths formed in the squeezing re-

gime depend only on the flow rate ratio and are independent

of the capillary number. However, it can be clearly seen

from Fig. 7 that the fitting constants, e and x, are not solely

determined by the channel geometry, and the plug lengths

are indeed a function of capillary number.

In order to explore the dependence of plug length on the

capillary number, we measure the plug length as a function

of capillary number at a fixed flow rate ratio. Three different

flow rate ratios Q¼ 0.1, 0.3, and 0.6 are examined, respec-

tively. For each fixed Q, the capillary number is varied from

0.001 to 0.008. It should be noted that, here, a smaller capil-

lary number (i.e., Ca¼ 0.001) is also simulated. However,

the present computational domain is not large enough to sim-

ulate the transition from DC to PF as the plug front may

have moved out of the computational domain before the plug

detaches from the long downstream jet in the DC regime.

Fig. 8 shows the formation of plugs as a function of cap-

illary number for Q¼ 0.1 and Q¼ 0.6. For each fixed Q, the

distance between two neighboring plugs and their size

decrease with the increase of capillary number. Large flow

ratio can lead to narrow distance between two neighboring

plugs for the same Ca, which is consistent with the simula-

tion results of Ca¼ 0.002 as shown in Fig. 6. Fig. 9 shows

the simulation results of non-dimensional length of plugs

versus capillary number for three different flow rate ratios.

Clearly, the non-dimensional length of plugs (L=wc) shows

no sign of approaching a constant value as the capillary num-

ber decreases and exhibits a power-law dependence on the

capillary number, i.e., L=wc¼ kCam, which is independent of

the flow rate ratio Q. The power-law behavior was also

experimentally observed by Tan and his co-workers in

microfluidic cross-junction18 and T-junction,58 where the

formation of plugs occurred in the squeezing (DCJ) regime.

Christopher et al.26 found that, in both squeezing and drip-

ping regimes, the droplet volume exhibits a power-law de-

pendence on the capillary number with a power-law

exponent approximately equal to 0.3 at low viscosity ratio

(k� 1=50).
Considering the influence of capillary number and flow

rate ratio, the generated plug length can be predicted by

L

wc

¼ ð~eþ ~xQÞCa ~m; (30)

where ~e, ~x, and ~m are the fitting parameters that mainly

depend on the channel geometry. All of our numerical

FIG. 7. (Color online) Non-dimensional length of plugs versus the flow rate

ratio for Ca¼f0.002, 0.004, 0.006, 0.008g, k¼ 1=6, C¼ 1, and K¼ 2 in the

DCJ regime. Discrete symbols represent the simulation results. The lines are

the fitting results of the scaling law L=wc¼ eþxQ.

FIG. 8. (Color online) Formation of plugs as a function of the capillary

number for Q¼f0.1, 0.6g, k¼ 1=6, C¼ 1, and K¼ 2 in the DCJ regime.

FIG. 9. (Color online) Non-dimensional length of plugs versus the capillary

number for Q¼f0.1, 0.3, 0.6g, k¼ 1=6, C¼ 1, and K¼ 2 in the DCJ re-

gime. Discrete symbols represent the simulation results. Dashed-lines repre-

sent the scaling law L
wc

¼ ð~eþ ~xQÞCa ~m by fitting the simulation results.
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simulations confirm this scaling law and we can determine

the coefficients as

L

wc

¼ ð0:551þ 0:277QÞCa�0:292: (31)

To test our scaling law, the parity plot is used in which the

predicted plug length is calculated by Eq. (30) and plotted as

a function of our simulation results. The match between

model predictions and simulation results is indicated by the

scatter of data around the line of parity. The closer the data

points are to the line of parity and the more even their distri-

bution is, the better model predictions and simulations

match. The predicted results of Eq. (30) show good agree-

ment with our numerical simulations, as shown in Fig. 10.

The fitting power-law exponent ~m ¼ �0:292 is very close to

the experimental findings of Chiristopher et al.26 in a T-junc-

tion. Through the statistical analysis on the droplet formation

in microfluidic T-junctions, Steegmans et al.30 found that

none of the available scaling laws is general enough to

describe the original data and the data from other literature

sources. A two-step model was found to be statistically valid

over the whole range of literature data. In their two-step

model, the final droplet volume V is a result of two-stage

growth, which is similar to the idea of Garstecki et al.23 Ini-

tially, the droplet grows to a critical volume Vc until the

forces exerted on the interface become balanced. Subse-

quently, the droplet continues to grow for a time tn until final

pinches-off, due to the continuous injection of the dispersed

phase fluid, so that the final droplet volume becomes

V ¼ Vc þ tnQd: (32)

Similar to Steegmans et al.,30 we also assume plugs

enclosed between channel walls to be flat ellipses, so that

Eq. (30) can be expressed as

V ¼ pwcwdh

4
~eþ ~x

Qc

Qd

� �

Ca ~m: (33)

It can be clearly seen that our scaling law given by Eq. (30)

is consistent with the two-step model, i.e., Eq. (32) if

Vc ¼
p

4
wcwdh~eCa

~m; tn ¼
p

4Qc

wcwdh ~xCa
~m: (34)

It is obvious that the necking time tn is associated with both

Ca and Qc. At a fixed capillary number, a large shear rate of

continuous phase is expected to shorten the necking time,

leading to smaller droplets.

B. The influence of K and C

To test whether the confinement of geometry plays an

important role in the breakup of plugs,23,26,29 we examine

the influence of the dimensionless geometrical parameters K

and C on the length and shapes of the plugs. In the simula-

tions, to single out the influence of K, wc and h are kept con-

stant with C¼ 5=8. To study the influence of C, wc and wd

are kept constant with K¼ 1. The fluid pair is fixed with the

interfacial tension r¼ 0.06 and the viscosity ratio k¼ 0.3.

To statistically obtain the scaling law given by Eq. (30) for

each group of geometrical parameters, we carry out the nu-

merical simulations with Ca¼ 0.001, 0.0018, and 0.004, and

the corresponding Reynolds number is 0.211, 0.38, and

0.844, respectively. For each fixed Ca, we vary the flow rate

ratio, i.e., Q¼f0.05, 0.1, 0.25, 0.5, 1, 1.5g by varying the

flow rate of the dispersed phase.

Fig. 11 shows the formation of plugs in the DCJ regime

as a function of width ratio (K) at Ca¼ 0.0018, Re¼ 0.38,

and Q¼f0.05, 0.25, 0.5, 1.5g. Three different width ratios

are examined, i.e., K¼ 1, 1.5, and 2, with the computational

domain consisting of 250� 57� 11, 250� 65� 11, and

250� 73� 11 lattices, respectively. For each fixed flow rate

ratio, the plug length increases with K (wd), which corre-

sponds to a more significant increase in the volume of plugs.

Also, the increasing K can enlarge the distance between two

neighboring plugs. For each fixed width ratio, big flow rate

ratio can lead to large plugs and narrow distance between

consecutive plugs. We also notice that the plugs become

FIG. 10. (Color online) The parity plot of the non-dimensional length of

plugs between the correlated results L=wcð Þpre from Eq. (31) and the simula-

tion results L=wcð Þsim for Ca¼ 0.001, 0.002, 0.004, 0.006, and 0.008. The

solid line represents the line of parity.

FIG. 11. (Color online) Formation of plugs as a function of the width ratio

at various flow rate ratios in the DCJ regime with Ca¼ 0.0018, Re¼ 0.38,

k¼ 0.3, and C¼ 5=8.
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more and more difficult to “pinch-off” as the width ratio

increases. For large values of K and Q, e.g., K¼ 2 and

Q¼ 1.5, we find that the detachment point moves towards

the downstream of the junction, so the DC regime starts.

Therefore, it can be expected that transitions from DCJ to

DC and from DC to PF occur at smaller flow rate ratios for a

large K.

The scaling law given in Eq. (30) is used to fit our nu-

merical simulation results for K¼ 1, 1.5, and 2. Based on the

least-square fitting, the resulting scaling equations can be

expressed as L
wc

¼ ð0:32þ 0:219QÞCa�0:243 for K¼ 1,
L
wc

¼ ð0:397þ 0:21QÞCa�0:28 for K¼ 1.5, and L
wc

¼ ð0:788
þ0:521QÞCa�0:222 for K¼ 2. Fig. 12 gives the comparison

of non-dimensional length of plugs between our simulation

results and the predicted results for K¼ 1, 1.5, and 2. It can

be clearly seen that the simulation results could be well

described by our scaling law with the fitting parameters

depending on the width ratio. Fig. 13 plots the non-dimen-

sional length of plugs as a function of flow rate ratio at

Ca¼ 0.0018, Re¼ 0.38, and C¼ 5=8 for three different

width ratios. With the fixed Ca of 0.0018, our scaling law,

i.e., Eq. (30) reduces to Eq. (29). Specifically, they become
L
wc

¼ 1:483þ 1:015Q for K¼ 1, L
wc

¼ 2:328þ 1:232Q for

K¼ 1.5, and L
wc

¼ 3:202þ 2:115Q for K¼ 2, respectively.

We can easily observe that the fitting constants e and x in

Eq. (29) are both dependent on the width ratio K. Also, the

values of e and x increase as K increases.

Fig. 14 shows the non-dimensional length of plugs as a

function of the width ratio for Ca¼ 0.0018 and 0.0036. Con-

sistent with the previous findings (see Figs. 7–9), the plug

length decreases with the increase of Ca for the fixed K and

Q. At small width ratio (K< 1), the plug length is weakly de-

pendent on the width ratio. When the width ratio is beyond

1, i.e., K> 1, the plug length is approximately linearly pro-

portional to the width ratio. In addition, the simulation

results shown in Fig. 14 are in good agreement with the ex-

perimental findings of Christopher et al.26 for droplet genera-

tion at T-junctions. Fig. 15 gives the comparison of plug

shapes for a broad range of width ratios with Q¼ 0.2 and

Ca¼ 0.0036. It can be easily found that the width ratio can

significantly influence the volume of plugs. The volume of

plugs increases with the width ratio. Also, the increasing

width ratio can enlarge the distance between two neighbor-

ing plugs for K> 1.

We also investigate the influence of C on the forma-

tion of plugs at a fixed width ratio K¼ 1. We choose

FIG. 12. (Color online) The parity plot of non-dimensional length of plugs

between the predicted results L=wcð Þpre from Eq. (30) and the simulation

results L=wcð Þsim for K¼ 1, 1.5, and 2. The solid line represents the line of

parity. The values of the fitting parameters in Eq. (30) are listed in the text.

FIG. 13. (Color online) The non-dimensional length of plugs versus the

flow rate ratio for K¼f1, 1.5, 2g, Ca¼ 0.0018, Re¼ 0.38, and C¼ 5=8 in

the DCJ regime. The discrete symbols are the simulation results. The lines

are the fitting results of the scaling law L=wc¼ eþxQ.

FIG. 14. (Color online) The non-dimensional length of plugs versus the

width ratio at a fixed flow rate ratio Q¼ 0.2 and a fixed viscosity ratio

k¼ 0.3 for two different capillary numbers. The width ratio is adjusted by

changing the magnitude of the dispersed-phase channel width while the con-

tinuous-phase channel width is kept fixed.
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C¼f5=8, 1, 5=4g with the computational domain consist-

ing of 250� 57� 11, 250� 57� 17, and 250� 57� 21 lat-

tices, respectively. Fig. 16 shows the simulation results for

C¼f5=8, 1, 5=4g at Ca¼ 0.0018 and Re¼ 0.38 with a

range of flow rate ratios. For each fixed flow rate ratio, the

size of plugs increases as C increases. In the same way, we

use our scaling law (i.e., Eq. (30)) to fit the simulation

data for each fixed C. The calculated scaling equations

could be written as L
wc

¼ ð0:32þ 0:219QÞCa�0:243 for

C¼ 5=8, L
wc

¼ ð0:347 þ0:253QÞCa�0:245 for C¼ 1, and
L
wc

¼ ð0:36þ 0:27QÞ Ca�0:255 for C¼ 5=4. The predicted

results of these scaling equations all agree well with the

simulation results, as can be shown in Fig. 17. This indi-

cates again that our scaling law is general enough to

describe the size of plugs formed in the DCJ regime at

microfluidic cross-junctions.

Fig. 18 shows the non-dimensional droplet length as a

function of the flow rate ratio at Ca¼ 0.0018, Re¼ 0.38, and

K¼ 1 for three different C. For each fixed channel depth, the

non-dimensional length of plugs increases with the flow rate

ratio, as observed in the previous cases. For the given capil-

lary number, i.e., Ca¼ 0.0018, the calculated scaling equa-

tions can reduce to L
wc

¼ 1:483þ 1:015Q for C¼ 5=8,
L
wc

¼ 1:634þ 1:191Q for C¼ 1, and L
wc

¼ 1:807þ 1:353Q
for C¼ 5=4. Obviously, both fitting parameters e and x

depend on C, and they both increase as C increases. A similar

observation was reported by Gupta and Kumar59 in microflui-

dic T-junctions. Our simulation results shown in Fig. 18 also

indicate that the droplet behavior is expected to approach the

scaling law of Eq. (28) as the channel depth h decreases.

Although the scaling law of Eq. (30) developed from our

simulation results is consistent with some experimental find-

ings, we would like to more directly compare our simulations

results with experimental data. Wu et al.36 experimentally

reported droplet generation in a microfluidic cross-junction,

where, unlike the other experimental work, they clearly gave

FIG. 15. (Color online) Comparison of plug shapes for a broad range of

width ratio with Q¼ 0.2, Ca¼ 0.0036, Re¼ 0.76, k¼ 0.3, and C¼ 5=8 in

the DCJ regime.

FIG. 16. (Color online) Formation of plugs as a function of height-to-width

ratio for Q¼f0.05, 0.25, 0.5, 1.5g with Ca¼ 0.0018, Re¼ 0.38, k¼ 0.3,

and K¼ 1 in the DCJ regime.

FIG. 17. (Color online) Parity plot of the non-dimensional length of plugs

between the predicted results L=wcð Þpre from Eq. (30) and the simulation

results L=wcð Þsim for C¼ 5=8, 1, and 5=4. The solid line represents the line

of parity. The values of the fitting parameters in Eq. (30) are listed in the

text.

FIG. 18. (Color online) The non-dimensional length of plugs versus the

flow rate ratio at Ca¼ 0.0018, Re¼ 0.38, k¼ 0.3, and K¼ 1 for three differ-

ent height-to-width ratios. The height-to-width ratio C is adjusted by chang-

ing the magnitude of the channel depth, while the channel widths are kept

the same. The discrete symbols are the simulation results. The lines are the

fitting results of the scaling law L=wc¼ eþxQ.
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the most of required physical and mechanical parameters for

meaningful comparison. Our numerical simulations are per-

formed with qNS ¼ �1 and �0.75 specified at the solid walls,

corresponding to the static contact angle h � 180	 and 160	,
respectively. The other parameters are set to be the same as in

Ref. 36. Table I shows that the simulation results with

qNS ¼ �0:75 are in good agreement with the experimental

findings, while the simulations with qNS ¼ �1 produce larger

droplets. We also find that the droplet sizes obtained by our

simulations can be described by Eq. (30) as L
wc

¼ ð0:58
þ0:358QÞCa�0:255 for qNS ¼ �1 and L

wc
¼ ð0:645þ 0:332QÞ

Ca�0:218 for qNS ¼ �0:75. For comparison, Table I also gives

the predicted results of non-dimensional droplet length using

the scaling equation L
wc

¼ ð0:645þ 0:332QÞCa�0:218. Obvi-

ously, the predicted results coincide with our simulation results

qNS ¼ �0:75
� �

and the experimental data of Wu et al.36 This

indicates that our proposed scaling law can predict the correct

droplet size generated in microfluidic cross-junctions.

Finally, we note that the droplet size exhibits a power-

law dependence on the capillary number with the fitted

power-law exponent ranging from �0.3 to �0.2 for all the

flow conditions and channel geometries in the present study.

As we stated above, this power-law behavior has also been

observed by some other authors. However, the values of the

power-law exponent vary significantly in their observations.

For example, Tan et al.18 and Xu et al.29 experimentally

found that the plug length obeys L
wc

/ Ca�0:2 in a microflui-

dic cross-junction and a microfluidic T-junction, while van

der Graaf et al.24 numerically observed that, in both confined

and unconfined droplet breakup at a T-junction, the final

droplet volume V could be expressed as V / Ca�0:75. Chris-

topher et al.26 recently reported that the droplet volume V

approximately follows V / Ca�0:3 in the microfluidic

T-junctions with C< 1 and the viscosity ratio k � 1=50.
Herein, it should be noted that the droplet size is often

expressed as volume V which can be correlated to the plug

length as V / L
wc
for the plugs enclosed in a microchannel.

IV. CONCLUSIONS

The 3D lattice Boltzmann model has been applied to

study the droplet formation in microfluidic cross-junctions

for low capillary numbers (Ca< 0.01). Three different flow

regimes as a consequence of interaction between two immis-

cible fluids are identified to be dependent on the capillary

number and the flow rates of the continuous and dispersed

phases. A regime map is created to describe the transition

from droplets formed at a cross-junction (DCJ), downstream

of the cross-junction (DC), to stable PF. The influence of

flow rate ratio, capillary number, and dimensionless geomet-

rical parameters (K and C) is studied in detail with a broad

range of flow conditions in the DCJ regime. The formation

of plugs in the DCJ regime is shown to be dominated by the

build-up of pressure that arises in the upstream when the

emerging droplet interface obstructs the main channel. We

observe that the length of the plugs is linearly proportional to

the flow rate ratio for a fixed capillary number and exhibits a

power-law dependence on the capillary number for a fixed

flow rate ratio. Considering the effects of capillary number

and flow rate ratio, an empirical scaling law is developed to

predict the length of plugs. It is consistent with the two-step

models proposed by van der Graaf et al.60 and Steegmans

et al.30 The channel geometry is found to play an important

role in the process of plug breakup since the squeezing pres-

sure becomes significant when the emerging dispersed-inter-

face obstructs the main channel. At a fixed capillary number,

our scaling law can reduce to the scaling equation proposed

by Xu et al.,29 i.e., L=wc¼ eþxQ. We find that the width ra-

tio (K) and the depth-to-width ratio (C) can affect the fitting

constants e and x. Also, we find that the threshold value of

flow rate ratio decreases with the width ratio, which distin-

guishes the different flow regimes.
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Sman, and R. M. Boom, “Lattice Boltzmann simulations of droplet forma-

tion in a T-shaped microchannel,” Langmuir 22, 4144 (2006).
25M. D. Menech, P. Garstecki, F. Jousse, and H. A. Stone, “Transition from

squeezing to dripping in a microfluidic T-shaped junction,” J. Fluid Mech.

595, 141 (2008).
26G. F. Christopher, N. N. Noharuddin, J. A. Taylor, and S. L. Anna,

“Experimental observations of the squeezing-to-dripping transition in

T-shaped microfluidic junctions,” Phys. Rev. E 78, 036317 (2008).
27P. B. Umbanhowar, V. Prasad, and D. A. Weitz, “Monodisperse emulsion gen-

eration via drop break off in a coflowing stream,” Langmuir 16, 347 (2000).
28J. Hua, B. Zhang, and J. Lou, “Numerical simulation of microdroplet for-

mation in coflowing immiscible liquids,” AIChE J. 53, 2534 (2007).
29J. Xu, S. Li, J. Tan, and G. Luo, “Correlations of droplet formation in

T-junction microfluidic devices: From squeezing to dripping,” Microfluid.

Nanofluid. 5, 711 (2008).
30M. Steegmans, C. Schron, and R. Boom, “Generalised insights in droplet

formation at T-junctions through statistical analysis,” Chem. Eng. Sci.

64(13), 3042 (2009).
31W. Shyy, R. W. Smith, H. S. Udaykumar, and M. M. Rao, Computational

Fluid Dynamics with Moving Boundaries (Taylor & Francis, Washington,

DC, 1996).
32S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond

(Oxford University Press, Oxford, 2001).
33X. He and L.-S. Luo, “A priori derivation of the lattice Boltzmann equa-

tion,” Phys. Rev. E 55, R6333 (1997).
34M. M. Dupin, I. Halliday, and C. M. Care, “Simulation of a microfluidic

flow-focusing device,” Phys. Rev. E 73, 055701 (2006).
35Z. Yu, O. Hemminger, and L.-S. Fan, “Experiment and lattice Boltzmann

simulation of two-phase gas-liquid flows in microchannels,” Chem. Eng.

Sci. 62, 7172 (2007).

36L. Wu, M. Tsutahara, L. S. Kim, and M. Ha, “Three-dimensional lattice

Boltzmann simulations of droplet formation in a cross-junction micro-

channel,” Int. J. Multiphase Flow 34, 852 (2008).
37H. Liu and Y. Zhang, “Droplet formation in a T-shaped microfluidic

junction,” J. Appl. Phys. 106, 034906 (2009).
38S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,”

Annu. Rev. Fluid Mech. 30(1), 329 (1998).
39A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, “Lattice

Boltzmann model of immiscible fluids,” Phys. Rev. A 43(8), 4320 (1991).
40X. Shan and H. Chen, “Lattice Boltzmann model for simulating flows with

multiple phases and components,” Phys. Rev. E 47(3), 1815 (1993).
41M. R. Swift, W. R. Osborn, and J. M. Yeomans, “Lattice Boltzmann simu-

lation of nonideal fluids,” Phys. Rev. Lett. 75(5), 830 (1995).
42M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, “Lattice

Boltzmann simulations of liquid-gas and binary fluid systems,” Phys. Rev.

E 54(5), 5041 (1996).
43P. Yuan and L. Schaefer, “Equations of state in a lattice Boltzmann mod-

el,” Phys. Fluids 18, 042101 (2006).
44M. Sbragaglia, R. Benzi, L. Biferale, S. Succi, K. Sugiyama, and F.

Toschi, “Generalized lattice Boltzmann method with multirange

pseudopotential,” Phys. Rev. E 75(2), 026702 (2007).
45A. L. Kupershtokh, D. A. Medvedev, and D. I. Karpov, “On equations of

state in a lattice Boltzmann method,” Comput. Math. Appl. 58, 965

(2009).
46S. V. Lishchuk, C. M. Care, and I. Halliday, “Lattice Boltzmann algorithm

for surface tension with greatly reduced microcurrents,” Phys. Rev. E 67,

036701 (2003).
47M. Latva-Kokko and D. H. Rothman, “Diffusion properties of gradient-

based lattice Boltzmann models of immiscible fluids,” Phys. Rev. E 71,

056702 (2005).
48I. Halliday, R. Law, C. M. Care, and A. Hollis, “Improved simulation of

drop dynamics in a shear flow at low Reynolds and capillary number,”

Phys. Rev. E 73(5), 056708 (2006).
49J. U. Brackbill, D. B. Kothe, and C. Zemach, “A continuum method for

modeling surface tension,” J. Comput. Phys. 100(2), 335 (1992).
50I. Halliday, A. P. Hollis, and C. M. Care, “Lattice Boltzmann algorithm

for continuum multicomponent flow,” Phys. Rev. E 76, 026708 (2007).
51G. I. Taylor, “The viscosity of a fluid containing small drops of another

fluid,” Proc. R. Soc. London, Ser. A 138, 41 (1932).
52Q. Zou and X. He, “On pressure and velocity boundary conditions for the

lattice Boltzmann BGK model,” Phys. Fluids 9, 1591 (1997).
53J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Claren-

don, London, 1989).
54S. Bekri and P. M. Adler, “Dispersion in multiphase flow through porous

media,” Int. J. Multiphase Flow 28(4), 665 (2002).
55A. Briant, P. Papatzacos, and J. Yeomans, “Lattice Boltzmann simulations

of contact line motion in a liquid-gas system,” Philos. Trans. R. Soc. Lon-

don Ser. A 360, 485 (2002).
56T. Lee and L. Liu, “Lattice Boltzmann simulations of micron-scale drop

impact on dry surfaces,” J. Comput. Phys. 229(20), 8045 (2010).
57J. D. Tice, A. D. Lyon, and R. F. Ismagilov, “Effects of viscosity on drop-

let formation and mixing in microfluidic channels,” Anal. Chim. Acta 507,

73 (2004).
58J. Tan, S. Li, K. Wang, and G. Luo, “Gas-liquid flow in T-junction micro-

fluidic devices with a new perpendicular rupturing flow route,” Chem.

Eng. J. 146(3), 428 (2009).
59A. Gupta and R. Kumar, “Effect of geometry on droplet formation in the

squeezing regime in a microfluidic T-junction,” Microfluid. Nanofluid.

8(6), 799 (2010).
60S. van der Graaf, M. L. J. Steegmans, R. G. M. van der Sman, C. G. P. H.

Schroën, and R. M. Boom, “Droplet formation in a T-shaped microchannel

junction: A model system for membrane emulsification,” Colloids Surf., A

266, 106 (2005).

082101-12 H. Liu and Y. Zhang Phys. Fluids 23, 082101 (2011)

Downloaded 18 Aug 2011 to 130.159.174.120. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1021/la030090w
http://dx.doi.org/10.1002/aic.v50:12
http://dx.doi.org/10.1021/ie0494770
http://dx.doi.org/10.1063/1.1537519
http://dx.doi.org/10.1103/PhysRevE.72.037302
http://dx.doi.org/10.1103/PhysRevLett.94.164501
http://dx.doi.org/10.1016/j.cej.2007.04.011
http://dx.doi.org/10.1016/j.ces.2009.02.022
http://dx.doi.org/10.1016/j.ces.2009.02.022
http://dx.doi.org/10.1103/PhysRevLett.86.4163
http://dx.doi.org/10.1103/PhysRevLett.86.4163
http://dx.doi.org/10.1039/b108740c
http://dx.doi.org/10.1103/PhysRevE.72.066301
http://dx.doi.org/10.1039/b510841a
http://dx.doi.org/10.1021/la052682f
http://dx.doi.org/10.1017/S002211200700910X
http://dx.doi.org/10.1103/PhysRevE.78.036317
http://dx.doi.org/10.1021/la990101e
http://dx.doi.org/10.1002/aic.v53:10
http://dx.doi.org/10.1007/s10404-008-0306-4
http://dx.doi.org/10.1007/s10404-008-0306-4
http://dx.doi.org/10.1016/j.ces.2009.03.010
http://dx.doi.org/10.1103/PhysRevE.55.R6333
http://dx.doi.org/10.1103/PhysRevE.73.055701
http://dx.doi.org/10.1016/j.ces.2007.08.075
http://dx.doi.org/10.1016/j.ces.2007.08.075
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2008.02.009
http://dx.doi.org/10.1063/1.3187831
http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1103/PhysRevA.43.4320
http://dx.doi.org/10.1103/PhysRevE.47.1815
http://dx.doi.org/10.1103/PhysRevLett.75.830
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1103/PhysRevE.54.5041
http://dx.doi.org/10.1063/1.2187070
http://dx.doi.org/10.1103/PhysRevE.75.026702
http://dx.doi.org/10.1016/j.camwa.2009.02.024
http://dx.doi.org/10.1103/PhysRevE.67.036701
http://dx.doi.org/10.1103/PhysRevE.71.056702
http://dx.doi.org/10.1103/PhysRevE.73.056708
http://dx.doi.org/10.1016/0021-9991(92)90240-Y
http://dx.doi.org/10.1103/PhysRevE.76.026708
http://dx.doi.org/10.1098/rspa.1932.0169
http://dx.doi.org/10.1063/1.869307
http://dx.doi.org/10.1016/S0301-9322(01)00089-1
http://dx.doi.org/10.1098/rsta.2001.0943
http://dx.doi.org/10.1098/rsta.2001.0943
http://dx.doi.org/10.1016/j.jcp.2010.07.007
http://dx.doi.org/10.1016/j.aca.2003.11.024
http://dx.doi.org/10.1016/j.cej.2008.10.024
http://dx.doi.org/10.1016/j.cej.2008.10.024
http://dx.doi.org/10.1007/s10404-009-0513-7
http://dx.doi.org/10.1016/j.colsurfa.2005.06.019

	s1
	cor1
	cor2
	s2
	E1
	E2
	E3
	E4
	E5
	E6
	E7
	E8
	E9
	E10
	E11
	E12
	E13
	E14
	E15
	E16
	E17
	E18
	E19
	E20
	E21
	E22
	s3
	E23
	E24
	E25
	F1
	F2
	F3
	E26
	E27
	s3A
	F4
	E28
	E29
	F5
	F6
	E30
	F7
	F8
	F9
	E31
	E32
	E33
	E34
	s3B
	F10
	F11
	F12
	F13
	F14
	F15
	F16
	F17
	F18
	s4
	B1
	B2
	B3
	B4
	B5
	B6
	B7
	B8
	B9
	B10
	B11
	T1
	B12
	B13
	B14
	B15
	B16
	B17
	B18
	B19
	B20
	B21
	B22
	B23
	B24
	B25
	B26
	B27
	B28
	B29
	B30
	B31
	B32
	B33
	B34
	B35
	B36
	B37
	B38
	B39
	B40
	B41
	B42
	B43
	B44
	B45
	B46
	B47
	B48
	B49
	B50
	B51
	B52
	B53
	B54
	B55
	B56
	B57
	B58
	B59
	B60

