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We study the time evolution of a sessile liquid droplet, which is initially put onto a solid surface in a
nonequilibrium configuration and then evolves towards its equilibrium shape. We adapt here the standard
approach to the dynamics of mechanical dissipative systems, in which the driving force, i.e., the gradient
of the system’s Lagrangian function, is balanced against the rate of the dissipation function. In our case,
the driving force is the loss of the droplet’s free energy due to the increase of its base radius, whereas the
dissipation occurs because of viscous flows in the core of the droplet and frictional processes in the vicinity
of the advancing contact line, associated with attachment of fluid particles to solid. Within this approach,
we derive closed-form equations for the evolution of the droplet’s base radius and specify regimes at which
different dissipation channels dominate. Our analytical predictions compare very well with experimental
data.

I. Introduction

Many industrial and material processing operations
require the spreading of a liquid on a solid. To name but
a few, we might mention coating and painting, plant
protection, glueing, oil recovery from porous rocks, and
lubrication. Consequently, the liquid may be a paint, a
lubricant, an ink, or a dye. The solid may either have a
simple surface or be finely divided, as in the case of
suspensions, porous media, or fibers.1-8

Apart from the fundamental problem of whether a given
solid is wetted by the liquid in question, many of the
practical applications require precise knowledge of the
rates of the wetting processes. Particularly, one is often
interested to know how fast a liquid droplet, when
deposited on a solid substrate, can wet a given area of the
solid surface.

In this regard, two different types of descriptions of
sessile droplet spreading exist: hydrodynamic and mo-
lecular kinetic, which differ from each other mostly in the
consideration of the dominant dissipation channel.1,3-8

The first approach emphasizes the dissipation due to
viscous flows generated in the core of the spreading droplet.
Within this approach, which has been scrutinized by many
authors during the last several decades,9-16 a relation

between the capillary number Ca and the value of the
contact angle θ(t) has been derived. This relation, which
represents a zeroth-order approximation in the expansion
in powers of the capillary number, yields simple scaling
laws determining the time evolution of the contact angle
and the droplet’s base radius R(t). In case of spreading
circular droplets, one finds R(t) ∼ t1/10 and θ(t) ∼ t-3/10.
These scaling laws have been examined experimentally
and shown to agree fairly well with experimental data for
many liquid/solid systems.8-12,16,17 On the other hand, early
studies by Sawicki,17 who has examined experimentally
spreading rates of liquid droplets composed of PDMS
polymershavingdifferentmolecularweights (anddifferent
viscosities), have demonstrated pronounced departures
from the R(t) ∼ t1/10 behavior for liquids of progressively
lower viscosity. Moreover, it has been realized (for
example, see Cazabat et al.4 for a general discussion) that
fitting experimental data to hydrodynamic descriptions
(which presume certain cut-off is at short length scales or
small contact angles) often leads to unreasonably small
values of these empirical cut-off parameters, which fall
below molecular size.

The second approach, which originates from the mo-
lecular kinetic theory of Eyring,19 has been adapted to
describe the kinetics of wetting phenomena by Blake18

Blake and Hayes,18 and Cherry and Holmes20 and was
subsequently developed by others.6,21,22 In contrast to the
hydrodynamic picture, this approach concentrates on the
dissipative processes occurring in the vicinity of the
advancing contact line, which stem from the attachment
of fluid particles to a solid, and ignores the dissipation
due to viscous flows in the core of the liquid droplet. In
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this approach, one finds for the dynamics of the base radius
and contact angle R(t) ∼ t1/7 and θ(t) ∼ t-3/7, respectively.
These laws have also been shown to work fairly well for
some experimental liquid/solid systems,8,21 which
apparently contradicts the behavior reported by
others.8-12,16,17 The origin of this discrepancy was under
debate for a long time.

On the other hand, it has been clearly understood that
both types of dissipation do exist simultaneously, and
several attempts to work out a combined theory have been
made. In particular, a simple way of formulating a
combined theory on the basis of the molecular kinetic
approach was discussed by Blake.6 It was supposed here
that the effects of viscous flows can be incorporated into
the molecular kinetic approach directly, by simple adding
to the barriers created by the liquid/solid attractions a
viscous contribution. This procedure results, however, in
equations which have essentially the same structure as
those originally found by others18 (apart from some
renormalization of coefficients, which now include the
liquid’s viscosity) and thus can not reproduce the experi-
mentally seen R(t)∼ t1/10 behavior. Another way of thought
has been put forward in the paper by Voinov,10 who has
conjectured an equation relating the value of the micro-
scopic cut-off angle θc, which is artificially introduced in
macroscopic hydrodynamic descriptions in order to remove
essential singularities and nonhydrodynamic dissipation
(hereafter denoted as T∑l). This idea has been subse-
quently developed by Petrov and Petrov,23 who have
combined heuristically the relation between the contact
angle θ(t) and the capillary number Ca, obtained in terms
of essentially macroscopic hydrodynamic theory, the
Voinov’s relation between the microscopic angle θc and
T∑l, and the Blake and Haynes expression for the contact
line velocity, which holds, in terms of this approximate
approach, for any value of Ca. Combination of these three
relations allowed for the derivation of a closed-form
expression for the contact line velocity as the function of
the parameters of the liquid/solid system in question.
Evidently, the resulting expression can serve as a very
useful interpolation formula, but care should be exercised
in interpreting the fitting parameters as physical quanti-
ties because this effective approach is clearly empirical.
Lastly, a rather different approach has been put forward
by de Gennes in his analysis of the energy dissipation in
the precursor film.1 It was suggested in this work that the
unbalanced capillary force should be compensated by the
total energy dissipation occurring during the spreading
process: namely, the viscous dissipation in the core of the
droplet, the dissipation at the advancing contact line, and
that in a precursor film. In this analysis, however, the
emphasis was put in the latter dissipation channel, and
the energy dissipation due to frictional processes in the
vicinity of the liquid/solid interface was intentionally
neglected. On the basis of this analysis, it has been claimed
afterwards by Brochard-Wyart and de Gennes2 that it is
most likely that nonhydrodynamic dissipation dominates
at relatively large values of the contact angle and the
hydrodynamic dissipation channel prevails at smaller
angles. However, no selection of the kinetic regimes
associated with different dissipation channels has been
performed within this physically meaningful approach.

In the present paper, we develop a macroscopic dynamic
description of a sessile liquid droplet spreading on solid
surface in a situation appropriate for partial wetting, i.e.,
such that the macroscopic spreading power characterizing
the liquid/solid system in question is negative. In our

approach, we take into account two different dissipation
channels: dissipation due to viscous flows and that due
to frictional processes in the vicinity of the contact line.
Dissipation in the precursor film, which is not a generic
feature for partial wetting, is not considered here. To
describe the time evolution of the droplet, we adapt the
standard mechanical approach to dissipative system
dynamics,24 in which the driving force, the gradient of the
system’s Lagrangian function, is balanced by the rate of
total dissipation. In our case, the driving force is the loss
of the droplet’s free energy due to the increase in the base
radius. Consequently, our approach complements that
proposed by de Gennes.1 Furthermore, we derive closed-
form equations describing the time evolution of the
droplet’s base radius and discuss several possible kinetic
regimes associated with different dissipation channels.
We show that, as it was expected intuitively, both
dissipation channels may be important, but they have a
dominant effect on the kinetics of the wetting process at
different time scales: namely, nonhydrodynamic dissipa-
tion resulting in the law R(t) ∼ t1/7 prevails at relatively
short times, and hydrodynamic dissipation which yields
the t1/10 law represents the dominant dissipation channel
at long times. Moreover, we find explicitly the crossover
time separating these two regimes; we show that it may
be very large for liquids with low viscosity or substrates
with high friction coefficients, such that the t1/10 law will
show up only at very long times, which is in agreement
with the trend observed by Sawicki.17,21 This allows us to
conclude that those experiments which show the departure
from the R(t) ∼ t1/10 behavior are apparently performed
with liquid/solid systems with the crossover time suf-
ficiently large compared to the time scale of observation.
On the other hand, experiments which reveal such a law
are done with systems with low values of the crossover
time.

Our paper is structured as follows. In Section 2, we
formulate our model and present the basic equations. In
Section 3, we propose a comparison between the general
analytical equations, derived in Section 2, and experi-
mental data. Section 4 is devoted to the analysis of different
asymptotical regimes, which stem from the different
dissipation channels. Finally, in Section 5, we conclude
with a brief discussion of our results.

II. The Model and Basic Equations
Consider a nonvolatile, sessile liquid droplet of volume

V, which is placed at time t ) 0 on an ideal horizontal solid
substrate, and exposed to a neutral gas phase, for example,
air. We suppose that the initial shape of the droplet is
part of a sphere, which is characterized by the base radius
R0 and the macroscopic contact angle θ0 (see Figure 1).

(23) Petrov, P. G.; Petrov, J. G. Langmuir 1992, 8, 1762.
(24) Landau, L. D.; Lifschitz, E. M. Mechanique, 3rd ed.; Edition

MIR: Moscou, 1969.

Figure 1. Schematic picture of a sessile droplet spreading on
a solid substrate.
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For simplicity, we will suppose in what follows that θ0 e
π/2.

The key parameter, which defines the qualitative
behavior of the liquid droplet on a given substrate, is the
spreading power S. Explicitly, S is given by

where γSG, γ, and γSL denote the solid/gas, liquid/gas and
solid/liquid interfacial tensions, respectively.

When S g 0, the droplet spreads spontaneously and
tends to shield the solid from the gas phase. In the
conventional macroscopic picture, the droplet spreads
completely such that the final stage is a liquid layer,
covering the solid surface. More elaborate theoretical
descriptions have demonstrated, however, that this is not
necessarily so and spreading may cease when the height
at the apex of the droplet falls to mesoscopic or microscopic
scales (for example, see de Gennes1). At such scales the
disjoining pressure, which tends to thicken the droplet,
becomes essential and competes effectively against the
capillary forces; in consequence, an equilibrium pancake-
like structure may arise instead of the molecular film.
The thickness of this extended structure is determined by
the interplay between the spreading power and the liquid/
gas interfacial tension γ.

When S < 0, the liquid droplet partially wets the solid.
Depending on its initial shape, the macroscopic droplet
may contract or dilate, but it eventually reaches an
equilibrium spherical caplike shape. In the present work,
we will be concerned only with the latter case, supposing
that the spreading power is negative. Consequently, in
the situation under study, a liquid droplet, which is
characterized initially by the base radius R0 and the
contact angle θ0, will spread on the solid substrate until
it reaches an equilibrium shape with base radius Req and
contact angle θeq (θeq > 0), which obeys the Young’s
equation, written here as

Further on, we will suppose that the droplet, which is
placed initially in a nonequilibrium configuration, retains
the ideal spherical cap form at any moment in time. This
implies that the instantaneous configuration of the droplet
can be totally described by a single parameter: it is either
the time-dependent base radius R(t), the contact angle
θ(t), or the height at the apex of the droplet h(t). Measuring,
for instance, the instantaneous base radius, we can
calculate the corresponding values of the dynamic contact
angle by virtue of the conservation of volume condition,
which gives

where

The corresponding height at the apex of the droplet is
then determined by

We hasten to remark, that such an approximation is
used here only for the derivation of simple explicit
formulae. Any other relationship between the contact
angle and the base radius could be incorporated within
our approach but would not significantly change the
results. Moreover, our approximation is appropriate in
its own right when several reasonable physical conditions
are fulfilled.25-28 First, the droplet has to be sufficiently
small, such that the bond number is small and thus gravity
effects can be ignored. Second, attractive liquid/solid
interactions (say, van der Waals interactions) are to be
sufficiently short-ranged. As a matter of fact, the interac-
tions with the substrate will always distort the liquid edge
in the vicinity of the substrate. We suppose here that the
typical size of the distorted region, which is normally
microscopically or mesosocopically large, is much smaller
than the characteristic scale of observation. Lastly, the
viscosity of the liquid droplet has to be not very large. It
is known, for instance, that for high-viscosity liquids, such
as liquids composed of polymers with high molecular
weight, only the upper part of the droplet can be well-
approximated by a spherical cap; closer to the substrate
there appears a microscopically large protruded region,
the so-called “foot.”

Within the spherical cap approximation, the potential
energy of the gas/liquid/solid system can be written as a
function of R(t) only. The associated free energy is then
given by

where the terms under the integral describe, in the usual
fashion, the surface energy of the droplet, and the other
terms give the contributions due to the tensions of the
solid/gas and solid/liquid interfaces. The function ê(F)
defines the height of the droplet at distance F from the
symmetry axis (see Figure 1). From eqs 3 and 4, we find
that for fixed R(t) the local height ê(F) obeys

Let us now consider the spreading dynamics and address
the question of how a droplet with initial radius R0 evolves
in time to the equilibrium state with base radius Req. To
do this, we consider the droplet as a purely mechanical
system, the configuration of which is uniquely defined by
eq 5 [in fact, by the instantaneous value of R(t)], and relate
it to the total dissipation occurring during the change in
the droplet radius from the value R(t) to the value R(t) +
δR(t).1

Now, the relation between the driving force of spreading,
derived from eq 6, and the energy dissipation is provided
by the standard mechanical description of dissipative
systems dynamics.24 Because F{R(t)} is not explicitly
dependent on time, the corresponding dynamic equation
will contain only two terms,

where T{R(t); Ṙ(t)} denotes the dissipation function, which

(25) Greenspan, H. P. J. Fluid Mech. 1978, 84, 125.
(26) Hocking, L. M. J. Fluid Mech. 1976, 76, 801; 1977, 79, 209.
(27) Shikhmurzaev, Y. D. Phys. Fluids 1997, 9, 266.
(28) Marmur, A. J. Colloid Interface Sci. 1997, 186, 462.

S ) γSG - γ - γSL (1)

cos θeq ) 1 + S
γ

(2)

R3(t)
V

) 3
π
φ[θ(t)] (3)

φ[θ(t)] )
[1 + cos θ(t)] sin θ(t)

[1 - cos θ(t)][2 + cos θ(t)]
(4)

h(t) ) R(t)
[1 - cos θ(t)]

sin θ(t)
(5)

F{R(t)} ) π R2(t) (γSL - γSG) +

2 π γ ∫0

R(t)
F dFx1 + [dê(F)/dF]2 (6)

ê(F) )
R(t)

sin θ(t) [(1 -
F2 sin2 θ(t)

R2(t) )1/2

- cos θ(t)] (7)

∂T{R(t); Ṙ(t)}
∂Ṙ(t)

)
∂F{R(t)}

∂R(t)
(8)
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describes the total dissipation in a circular liquid droplet
with base radius R(t) and a contact line moving with
velocity Ṙ(t), and the term on right-hand side determines
the driving force of spreading, the derivative of the liquid/
solid potential energy with respect to the base radius.
Actually, eq 8 is almost verbatim the description proposed
by de Gennes.1

Substituting eq 7 into eq 6 and performing the integra-
tion under the constraint of total volume conservation,
one obtains for the driving force on the right-hand side of
eq 8 the following conventional expression

As a matter of fact, eq 9 ensures that the right-hand side
of eq 8 vanishes (and, consequently, the spreading stops)
when the droplet’s base radius and the contact angle reach
their equilibrium values, as prescribed by Young’s equa-
tion and eq 3.

Now, following de Gennes,1 the dissipation function can
be represented as a sum of three different components,

where the first term describes the dissipation occurring
in the immediate vicinity of the contact line, the second
one describes the losses due to viscous flow in the core of
the droplet, and the third one stems from the dissipative
processes taking place in the precursor film. In the
complete wetting case, as shown by de Gennes,1 the third
term is of crucial importance: the entire spreading power
S is dissipated into the film. In the partial wetting case,
however, the appearance of the precursor film is not
generic. We therefore restrict our consideration to the
partial wetting regime without a precursor and do not
consider such dissipations here. We also hasten to remark
that eq 10 implicitly presumes that the substrate is rigid
and cannot be deformed by the droplet, as may occur with
such soft “solids” as human skin, rubber, or elastomers.
In this latter situation, one should take into account an
additional dissipation channel which will result in in-
teresting intermediate-time behavior (for example, see
Shanahan and de Gennes29 and Shanahan and Carre30).
We will not consider such a possibility here.

Let us discuss in more detail the forms of the two
remaining terms, namely, T∑l and T∑w. Dissipation in
the vicinity of the contact line results from various
physicochemical processes which lead to the attachment
of liquid molecules to the solid. Such a dissipation channel
was considered first by Blake18 and Cherry and Holmes20

and subsequently scrutinized by several authors (for
example, see Dodge21 and Ruckenstein and Dunn22 and
references therein). According to Blake and Blake and
Haynes,18 the microscopic process associated with the
dynamics of the contact line is the hopping motion of the
fluid molecules at the edge of the droplet between
adsorption sites distributed on the solid surface; the motion
of the molecules at the contact line is not symmetric and
they are displaced away from the droplet by molecules
from the advancing liquid edge. At low velocities, the
leading contribution to T∑l is

where ú0 is the friction coefficient, which is determined
as18

In eq 12, T denotes the temperature, k the Boltzmann
constant, n the concentration of adsorption sites, and Kw

0

and λ the typical jump frequency and length of molecular
displacements, respectively. We note also that eq 11 is a
simple linearized form of a more general result derived
by Blake and Haynes,18 which strictly applies for only
small capillary numbers, Ca ) ηṘ(t)/γ and Ca , 1.

Next, the displacement of the contact line is followed
(or preceded) by the redistribution of the fluid particles
in the core of the liquid droplet, which generates a complex
flow pattern. This flow pattern has been analyzed in details
both experimentally and theoretically (see Dussan,5
Dussan and Davis,31 Bretherton,32 and Huh and Scriven33

and references therein). Experiments have evidenced a
very characteristic rolling motion, reminiscent of a
caterpillar track; i.e., the liquid velocity at the free surface,
which is directed towards the advancing contact line, is
larger than that inside the bulk, and liquid particles that
are initially at the free surface ultimately move to the
solid substrate. This rolling motion also gives rise to
viscous dissipation.

To calculate the contribution of such flows to the total
dissipation function, we make use of the picture introduced
by Seaver and Berg15 in their derivation of the Voinov-
Hofmann-Tanner law, R(t) ∼ t1/10. The results of this
oversimplified approach differ from the rigorous analysis
of Cox13 only by insignificant numerical factors. Now,
Seaver and Berg assumed that the fluid dynamics of the
spreading spherical cap can be approximated by that of
a spreading cylindrical disk of radius R(t), height h*, and
volume equal to the volume V of the droplet; see Figure
2. The height of the disk h* is not an independent
parameter but is fixed by the volume V and the radius
R(t),

Under the assumption that the radial component VF of
the fluid velocity is much greater than the ê-component,
the continuity and F-momentum equations for the spread-
ing cylindrical disk reduce to

where η denotes the liquid viscosity.
Solving eqs 14 and 15 subject to the no-slip boundary

condition at ê ) 0, Seaver and Berg found that, within the
geometrical approximations involved and exclusive of the
ê-component of the flow velocity, the radial flow in the

(29) Shanahan, M. E. R.; de Gennes, P. G. Adhesion 11; Allen, K. W.,
Ed.; Elsevier Applied Science: London, 1987; p 71.

(30) Shanahan, M. E. R.; Carre, A. Langmuir 1995, 11, 1396.

(31) Dussan, E. B., V.; Davis, S. J. Fluid. Mech. 1974, 65, 71.
(32) Bretherton, F. P. J. Fluid. Mech. 1961, 10, 166.
(33) Huh, C.; Scriven, L. E. J. Colloid Interface Sci. 1971, 35, 85.

T∑
l
) 2πR(t)

ú0[Ṙ(t)]2

2
(11)

ú0 ) nkT
Kw

0 λ
(12)

h* )
R(t)

3φ[θ(t)]
(13)

∂(FVF)
∂F

) 0 (14)

η[ ∂

∂F(1F ∂(FVF)
∂F ) +

∂
2VF

∂ê2 ] ) 0 (15)

∂F{R(t)}
∂R(t)

) -2πR(t)γ[cos θeq - cos θ(t)] (9)

T{R(t); Ṙ(t)} ) T∑
l
+ T∑

w
+ T∑

f
(10)
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spreading droplet can be viewed as quasisteady laminar
Couette flow

where A is a constant. To calculate this constant, Seaver
and Berg supposed that the radial shear stress at ê ) h*
was balanced by the effective radial surface tension, which
yields eventually the desired Voinov-Hofmann-Tanner
law for the spreading droplet. To define the dissipation
in the core of the droplet due to viscous flows, we have to
consider a different boundary condition at the edge of the
disk. Namely, we impose the condition that the upper
part of the edge moves with a prescribed velocity Ṙ(t), i.e.,
VF [F ) R(t), ê ) h*] ) Ṙ(t), which gives for the F-component
of the velocity the following result:

Now, the dissipation in the core of the droplet due only
to radial flows is defined by

Substituting eq 17 into eq 18 and integrating over the
droplet’s volume, we find

where the parameter a denotes the lower cutoff value of
F. Without this cutoff, the core viscous dissipation will
diverge, because the velocity at the symmery axis of the
droplet has a singularity. This singularity is quite
artificial, however. Clearly, instead of the singular be-
havior predicted by eq 17, one may expect that the radial
velocity is zero at the symmetry axis and remains small
within some cylindrical region of radius a centered at this
axis. This is precisely the meaning of the parameter a:
it is the radius of the core region, which is stagnant with
respect to the radial dilation. Here, we do not attempt to
determine a analytically, which would require the solution
of complete momentum and continuity equations, and will
use it only as an adjustable parameter, whose value will
be extracted from the fit of the experimental data. We
note finally that as with eq 11, eq 19 determines only the
leading contribution to the dissipation in the core of the
droplet, appropriate at low capillary numbers Ca.

Combining eqs 9-11 and 19, we find from the balance
of forces given by eq 8 the desired dynamic equation, which
describes the time evolution of the base radius or of the
time-dependent contact angle in the limit of low contact
line velocities:

or, equivalently,

where the parameter δ, which will be repeatedly used in
what follows, is the ratio of the friction coefficient for
motion of the contact line on the solid substrate and of the
bulk viscosity, δ ) ú0/η.

III. Comparison of Analytical Results and
Experimental Data

It has been demonstrated by Ruijter et al.34 that the
results of each of the molecular kinetic and the hydro-
dynamic models alone can rather accurately fit experi-
mental data. Because the equations evaluated here
combine the results of both models, we may expect that
they would fit experimental data at least equally as well
as any of the above-mentioned approaches or any other
combined approach.23 Here, however, one may claim that
the fitting parameters should be actually related to the
physical characteristics of both the dissipation due to
viscous flow in the core region of the droplet and to the
dissipation near the contact line, because our approach
is based on well-justified physical grounds.

One of the systems studied earlier34 was a droplet of
di-n-butylphthalate (DBP) on poly(ethyleneterephthalate)
(PET) substrate.35 At room temperature, DBP partially
wets PET substrates with a very low equilibrium contact
angle. The viscosity and surface tension of DBP were 19.6
mPa s and 34.3 mN/m, respectively. Here we use this set
of experimental data as a tentative test of the validity of
the arguments presented above. A more detailed analysis
of several experimental data sets will be published
elsewhere.

We fitted the current experimental data by solving eq
21, which is a first-order differential equation in R and
θ, using a fourth-order Runge-Kutta algorithm.36 Equa-
tions 3 and 4 were used to calculate the instantaneous
value of the base radius from the dynamic contact angle
(see Figure 3). The fitted parameters were θeq, δ, and a.
The errors between the fits and the experimental data
were calculated as follows:

where N is the number of experimental data and Ri
c and

Ri
m are the calculated and measured base radius at time

t(i), respectively. R0 denotes the initial measured base
radius. The function E can be seen as the percentage of
the average error per measured datum point. The result
of the fitting is shown in Figure 3 and in Table 1. The
values of θeq, δ, and a for this excellent fit are respectively
0.1 degree, 130, and 1.4 µm. The average error per
measurement is less than 1%.

Let us first consider the value of the cutoff, a. It is much
smaller than the dimensions of the droplet (mm), so that
eq 17 holds for most of the droplet. On the other hand, a
is much larger than the molecular length (nm), which is
consistent with the continuum description. In conclusion,
the calculated value of a supports the validity of the theory

(34) de Ruijter, M. J.; De Coninck, J.; Blake, T. D.; Clarke, A.; Rankin,
A. Langmuir 1997, 13, 7293.

(35) For material specifications and experimental conditions, see:
Ruijter et al.34

(36) Press, W. H.; Teulkolsky, S. A.; Vetterling, W. T.; Flannery, B.
P. Numerical Recipes, 2nd ed.; Cambridge University Press: New York,
1992.

Figure 2. Seaver-Berg approximation of the flow pattern in
a sessile droplet spreading on a solid substrate.
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together with the assumptions underlying the derivation
of eq 20. The large value of δ indicates that the friction
due to the bulk flow is much smaller than the friction in
the vicinity of the contact line. From δ, the friction
coefficient near the contact line ú0 is 2.6 Pa s. Thus, the
assumption of the hydrodynamic approach, namely, that
the dissipation near the contact line may be omitted, is
not appropriate for the liquid/solid system under consid-
eration. This was also pointed out earlier.34

Next, let us consider how the experimental data can be
fitted by the results of the hydrodynamic approach only.
If δ in eq 21 is forced to be 0, the equation becomes purely
hydrodynamic. Using this condition and the same set of
experimental data (see Figure 4), we find that a is
approximately 0.044 µm (Table 1). To compensate for the
dissipation near the contact line, a has to be smaller than
the value calculated before. The fit is not as good as before,
but the modified equation still models the data very well
(error is only about 1.2%).

Let us consider the fit of the experimental data using
the result of the molecular kinetic model only. We note
that eq 20 will reduce to the result of the linear capillary
number version of the Blake and Haynes molecular kinetic
theory if we discard the second term in the denominator
by setting, for instance, η ) 0. The best fit under this
condition is also shown in Figure 4. This time, the fit is
better except at very early times. The δ is now 330,
indicating that by using only the molecular kinetic theory,
we overestimate the friction near the contact line.

In conclusion, if only the dissipation in the bulk
(hydrodynamic model) or only the dissipation near the
contact line (molecular kinetic model) is considered, the
experimental data can still be fitted quite well. However,
the fitting parameters are adjusted to compensate for the
omitted dissipation channels and therefore lose some of
their physical meaning.

IV. Asymptotic Solutions of the Dynamical
Equations

Early-Time Dynamics. Let us consider first the
solution of eq 20 in the limit of short times, supposing, for
simplicity, that θ0 ≈ π/2. We find then from eq 20 that for
sufficiently small deviations from the initial values of the
base radius and the contact angle such that

these properties obey

and

Substituting eqs 25 and 26 into eqs 23 and 24, we thus
infer that this early-time linear dependence on time
persists until t < t1, where

Intermediate-Time Dynamics. At intermediate times,
i.e., such that t . t1 but still much less than the time at
which R(t) reaches its equilibrium value, it is not possible,
of course, to obtain simple scaling laws for R(t) of the form
R(t) ∼ tR. This becomes possible only when θeq , π/2 and
the contact angle θ(t) gets sufficiently small such that the
expansion of the trigonometric functions in their Taylor
series up to the second power of θ(t) is justified. In this

Figure 3. Contact angle relaxation of a DBP droplet on a PET
substrate at room temperature. The solid line is the best fit,
calculated with eq 20. The values of the fitting parameters are
given in Table 1.

Table 1. Comparison of the Fitting Parameters Using
Different Modelsa

model a (m) δ E (%)

combined (1.4 ( 0.2) × 10-6 130 ( 15 0.6
hydrodynamic (4.4 ( 0.4) × 10-8 0 1.2
molecular-kinetic 330 ( 40 0.7

a The errors on a and δ are calculated with the bootstrap
method,34,36 assuming a standard deviation of 1° on the individual
contact angle measurements.

Figure 4. Contact angle relaxation of a DBP droplet on PET
substrate at room temperature. The solid line represents the
best fit with the hydrodynamic model, eq 20 with ú0 ) 0. The
dashed line is the best fit with the molecular kinetic model, eq
20 with η ) 0. The best values for both fits are given in Table
1.
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limit, eq 21 simplifies considerably:

In the limit δ ≈ 0, i.e., the limit when friction in the vicinity
of the contact line is negligibly small, eq 28 resembles,
apart from the logarithmic factors, the results obtained
earlier by de Gennes37 and Seaver and Berg.15 Equation
28 shows that in particular situations two different types
of scaling behavior can be observed at this intermediate-
time stage. For θ(t), which is small enough to ensure
expansion of the trigonometric functions into the Taylor
series, but still larger than some θc, which are ap-
proximately defined as

the first term in the brackets on the left-hand side of eq
28 is the dominant one. Consequently, one should observe
at this stage

or, for the dynamic contact angle,

i.e., exactly the behavior predicted by the molecular kinetic
approach.18,21 Using eqs 29-31, we can thus define the
characteristic time until the scaling behavior R(t) ∼ t1/7

is valid. Substituting eq 31 into eq 29, we find that eqs
30 and 31 can exist for times less than a certain t2, which
equals

This time can be sufficiently large, if the droplet’s volume
is large or δ is large. In this case, the regime described by
eqs 30 and 31 may persist over a wide time interval.

At times greater than t2, but such that R(t) is still less
than its equilibrium value, we will observe the crossover
to the Voinov-Hofmann-Tanner-type behavior

or, for the dynamical contact angle,

We note here that the crossover time t2 appears to be a
fundamental parameter, which distinguishes which of the
dissipation channels will dominate on the scale of experi-
ments. Apparently, those experiments which show the
departure from the R(t) ∼ t1/10 behavior are performed
with liquid/solid systems with characteristic time t2
sufficiently large compared to the time scale of observation.
On the other hand, experiments which reveal such a law
are done with systems with low values of t2. In particular,
the experimental data of Dodge,21 which favor the mo-
lecular kinetic prediction, i.e., R(t) ∼ t1/7, were obtained

for droplets composed of PDMS-OH molecules. These
polymers form strong chemical bonds with solid substrates
and consequently one can expect that for such systems ú0
and t2 are large, so that the behavior predicted by eq 31
persists over an extended time interval. We note also that
the trend observed by Sawicki17 is in complete qualitative
agreement with our results; namely, t2, eq 32, depends
strongly on the liquid’s viscosity, t2 ∼ η-7/3, and thus can
be very large for low-viscosity liquids.

Long-Time Relaxation to Equilibrium. Let us
consider finally the long-time behavior of the droplet when
it approaches the equilibrium shape. Representing the
base radius as R(t) ) Req - δR(t) and θ(t) as θ(t) ) θeq +
δθ(t), where δR(t) and δθ(t) denote small derivation38 from
the equilibrium values, substituting these expressions into
eq 28 and accounting for only linear terms, we have

which yields

with

We note that such an exponential form, with T treated as
an adjustable parameter, has been successfully used to
fit experimental data by Newman.39 Our work thus
provides an explicit interpretation of the characteristic
time T in terms of the liquid/solid system parameters.

Let us now reconsider the experimental data presented
above. Using the best values for θeq, a, and δ, we can
extrapolate the spreading behavior of our liquid/solid
system at different time scales. In Figure 5, we show the
whole time range, from milliseconds up to hours of

(37) de Gennes, P. G. Z. Kolloid Polym. Sci. 1986, 264, 463.

(38) We note that δR(t) and δθ(t) are not independent but related to
each other because of the volume conservation condition.

(39) Newman, S. J. Colloid Interface Sci. 1968, 26, 209.

Ca{2δθ(t) + 16/3ln[4V/πa3θ(t)]} ) θ(t)3 - θ(t)θeq
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Figure 5. Equation 20 with θeq ) 0.1, a ) 1.4 µm, and δ ) 130.
The values of t1, t2 and T are calculated with, respectively, eqs
27, 32, and 37. Two distinguished parts of the curve are fit by
linear regression as indicated.
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spreading, in a log-log plot but within the constraints of
Ca < 1 and θ < 90. The calculated values for t1, t2, and
T are 8.0 × 10-3, 4.5, and 1.5 × 104 s, respectively. In
Figure 5, it is shown that the time frame between t1 and
t2 can best be fitted by a straight line with slope 0.14, very
close to the expected 1/7. Above t2, the curve is best-fitted
by a straight line with slope 0.10, which is exactly the
predicted value. At times around T, the curve starts to
deviate from this linear fit. This is an explanation for the
different power laws which have been reported in the
literature. When concentrating on systems “far” from
equilibrium, as is mostly the case in forced wetting
experiments, the molecular kinetic theory should fit the
data very well. On the other hand, when systems are
studied close to equilibrium, we are likely to find the power
law predicted by the hydrodynamic models or, at very
long times, to find an exponential behavior.

Our experiments fall within the 10-2-10 s time frame,
around the value of t2. This is exactly the reason why we
could fit our data almost equally well with the hydrody-
namic model as with the molecular kinetic one.

V. Concluding Remarks
Using a combined dissipation channel approach, we

obtained a macroscopic analytical description of droplet

spreading on a solid surface in situations appropriate for
partial wetting. We have shown that in the general case
a succession of several different regimes can be observed.
Namely, (1) a fast early-time stage characterized by a
linear time-dependence of the base radius; (2) a kinetic
stage at which the dominant contribution to dissipation
comes from attachment of fluid molecules to a solid and
the time evolution of the base radius is compatible with
the predictions of the molecular kinetic approaches;18 (3)
a kinetic stage at which the hydrodynamic dissipation
dominates; and lastly, (4) an exponential relaxation to
the equilibrium state. Analyzing experimental data along
these lines allows us to obtain meaningful values for the
molecular friction and the necessary cut-off distance.
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