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Abstract     

Using X-ray computed micro-tomography (µCT), we have visualised and quantified the in-situ 

structure of a trapped non-wetting phase (oil) in a highly heterogeneous carbonate rock after injecting 

a wetting phase (brine) at low and high capillary numbers.  We imaged the process of capillary 

desaturation in 3D and demonstrated its impacts on the trapped non-wetting phase cluster size 

distribution. We have also identified a new pore-scale event during capillary desaturation. This pore-

scale event, described as droplet fragmentation of the non-wetting phase, occurs in larger pores. It 

increases volumetric production of the non-wetting phase after capillary trapping and enlarges the 

fluid-fluid interface, which can enhance mass transfer between the phases. Droplet fragmentation 

therefore has implications for a range of multi-phase flow processes in natural and engineered porous 

media with complex heterogeneous pore spaces.  

 

Significance Statement  

Fluid displacement processes in carbonate rocks are important because they host over 50% of the 

world's hydrocarbon reserves and are aquifers supplying water to one quarter of the global population.  

A new pore-scale fluid displacement event, droplet fragmentation, is described which occurs during 

the flow of two immiscible fluids specifically in carbonate rocks.  The complex, heterogeneous pore 

structure of carbonate rocks induces this droplet fragmentation process which explains the increased 

recovery of the non-wetting phase from porous carbonates as the wetting phase injection rate is 

increased. The new displacement mechanism has implications for i) enhanced oil recovery, ii) 

remediation of non-aqueous liquid contaminants in aquifers and iii) subsurface CO2 storage. 

 

Introduction  

Multi-phase fluid displacement processes in porous media are important for a broad range of 

natural and engineering applications such as transport of non-aqueous phase liquid contaminants in 

aquifers, oil and gas production from hydrocarbon reservoirs, subsurface CO2 storage, or gas transport 

in fuel cells. Herein, capillary trapping is a fundamental mechanism that causes immobilisation of a 

portion of the resident non-wetting phase when it is displaced by an invading wetting phase. As a 

result, production of the non-wetting phase is always less than 100%. 

The pore-scale physics of capillary trapping are broadly understood as the underlying 

mechanisms such as piston-like displacement, snap-off and film development have been observed in 

physical micro-model experiments and quantitative theories have been established for them (1-4). 

During drainage (i.e. where a non-wetting phase displaces the wetting phase), the wetting phase can 

establish films in the corners of the pores which results in its continuous production and hence low 

residual saturations of the wetting phase. During  imbibition (i.e. where the wetting phase displaces a 

non-wetting phase), swelling of the wetting films causes snap-off of the non-wetting phase, which 

results in capillary trapping of the non-wetting phase. The trapped non-wetting phase exists as 

disconnected ganglia within the pore network. Numerical pore network models have been developed 

and include these pore-level mechanisms with the aim of predicting the macroscopic flow properties 

of porous materials such as the structure of the phase distributions, residual saturation, relative 

permeability functions, and capillary pressure curves (5-8).  

 



The saturation distribution of two immiscible fluid phases in a porous medium is influenced 

by the wettability of the system, i.e. the distribution of surfaces that are preferentially water wet or 

preferentially wetting to a non-aqueous phase such as oil (9).  It is well-known that a trapped non-

wetting phase can be re-mobilized and recovered when the wetting phase is injected at capillary 

numbers Nc that exceed a critical level. Nc is a dimensionless ratio quantifying the relative importance 

of viscous to capillary forces, i.e. Nc =qµ/σ where q is the flow rate, µ the viscosity of the invading 

phase and σ the interfacial tension (10). For homogeneous sandstones remobilisation typically occurs 

at Nc of the order of 10-5, an effect known as capillary desaturation (11).   

Recent advances in X-ray computed micro-tomography (µCT) methods have enabled the 

visualisation and quantitative analysis of the static distribution of fluid phases, fluid rock interactions 

and the structure of wetting and non-wetting phases in porous materials (8, 12). A particular focus has 

been on capillary trapping (13-17). Using synchrotron X-ray μCT facilities, it has also become possible 

to visualise dynamic pore-scale mechanisms, including snap-off and Haines jumps (18).  Most of these 

imaging studies have focused on relatively homogeneous pore systems such as bead packs (19), sand 

packs (19-23), and sandstones (8, 15, 18, 20), but less attention has been paid to carbonate rocks.  

However, more than 50% of the world’s remaining oil reserves are located in carbonate reservoirs (24) 

and carbonate aquifers supply water wholly or partially to one quarter of the global population (25). 

Carbonates rocks can have complex multi-scale pore structures, which render the application of X-ray 

µCT more challenging because of the need to select a representative sample which is small enough to 

achieve high resolutions on µCT images but which also captures the essential heterogeneities of the 

pore-structure (26, 27).   

In this contribution we use X-ray µCT to quantify the structure and distribution of a non-

wetting phase (oil) after drainage and after its displacement by a wetting phase (brine) at low and high 

capillary numbers in a heterogeneous carbonate with multiple pore-scales. Using image analysis, we 

demonstrate the effect of capillary desaturation on the cluster size distribution of the trapped oil phase.  

We also identify a new pore-scale event, which we refer to as droplet fragmentation. Droplet 

fragmentation is responsible for further production of the oil phase beyond capillary trapping.  This 

fragmentation process occurs mainly in larger pores. It results in the production of additional oil from 

these large pores, contributes to a change in the structure of residual oil, and increases the oil-brine 

surface area. As a consequence, the trapped phase may subsequently be more difficult to mobilise after 

droplet fragmentation has occurred but mass transfer between the phases can increase.  

 

Cluster Size Distribution 

We have analysed the size distributions of oil clusters after (a) injection of a mineral oil into a 

brine wetted and saturated heterogeneous carbonate core (drainage), and (b) subsequent brine injection 

(imbibition). Initially, the carbonate was fully saturated with brine. During drainage, the oil saturation 

was established using first a slow oil injection at a rate of q = 10 μl min-1 (Nc = 7.2×10-7) followed by 

a fast oil injection at a rate of q = 700 μl min-1 (Nc = 4.9×10-5). Brine was subsequently injected at the 

same flow rates (Nc = 2.02×10-7
, Nc = 1.54×10-5), respectively. At each stage 10 pore volumes of the 

displacing fluid were injected. After each injection step, the flow cell was scanned using µCT under 

static (i.e. no flow) conditions (Table SI1).  

The digital volumes obtained by µCT were segmented into three binary volumes, each 

representing the discrete oil, brine, or rock component. The binary images of the two fluid phases were 



subsequently labelled such that any group of connected voxels were assigned an individual label, thus 

constituting a fluid cluster. Only the central 18 mm of the 44 mm long carbonate core was used for 

quantitative analysis presented here to avoid artefacts from capillary end effects. Fig. 1 shows 3D 

renderings of the oil phase after drainage and imbibition at the two different flow rates. The oil 

saturations in the central section of the sample were 0.86 and 0.69 after drainage (at q = 10µl min-1 

and q = 700 µl min-1, respectively) and 0.54 and 0.44 after imbibition (at q = 10µl min-1 and q = 700µl 

min-1, respectively). Two independent scans separated by 22 hours show that the fluid saturations 

exhibited a considerable degree of redistribution after the 700 µl min-1 oil injection was ceased. Fig. 

1B shows the image acquired after the fluid redistribution. This auto-redistribution was caused only 

by the capillary forces acting at the pore level since the density of the two phases was closely matched. 

Fig. 1B shows the oil clusters imaged after the redistribution. 

 

Figure 1: 3D rendering of the oil clusters after drainage and imbibition at high and low flow rates. Discrete clusters were 

rendered in different colours. Large clusters existed after drainage were broken down to numerous smaller clusters after 

imbibition. 

Fig. 2 shows the oil cluster size distribution after each individual injection step during drainage 

and imbibition.  In this context, droplet refers to oil blobs smaller than the pores confining them, while 

cluster is a more general term describing oil ganglia saturating a number of neighbouring pores, single 

pores, or a fraction of pores. Fig. 2A shows the distribution of the normalised oil volume in clusters of 

a certain size as a function of the cluster volumes (logarithmic, e.g. for the first bin 10 < oil cluster 

volume < 100). Cluster volumes range from 10 voxels for the smallest clusters to 107 for the largest 

clusters. Clusters smaller than 10 voxels were excluded to eliminate the influence of noise in the raw 

data.  During both drainage processes large, and probably sample-spanning, clusters existed with 

volumes exceeding 107 voxels (Figs. 1A and 1B).  Fig. 2B shows the cluster frequency as a function 

of the same cluster volumes for each bin for the drainage and imbibition steps. This analysis leads to 

four key observations: (i) The largest oil cluster after drainage at 10 µl min-1 contained 76 % of the 

total oil volume. This cluster, rendered in yellow in Fig. 1A, is clearly a percolating cluster, i.e. it 

connects to the inlet and outlet of the analysed volume. At this stage the total number of clusters was 

4142. (ii) Drainage at 700 µl min-1 and the subsequent fluid redistribution caused the oil saturation to 

reduce by 17% as a result of oil migration out of the central region of core plug. The total number of 

oil clusters almost doubled (i.e. increased to 7561). (iii) After imbibition at 10 µl min-1, the saturation 

of oil further reduced by 15%. The total number of oil clusters increased to 9054.  The volumetric 

18 mm

10 µl min-1 700 µl min-1 10 µl min-1 700 µl min-1

Drainage Imbibition



cluster size distribution shows a peak between 105 and 106 voxels, which is two orders of magnitude 

smaller than the peak recorded for both drainage processes. Clusters larger than 107 voxels and 

spanning the analysed volume were absent. (iv) After imbibition at 700 µl min-1, the oil saturation 

decreased by a further 10%. Further break-down of the oil clusters occurred, doubling the total number 

of oil clusters present to 18130. The continuous increase in cluster number and decrease in cluster size 

during both imbibition steps suggests that the oil clusters were trapped. However, additional oil was 

mobilised when brine injection rate was increased. 

 

Figure 2: Volume based (A) and number based (B) cluster size distribution after the four injection steps shown in Fig. 1. 

Note the large oil clusters with volumes above 107 voxels existed after the drainage steps. A continuous increase in 

number of clusters along with decrease in the cluster volumes indicates the change in oil structure during the drainage 

and imbibition processes. 

Dominant Pore-scale Fluid Displacement Mechanisms  

Fig. 3 A-D show example µCT slices after each injection step. They indicate that the plug is 

preferentially water wet as the brine-oil contact angles (measured through brine) are below 90° (Figs. 

3C and 3D). Brine films in the corners of the pores after drainage cannot be resolved due to partial 

volume effects caused by the difference in X-ray attenuation of the two fluid phases. However, the 

apparent increase in the brine films’ thickness during imbibition (Fig. 3C) suggests that brine films 

were present.  
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Figure 3: (A-D) Example µCT slices after the four injection steps shown in Fig.1. (E, G) 3D rendering of oil phase in the 

area highlighted in B and C, respectively. (F, H) 3D rendering of the labelled oil phase respectively at (C from another 

view, D). The discrete oil droplets are rendered in different colours while the blue transparent surface shows the brine 

phase. The large isolated oil droplet shown in C, F, and G is trapped because of a snap-off event and cannot be produced 

from the pore in this capillary dominated regime (Nc=2.02 × 10-7).  Red arrows indicate a visible brine film surrounding 

the isolated droplet of oil after snap-off (C) and fragmented droplets after fast imbibition (D). 

Figs. 3E and 3F show 3D renderings of the oil phase and demonstrate how the oil phase in the 

largest pore in Figs. 3B and 3C evolved during imbibition at 10 µl min-1.  Prior to this slow imbibition 

process, the oil phase in this large pore was part of a well-connected cluster spanning multiple 

individual neighbouring pores and throats (Fig. 3E). Following slow imbibition the narrow throats in 

the neighbourhood of the large pore were filled with brine such that the large oil cluster was broken 

up into 83 oil droplets trapped in the large pore and its neighbours. This observation is consistent with 

snap-off of oil by brine films swelling in the pore throats. The large isolated oil droplet shown in Figs. 

3C, 3F and 3G was trapped by the snap-off events, as it could not be displaced in this capillary 

dominated flow regime. 3D renderings of the labelled oil phase remaining after fast imbibition at 700 

µl min-1 (Fig. 3H) show the presence of 276 oil droplets trapped in the same large pore (and in its 

neighbours) as shown in Fig. 3F. Of these droplets, 89% had volumes that were smaller than the 

volume of the original, i.e. largest, oil droplet before fast imbibition by at least two orders of magnitude 

(see Fig. SI8). All oil droplets were in contact with the rock surface. The fragmentation of a large 

trapped oil droplet into many smaller droplets at high capillary numbers was observed throughout the 

core (see Figs. SI4 and SI5).The fragmentation of oil into multiple discrete droplets was most strikingly 

observed in the larger pores, but it also occurred in pores with volumes spanning over three orders of 

magnitudes, from 108 to 1010µm3 (Figs. SI4 and SI5). Note that the observation and quantitative 

analysis of this effect within pores with volumes smaller than 108 µm3 was limited by image resolution.   

 The work done by the viscous forces that are exerted on trapped oil clusters in the pore space 

of the core during high flow rate imbibition caused the clusters to break up into droplets, which 

increased the total surface area of the oil-brine interface and hence the interfacial energy.  
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Analysis of Fragmented Oil Droplets 

Fragmentation Energy: A suspended oil droplet forms a spherical shape to minimize its surface area 

(𝐴) and so surface free energy (σobA). Most fragmented droplets have shapes that are close to spherical 

(Fig. SI8 provides a measure of the sphericity of the fragmented oil droplets). We assume an oil-brine 

(σob) and oil-solid (σos) interfacial tension of 35mNm-1 and 5mNm-1 (28), respectively, and estimate 

the change in surface energy ΔE during fragmentation displacement as ∆𝐸 = 𝐴𝑜𝜎𝑜𝑏−𝑁𝐴𝑖[(1−𝑓)𝜎𝑜𝑏+𝑓𝜎𝑜𝑠]𝐴𝑜𝜎𝑜𝑏 ,                                                                (1) 

that is the increase in interfacial energy due to fragmentation into N droplets divided by the surface 

energy of the original droplet. Note that a fraction f of the fragmented oil droplets’ surface area is 
assumed to be in contact with the rock surface. The low oil-solid interfacial tension in this fraction 

stabilises the fragmented droplets. For any given droplet of arbitrary size a minor change in incremental 

energy (i.e. less than five times the original droplet’s surface energy) is required to extensively 

fragment the droplet. For instance, a droplet with radius of 50 μm requires ΔE approximately 5.3×10-

9 J to be fragmented into 200 smaller droplets. This is the maximum energy required considering f = 

0. The required ΔE decreases as f increases. Fig. 4 shows the additional relative energy required to 

fragment an oil droplet of arbitrary size into N smaller oil droplets. These calculations indicate that 

droplet fragmentation can occur for relatively small changes in interfacial energy. 

 
Figure 4: Additional energy for fragmentation of an oil droplet of arbitrary size relative to the surface energy of the 

original oil droplet as a function of the number of fragments N and the fraction of the droplet’s surface that is in contact 

with the rock,  f. The additional energy required for fragmentation is less than five times the original surface energy, 

which indicates that droplet fragmentation can occur for relatively small changes in interfacial energy that are consistent 

with the fluid properties used in the experiments. 

Statistical Analysis of the Remaining Fragmented Droplets: The overall increase in oil recovery due 

to fragmentation events is 10% of the initial oil saturation. The three pores depicted in Fig. 3 and Figs. 

SI4 and SI5 have volumes of 1010, 109, and 108 μm3, respectively. The volume fraction of the recovered 

oil as a result of fragmentation displacement is 68%, 38 %, and 52%, respectively, of the oil trapped 

in these three pores after the slow imbibition. This change constitutes significant oil production that 

was initiated by fragmentation displacement and may explain published experimental observations of 

capillary desaturation at increasing capillary numbers (11) and in particular in rocks such as carbonates 

which comprise a wide pore size distribution.  

Stability of the Fragmented Oil Droplets: The fragmented droplets were static in the same 

configuration in scans separated by over 24 hours and did not move during the three hour period of 

data acquisition for each scan. All fragmented oil droplets were in contact with the pore surface and 
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stabilised by their contact with the mineral surface, relative to droplets freely dispersed in suspension 

(Fig. SI3).  This condition of dispersed droplets attached to the mineral wall of the pore is metastable 

with respect to an un-fragmented oil droplet, as discussed above. 

For the pore shown in Fig.3 droplet fragmentation increased the oil-brine interfacial area as 

well as the oil-rock contact surface per unit volume of oil by factors of 1.62 and 4.12, respectively. 

The f values (per unit volume of oil) therefore increased from 0.24 to 0.43, providing more stabilisation 

for the fragmented oil droplets.  For interfacial area calculations we refer to (23). The change in 

interfacial energy ΔE of the oil phase was 0.73 of the initial energy of the trapped oil before 

fragmentation (6.4×10-7 J). The fragmentation energy calculations for pores with volumes 1010 and 108 

μm3 are presented in Table SI2, and Fig.SI6. 

 

Cluster size Analysis – Percolation Theory: 

Percolation theory suggests that size distribution of the trapped non-wetting phase clusters in 

a porous media after imbibition at infinitesimally low flow rates should scale as a power-law  N(s) ~ 

s-τ  (29, 30) where s is the number of pores saturated by a trapped non-wetting cluster and τ is the 

power-law exponent. For 3D structures, numerical simulations suggest that τ is typically larger than 2 

(30-33). Values of τ larger than 2 were also observed in direct measurements of trapped cluster 

distributions in clastic rocks and synthetic porous media (13, 16, 17). 

Fundamentally, percolation theory can only be applied to capillary-dominated flow with 

infinitesimally slow displacement rates. Therefore, here we only discuss the data obtained after the 

slow imbibition. It is possible to fit portions of the trapped oil “volume” distribution with a number of 
power-law functions such that τ ≥ 2. However, the entire range of the data does not fit a single power-

law function (Fig. 5). According to percolation theory, a power-law behaviour is only applicable if the 

cluster size is defined as the number of pores occupied and not the volume of the clusters (34). In 

homogeneous pore structures with narrow pore size distributions, the pore number-to-volume scaling 

approaches 1:1. Hence, the cluster sizes measured in volume using X-ray µCT imaging can closely 

replicate the number of pores occupied by the clusters.  However, for heterogeneous pore systems with 

a wide pore size distribution, the pore number-to-volume scaling is no longer 1:1, therefore the number 

of pores occupied by clusters cannot be deduced from the volume of clusters. Further, the power-law 

scaling is valid only for clusters with s > 1 (34) (i.e. the by passed oil clusters and not the clusters 

trapped in single pores as a result of snap-off). The power-law applies to distributions excluding the 

clusters that only occupy a single pore (17).    

 



 
Figure 5: Cumulative cluster size probability distribution M(s) as a function of cluster size s, measured in voxels, 

calculated using a maximum likelihood estimator (35). It is possible to fit portions of the trapped oil “volume” 
distribution with a number of power-law functions such that τ ≥ 2. However, the entire range of the data does not fit a 

single power-law function. 

Summary and Conclusions   

Using X-ray µCT imaging and quantitative analysis of fluid phase distributions during drainage 

and imbibition processes (at low and high capillary numbers) in a heterogeneous carbonate core, we 

were able to visualise and identify features consistent with known pore-scale displacement 

mechanisms such as piston like and snap-off events.  In addition, we present evidence for a new pore-

scale mechanism that we term droplet fragmentation, which occurs at high capillary numbers. The 

experimental data suggests that droplet fragmentation significantly contributes to capillary 

desaturation at high capillary numbers in porous media with heterogeneous and multi-scale pore 

systems. 

Droplet fragmentation of the trapped oil phase was observed in the larger pores of the 

carbonate, spanning at least three orders of magnitude in volume ranging between 108 - 1010 μm3. The 

increase of viscous forces in these larger pores at higher capillary number is consistent with a small 

change in interfacial energy, which could cause larger trapped oil droplets to fragment into numerous 

smaller ones. These fragmented droplets are close to spherical shape to minimise their surface free 

energy.  

Droplet fragmentation has a range of implications for understanding, quantifying and 

modelling of multi-phase fluid flow processes in a number of applications including the remediation 

of non-aqueous phase liquid contaminants in groundwater aquifers, subsurface CO2 storage, and 

enhanced oil recovery. Droplet fragmentation changes the structure of the residual non-wetting phase, 

and hence increases the recovery of the non-wetting phase. Droplet fragmentation also enlarges the 

surface area between the wetting and non-wetting phase. The increase in surface area enhances mass 

transfer between both phases, which can be important for all these applications.  

For example, in groundwater remediation, fragmentation displacement could not only lower 

the residual saturation of the trapped non-aqueous phase and mobilise this phase, it also increases the 

fluid-fluid surface area which improves the effectiveness of surfactant addition and can accelerate the 

rate at which inorganic reagents and/or microbial treatments degrade non-aqueous phase liquids, (36, 

37). Similarly, during enhanced oil recovery, droplet fragmentation could reduce the residual oil 

saturation and enhance the rate at which chemicals and gases dissolve in oil (38). Both effects may 

increase oil recovery but issues of re-coalescence and mobilisation remain.  

τ = 2.74 for s > 103

τ = 2.97 for s > 104



The dissolution of trapped CO2 in brine during solubility trapping is an important mechanism 

for secure subsurface CO2 sequestration (39, 40). An increased CO2-brine surface area due to droplet 

fragmentation can accelerate this process. Although droplet fragmentation may be limited to carbonate 

formations as they normally contain a wide range of pore-sizes, it is expected that this mechanism is 

still of global importance considering that about 50% of the world’s hydrocarbon reserves and a major 
host to the world’s groundwater resources. Droplet Fragmentation is an additional mechanism that 

may need to be included in pore-scale models of displacement processes. 

Materials and Methods  

Two-phase core flooding experiments were performed integrating µCT and a custom built X-

ray transparent core holder (operating pressure to 690 kPa) to directly visualise fluid saturation 

distributions in a carbonate pore structure at pore-scale. The carbonate sample is an outcrop Silurian 

dolomite (Thornton Formation, USA) with a diameter of 12.5mm and length of 44 mm (φ ~ 17 %, K 

~ 50 md). The non-wetting phase is a mineral oil (50% 1-iododecane and 50% dodecane), the wetting 

phase is a 0.03 Molar aqueous solution of KI. This provided an excellent contrast between the two 

fluid phases and the rock on the acquired µCT images as well as an exact match between the densities 

of the two fluid phases (1.005 gr/cm3) which eliminated the potential for gravity driven fluid 

redistribution during data acquisition. Image reconstructions were made using Octopus (8.5) (41) and 

post-processing and quantifications were performed using Avizo Fire Versions 6.0 to 8.0. All 

tomographic data are at 11.25 µm per voxel resolution. 
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 Supporting Information 

Experimental Materials and Conditions 

Table SI1 lists the test cycle used in the experiments. Injections used two constant flow rates 

of 10 and 700 l min-1, which were chosen such that flow was dominated by capillary and viscous 

forces, respectively, at different stages during drainage and imbibition.   

 
Table SI1:  Fluid injections and X-ray µCT scanning steps during slow and fast drainage and imbibition. 

Injection step Flow Rate 

(µ𝑙 min-1 ) 
Capillary 

Number 
Linear Velocity 

(µ𝑚s-1) 
Injection 

Period 

(hrs) 

Pore 

Volumes 

Injected 
Slow oil injection 10 7.2 × 10-7 7.68 18 10 

Forced oil injection 700 4.9 × 10-5 538 0.23 10 
Slow brine injection 10 2.02 × 10-7 7.68 18 10 

Forced brine injection 700 1.54 × 10-5 538 0.23 10 
 

A custom X-ray transparent core holder was built using Delrin, nylon and epoxy resin materials 

(42). All fluid connections were made with low pressure liquid chromatography fittings. A Silurian 

dolomite rock from the Thornton formation, USA, was used as the porous medium. This rock is a 

sucrosic dolomite comprising more than 99% dolomite with a range of pore sizes from millimetre scale 

pores to pores of less than 1 µm (Fig. SI1). Fig. SI1 shows backscattered SEM images of a polished 

thin section of Silurian dolomite at three different magnifications and demonstrates the multiple-scale 

porosity of this rock. 

 
Figure SI1: Backscattered electron SEM image of a polished thin section of Silurian dolomite in three different 

magnifications, the carbonate rock display porosity over a range of pore sizes from sub-μm to mm scale. 

Fig. SI2 shows mercury injection capillary pressure (MICP) results for three 25 mm diameter 

plugs of Silurian Dolomite. The MICP curves indicate that the rock has a well-connected pore network 

where 98% of the pore space of the rock is invaded at pressures less than 700 kPa. The pore throat 

distributions show three peaks at a radius of 16, 16, 14 µm for the three SD1, 2, 3 samples, respectively. 



On average, 31% of the pore space of these plugs is connected to pore-throats that are below image 

resolution. Image resolution is 11.25 µm. 

 

Figure SI2: Mercury injection capillary pressure test results for 3 Silurian dolomite plugs (2.54 cm diameter) 

showing (A) the capillary pressure-saturation curve and (B) the pore throat size distribution. The red line shows the 

limiting resolution of 11.25 µm for X-ray µCT imaging in this study. The volume fraction of pores connected to throats 

smaller than image resolution varies between 26 and 42 % with an average of approximately 31% for these three Silurian 

Dolomite core plugs. 

Droplet Fragmentation 

Fig. SI3 shows examples of fragmented oil droplets trapped in pores after the fast brine 

injection step at a scale of a few millimetres. All fragmented droplets are in contact with the pore 

walls when visualised in 3D 

 

Figure SI3: 2D examples of fragmented oil droplets (white) in pores that are a few millimetres in size. The scale 

bar is 1 mm. The black colour represents the brine phase. Droplets that appear to be in free suspension are in 

contact with the pore surface when viewed in 3D. 

Figs. SI4 and SI5 present two examples of fragmentation that occurred in pores with volumes of 1010 

and 108 µm3, respectively.  
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Figure SI4: 3D rendering of oil clusters after (A) slow (10 µl min-1) and (B) fast (700 µl min-1) brine injections. Pore 

volume of the order of 1010 µm3 for (A) after slow brine injection and (B) oil after fast brine injection. 

 
Figure SI5: 3D rendering of oil clusters for (A) slow (10 µl min-1) and (B) fast (700 µl min-1) brine injections. Pore 

volumes are on the order of 108 μm3. This is an example of the smallest pores for which the droplet fragmentation 

mechanism can be observed. 

Calculation of the fragmentation energies requires segmentation of the co-existing phases. The 

brine film is of sufficient thickness so that it can be segmented and visualised after fast imbibition. 

However, visual inspection of the data captured after slow imbibition suggests that the thickness of the 

brine film is different in different pores due to differences in capillary pressure acting in differently 

sized pores.  Therefore, the segmentation of the brine film from these images remains uncertain. For 

the cases where snap-off has trapped an oil droplet in a single pore, the brine film appears to be thicker 

and hence can be segmented more easily (e.g. Fig.3). The brine film is thinner and more difficult to 

segment if the oil cluster spans a number of neighbouring pores (Figs. SI4 and SI5).  



 
Figure SI6: Uncertainty in segmentation of the brine phase in the three pores presented in Figs. 3, SI4 and SI5, (A-C) 

greyscale µCT slices, (D-F) corresponding segmented brine phase. The brine phase is only well-segmented in the pore 

presented in (B,E). In the other two pores the brine phase is only partially segmentable. This causes an underestimation 

of the total surface energy. The scale bar is 1 mm.  

If segmentation of brine film is not possible, the oil phase appears to be in direct contact with 

the rock surface, leading to an overestimation of the fraction of oil-solid contact area f and therefore 

to an underestimation of the total surface energy. For this reason, the calculated fragmentation energy 

(presented in Table SI2) is over-estimated for the two pores in Figs. SI4 and SI5. 

 

Table SI2: Statistical analysis of the trapped oil phase for the pore presented in Figs. SI4 and SI5, respectively. 

Note that these are only exemplary for a number of droplet fragmentation events imaged in different pores. 

 

Pore 

volume 

µm3 

Brine 

injection 

µl min-1 

Number 

of oil 

droplets 

Oil 

Volume  

µm3 

Oil-Brine 

Interface / 

Oil Volume 

µm-1 

Oil-Rock 

Contact/Oil 

Volume µm-1 

ΔE/Oil 
Volume 

 

f 

Pore in 

Fig. 

SI4 

1.1×1010 
10 1 9.99×109 2.17×10-4 7.28×10-3 

4.8 
0.97 

700 242 2.95×109 5.03×10-3 1.09×10-2 0.68 

Pore in 

Fig. 

SI5 

2.01×108 
10 5 1.88×108 7.09×10-4 1.87×10-2 

2.32 
0.96 

700 23 9.03×107 8.45×10-3 2.15×10-2 0.72 

Fig. SI6 provides a measure of spheriodicity of the trapped oil droplets in the three pores 

depcited in Figs. 3, SI4 and SI5 by comparing their shape factor (surface area/ volume) with that of 

equivalent spheres (3/equivalent radius). The larger droplets have shapes that deviate from perfect 



spheres due to the geometry of the pores confining them.  For the smallest pore with a volume of 108 

m3, the deviations stem from resolution limitations. 

 

Figure SI7. Comparison of the sphericity expressed in terms of the shape factor (surface area/ volume) of the fragmented 

oil droplets for the pores presented in Figs. 3 (A), SI4 (B), and SI5 (C), respectively, with the shape factors for spheres 

(3/radius). Note that most fragmented droplets have shapes that are close to spherical. 

 

Figure SI8: Comparison between the volume of fragmented oil droplets and the volume of oil droplet trapped in the pore 

before fragmentation for the pores presented in in Figs. 3 (Pore 1), SI4 (Pore 2), and SI5 (Pore 3).  89 %, 90%, and 44 %, 

respectively, of the droplets are smaller than the volume of the original oil droplet by at least two orders of magnitude. 
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