
J. Fluid Mech. (2019), vol. 878, pp. 221–276. c© The Author(s) 2019

This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.
doi:10.1017/jfm.2019.654

221

Droplet–turbulence interactions and
quasi-equilibrium dynamics in

turbulent emulsions

Siddhartha Mukherjee1, Arman Safdari2, Orest Shardt2, Saša Kenjereš1

and Harry E. A. Van den Akker1,2,†
1Section of Transport Phenomena, Department of Chemical Engineering, Delft University of Technology,

Van der Maasweg 9, 2629HZ, Delft, Netherlands
2Bernal Institute, School of Engineering, Faculty of Science and Engineering, University of Limerick,

Limerick, V94 T9PX, Ireland

(Received 25 January 2019; revised 7 August 2019; accepted 7 August 2019;
first published online 6 September 2019)

We perform direct numerical simulations (DNS) of emulsions in homogeneous
isotropic turbulence using a pseudopotential lattice-Boltzmann (PP-LB) method.
Improving on previous literature by minimizing droplet dissolution and spurious
currents, we show that the PP-LB technique is capable of long stable simulations
in certain parameter regions. Varying the dispersed-phase volume fraction φ, we
demonstrate that droplet breakup extracts kinetic energy from the larger scales
while injecting energy into the smaller scales, increasingly with higher φ, with
approximately the Hinze scale (Hinze, AIChE J., vol. 1 (3), 1955, pp. 289–295)
separating the two effects. A generalization of the Hinze scale is proposed, which
applies both to dense and dilute suspensions, including cases where there is a
deviation from the k−5/3 inertial range scaling and where coalescence becomes
dominant. This is done using the Weber number spectrum We(k), constructed from
the multiphase kinetic energy spectrum E(k), which indicates the critical droplet scale
at which We ≈ 1. This scale roughly separates coalescence and breakup dynamics as
it closely corresponds to the transition of the droplet size (d) distribution into a d−10/3

scaling (Garrett et al., J. Phys. Oceanogr., vol. 30 (9), 2000, pp. 2163–2171; Deane
& Stokes, Nature, vol. 418 (6900), 2002, p. 839). We show the need to maintain a
separation of the turbulence forcing scale and domain size to prevent the formation
of large connected regions of the dispersed phase. For the first time, we show that
turbulent emulsions evolve into a quasi-equilibrium cycle of alternating coalescence
and breakup dominated processes. Studying the system in its state-space comprising
kinetic energy Ek, enstrophy ω2 and the droplet number density Nd, we find that their
dynamics resemble limit cycles with a time delay. Extreme values in the evolution
of Ek are manifested in the evolution of ω2 and Nd with a delay of ∼0.3T and
∼0.9T respectively (with T the large eddy timescale). Lastly, we also show that
flow topology of turbulence in an emulsion is significantly more different from
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single-phase turbulence than previously thought. In particular, vortex compression and
axial straining mechanisms increase in the droplet phase.

Key words: turbulence simulation, breakup/coalescence, emulsions

1. Introduction

An emulsion consists of a dense suspension of droplets of one fluid (the dispersed
phase) suspended in another fluid (the continuous phase), and is often formed due to
turbulent mixing of these two immiscible fluids. Emulsions are found (both desirably
and undesirably) in a wide range of industries. For instance, in food processing,
diverse products depend on the stability and texture of emulsions (McClements 2015).
In biotechnology, emulsions can serve as miniature laboratories where living cells can
be compartmentalized into individual droplets (Griffiths & Tawfik 2006). They are
also known to cause various losses in crude oil production (Kokal 2005), or to the
contrary, enable enhanced oil recovery (Banat 1995). Emulsification, i.e. the formation
of an emulsion, requires shearing of droplets, which can occur both in laminar and
turbulent flow conditions, although the latter may be a more common occurrence.
Turbulent emulsions can be said to form a particular class of droplet-laden turbulent
flows where there is close interplay between turbulence and the dynamics of the
dispersed phase. Accurately describing these systems hence involves an account of
the dynamics of deforming interfaces, while allowing for coalescence and breakup of
droplets, resolution of a range of length and time scales of turbulent flow and the
possible presence of surface active agents (surfactants) that can alter the interfacial
dynamics. We ignore surfactants in the present study and focus only on emulsions
formed by pure fluids.

The primary effect of turbulence on droplets during emulsification is to cause
fragmentation, where an initially large connected volume of the dispersed phase
is broken into smaller droplets. Under sustained turbulence, there is a supposed
equilibrium between coalescence and breakup which leads to a droplet distribution
around a theoretical maximum stable diameter, known as the Hinze scale (Hinze
1955). This droplet distribution can be expected to follow a d−10/3 slope (where
d is the droplet diameter), which was first postulated and shown by Garrett, Li &
Farmer (2000) for a different system, i.e. air bubbles in breaking ocean waves, later
also confirmed by Deane & Stokes (2002). Although the emulsification process is
different from the bubble dynamics in a breaking wave, both can proceed via a
cascading breakup process governing the dispersed phase, which might only depend
on the inertia at a given scale (which in turn may be estimated from the rate of
energy dissipation in some cases). The dispersed phase influences turbulence by
drawing turbulent kinetic energy (TKE) from the flow, which partially goes into
the difference between the surface energy of parent and daughter droplets, while
the rest is stored in the deformation of interfaces. This reduces the effective TKE,
which has consequences for the turbulence cascade and spectrum, noticeably at scales
comparable to droplet sizes. Coalescing droplets in turn set finer flow structures into
motion, where interfacial tension releases the energy stored in droplet deformations
back as TKE into the flow at scales smaller than the droplet sizes (Dodd & Ferrante
2016).
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Turbulent emulsion dynamics 223

1.1. Literature review

In this paper, we study the dynamics of emulsification under continuously forced,
homogeneous isotropic turbulence. This is because most emulsification processes occur
under turbulent conditions (Walstra 1993; Leng & Calabrese 2004), for instance in
devices like static mixers (Berkman & Calabrese 1988), in-line (continuous) and batch
rotor-stator devices (mixing cells) (Atiemo-Obeng et al. 2004; Boxall et al. 2011),
high-pressure homogenizers (Schultz et al. 2004), ultrasonic systems (Leong et al.
2009), or naturally occurring events like oil spills in upper ocean turbulence (Li &
Garrett 1998).

While computational fluid dynamics (CFD) simulations have been instrumental
in understanding and designing emulsification equipment (Leng & Calabrese 2004;
Mortensen et al. 2017, 2018), numerically simulating emulsions while resolving
interfacial dynamics and turbulence (at modest intensities) is only now becoming
feasible. So far, however, a wealth of experimental studies on turbulent emulsification
has produced various statistical and phenomenological results which have been
interpreted in terms of fundamental concepts developed by Kolmogorov (1941) and
Hinze (1955). A few examples are the work of Davies (1985) who found droplet sizes
arising from various emulsifiers (fine clearance valves, colloidal mills, liquid whistles
and turbine impellers) to be in close correspondence to the Hinze (1955) scale,
and proposed modifications to the theoretical scaling to account for droplet capillary
pressure and viscous dissipation inside droplets. Tcholakova, Denkov & Danner (2004)
and Vankova et al. (2007) also verified these scalings using narrow-gap homogenizers.
Sprow (1967) showed the variation in droplet size distribution depending on the
location in a turbine mixer, Tcholakova et al. (2007) studied the effects of oil
viscosity, turbulent dissipation rate and interfacial tension on droplet distributions
using a narrow-gap homogenizer and Boxall et al. (2011) quantified the viscosity
dependence of droplet sizes in a turbulent mixing cell using in situ measurements.

It is worth noting that all of these systems are anisotropic at the largest scales, and
any comparison, when drawn, to results from classical turbulence theory (Kolmogorov
1941; Hinze 1955), are under the assumption that the local velocity fluctuations
(i.e. relatively smaller scales, far from the boundaries) are isotropic. To the best of
the authors’ knowledge, there have not been dedicated efforts towards realizing truly
isotropic turbulent emulsions experimentally, as for instance could be achieved with
von Kármán flow which is known to generate fluctuating, isotropic turbulence in its
core (Dubrulle 2019). This may be because most experiments are directed towards
optimizing or understanding emulsification processes or devices that are employed
industrially – and these systems invariably involve a large-scale anisotropy. In most
cases, however, it is reasonable to assume local isotropy of turbulence (particularly
at large Reynolds numbers), which is a first step towards formulating theory and
correlations that eventually must serve under even anisotropic conditions. Further,
the anisotropies between different experiments can differ greatly, and it is only the
small, isotropic scales that, owing to their universality, can be compared between
experiments.

Despite diverse advances, the dynamics of emulsification has remained intractable
to experiments due to the difficulty of performing complicated measurements during
the emulsification process, further aggravated by emulsions being optically opaque
and interfacial dynamics being inherently three-dimensional. To fully paint the
dynamical picture, one would need to measure the position of interfaces and the
spatial distribution of velocity (to quantify velocity gradients), along with their time
evolution. Simulations here are key, as they can reveal all these quantities in telling
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detail. There have been only a handful of numerical studies devoted to turbulent
emulsions, some of which have been detailed in the recent review by Elghobashi
(2019) on direct numerical simulations (DNS) of turbulent flows laden with droplets
or bubbles. We refer interested readers to it for a general overview, while we shall
discuss the current state of simulating turbulent emulsions, highlighting those aspects
that we intend to address with our work.

In one of the first studies, Derksen & Van den Akker (2007) simulated a turbulent
liquid–liquid dispersion using a free-energy-based lattice-Boltzmann (LB) method.
They modelled a fluid packet as it passes by the impeller in a stirred vessel, hence
experiencing a burst of turbulence, before entering a quiescent zone. They showed
the evolution of the droplet distribution in the dispersion under first constant and then
decaying turbulence, also reporting the modification to the kinetic energy spectra at
a crossover scale.

Perlekar et al. (2012) simulated droplet breakup in homogeneous isotropic
turbulence using a pseudopotential (PP) LB method, showing that the distribution of
droplet diameters has a finite width around the Hinze scale. Since Hinze’s criterion
does not account for droplet coalescence or coagulation, deviation from it was found
at higher volume fractions. Further, droplet breakup was attributed to peaks in the
local energy dissipation rate. The study reported that the method was originally
incapable of attaining steady-state simulations owing to droplet dissolution, which
was remedied by a mass correction scheme to artificially re-inflate droplets which
helped maintain a steady volume fraction (Biferale et al. 2011). Later, Perlekar et al.

(2014) simulated turbulent spinodal decomposition to show coarsening arrest in a
symmetric binary fluid mixture (which is compositionally similar to an emulsion,
although the morphology is distinctly different). Turbulence was shown to inhibit the
coarsening dynamics at droplet sizes larger than the Hinze scale.

Skartlien, Sollum & Schumann (2013) simulated a surfactant-laden emulsion under
weak turbulence (Reλ 6 20) using a free-energy LB method, and reproduced a d−10/3

droplet distribution. They did not find any influence of the surfactant in altering
the coalescence rates in the considered range of surfactant activities and turbulence
intensities. Also using a free-energy LB method, Komrakova, Eskin & Derksen
(2015a) simulated turbulent liquid–liquid dispersions at varying volume fractions,
focusing on the resolution of droplets with respect to the Kolmogorov scale. They
found that droplet dissolution was a significant issue, which made it impossible
to obtain a steady-state droplet distribution at low phase fractions, while at higher
phase fractions (φ > 0.2), despite breakup, most droplets coalesce to form a single
connected region with multiple smaller satellite droplets. Increasing the resolution of
the Kolmogorov scale remedied droplet dissolution to some extent, and a log-normal
droplet distribution was shown from transient simulations, as has been experimentally
found for turbulent liquid–liquid dispersions (Pacek, Man & Nienow 1998; Lovick
et al. 2005). The multiphase energy spectra could not be reproduced due to spurious
currents which caused unphysical energy gain at high wavenumbers, whose magnitude
was found to be close to the turbulent velocity scale u′.

In their detailed study on droplet–turbulence interaction, Dodd & Ferrante (2016)
simulated a large number of initially spherical droplets (φ = 0.05) in decaying
homogeneous isotropic turbulence using a mass-conserving volume-of-fluid method.
They considered a wide range of density and viscosity ratios between the droplet and
carrier fluids, and showed an enhanced rate of energy dissipation for increasing droplet
Weber number (We). Introducing the TKE equations, they showed that breakup and
coalescence act as source and sink terms of TKE. Roccon et al. (2017) studied the
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Turbulent emulsion dynamics 225

influence of viscosity on breakup and coalescence in a swarm of droplets (φ = 0.18)
in wall-bounded turbulent flow using a coupled Cahn–Hillard Navier–Stokes solver.
They report a slight drag reduction in the flow due to the presence of droplets, and
showed that a higher interfacial tension or droplet viscosity favours coalescence, and
the number of droplets rapidly decreases to 1 %–10 % of its initial value. At low
viscosity, where breakup dominates, around 50 % of the droplets remain separated
and their sizes follow Hinze’s 〈D〉 ∝ We−3/5 criterion, where D is the droplet diameter.

Recently, using a mass conserving level-set method, Shao et al. (2018) studied
interface–turbulence interactions in droplet breakup simulations. They showed that
vortical structures tend to align with large-scale interfaces before breakup. They also
showed that there is a slight increase in axial straining and vortex compression upon
mapping the flow topology in the presence of droplets, in comparison to single-phase
turbulence.

1.2. Our study

In this study, we resolve several of the issues faced in previous work, and report
new findings from direct numerical simulations of turbulent emulsions. We use the
PP-LB method for a multicomponent fluid system without phase change to simulate
the formation of a dispersion. PP-LB is well suited to simulating multiphase flows
comprising deformable droplets due to the spontaneous formation of interfaces
(emerging from simplified inter-particle repulsion forces) and naturally occurring
coalescence and breakup, all without the need for interface tracking or models for
film drainage (Shan & Chen 1993, 1994; Shan & Doolen 1995). In general, different
multiphase LB models have been used and validated successfully for simulating
droplets and bubbles in various flow conditions of varying complexity. A few
examples are simulations of binary droplet collisions and coalescence at different
density ratios (Inamuro et al. 2004a), inertial droplet collision dynamics (Inamuro,
Tajima & Ogino 2004b; Sun, Jia & Wang 2014; Moqaddam, Chikatamarla & Karlin
2016; Montessori et al. 2017) and droplet breakup in Stokes (Liu, Valocchi & Kang
2012) and inertial (Komrakova et al. 2015b) shear flows. Some examples of the
PP-LB method in particular are simulations of multiple bubble dynamics (Gupta &
Kumar 2008), droplet deformation and breakup in shear flow (Xi & Duncan 1999;
Biferale et al. 2011), droplet collision (Lycett-Brown, Karlin & Luo 2011) and impact
(Gupta & Kumar 2010) at high Weber numbers, droplet formation and breakup (Liu &
Zhang 2011; Wang et al. 2011) and gas–liquid flow (Kamali & Van den Akker 2013)
in micro-channels. Chen et al. (2014) gives an extensive review of the application
of PP-LB to various physical problems involving droplets or bubbles. PP-LB has
been used before for simulating droplets in turbulence as well (Perlekar et al. 2012,
2014; Albernaz et al. 2017), along with the free-energy LB method (Komrakova et al.

2015a).
However, LB comes with a caveat that owing to interfaces being diffuse,

coalescence is favourable when interfaces overlap. This makes the resolution of the
interface width relative to droplet sizes, i.e. the Cahn number, an important criterion
(Shardt, Derksen & Mitra 2013). The diffuse interface also leads to dissolution of
small droplets as has been noted before (Perlekar et al. 2012; Komrakova et al.

2015a; Berghout & Van den Akker 2019). We show that droplet dissolution can be
limited to a minor effect in certain parameter regimes, and that a mass correction
scheme as used in Biferale et al. (2011) and Perlekar et al. (2012) is not requisite
for simulating droplets in turbulence while using the original PP-LB method.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.654


226 S. Mukherjee and others

Additionally, multiphase LB simulations suffer from spurious currents (usp) which
are velocities arising from anisotropy in the discretization of inter-particle forces.
While it has been shown that usp can be kept small in the PP-LB method (Kamali
& Van den Akker 2013; Zarghami, Looije & Van den Akker 2015), also lower
than in comparison to conventional finite volume techniques like the volume-of-fluid
method (Mukherjee et al. 2018), in the free-energy LB method spurious current
were found strong enough to dominate the multiphase kinetic energy spectra at
high wavenumbers (Komrakova et al. 2015a). Further, in LB, the characteristic fluid
velocity (here the large-scale velocity U ) should be kept smaller than the lattice speed
of sound cs, such that the flow Mach number Ma = U/cs is low (where traditionally
Ma < 0.3 is considered incompressible) and hence the flow being simulated obeys
the incompressible Navier–Stokes equations. Hence, the velocities should scale as
cs > U ≫ usp, which we maintain in our work.

We simulate a dispersion in a periodic box, employing a forcing scheme to generate
homogeneous isotropic turbulence. One reason to consider isotropic turbulence is that
it is the simplest form of turbulence, and is widely used as the flow condition
to study the more complicated dynamics of Lagrangian objects like droplets or
particles. It further allows us to compare our results with the classical scaling laws
of Kolmogorov (1941), Hinze (1955), Garrett et al. (2000) and Deane & Stokes
(2002). The largest (i.e. energy injection) scale in our simulations is significantly
smaller than the largest flow scales in an experiment. Hence the system we consider
in our numerical set-up can be expected to form a small portion (assumed to be
isotropic) of a larger process (usually anisotropic). This assumption is reasonable
when considering the bulk regions of flow in physical systems like homogenizers and
mixers, or naturally occurring wave breaking phenomena, where far from boundaries,
at high turbulence intensities, the turbulent velocity fluctuations become more or less
isotropic. Conceptually, we expect that the energy cascade extends to much smaller
wavenumbers (than present in our simulations), up to the large-scale anisotropy which
drives the flow in physical situations. What we are able to capture is the tail-end of
the energy cascade – which has a small part of the inertial range transitioning into
the dissipation range. Hence we have droplets at the end of the inertial range. In
real physical systems, droplet dynamics will also occur in a similar range of scales
(and extend into the deep dissipation range), while much larger droplet-phase regions
(at significantly lower wavenumbers) will not occur. The effect of droplets on the
flow will then be namely extracting kinetic energy into deformations, generation of
smaller-scale motions via coalescence (both also corroborated by Dodd & Ferrante
(2016)), and the modification of local flow topology – and these aspects are what we
capture in our simulations.

We particularly study the influence of varying the dispersed-phase volume fraction
(φ) and turbulence intensity (Reλ) on the characteristics of the emulsification process
and the dispersion so formed. We show the influence of the dispersed phase on the
multiphase kinetic energy spectra, which has not been systematically presented before,
or was not possible due to the limitations of the numerical method (Komrakova et al.

2015a). We show that φ, Reλ and the interfacial tension γ together determine the
dispersion morphology, and that droplets of a particular characteristic length can
be generated by varying these parameters. Investigating local flow topology, we
show that the effect of the dispersed phase is significant and more pronounced than
previously stated (Shao et al. 2018), with a sharp increase in vortex compression and
axial straining in the droplet regions. We also present, for the first time, an analysis
of the equilibrium dynamics of a droplet-laden isotropic turbulent flow, showing
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that the system evolution in its state-space is akin to time delayed limit cycles with
alternating dominance of coalescence and breakup as the system oscillates between
different dispersion morphologies.

1.3. Lengthscales

Through this study we highlight a few considerations that have not been discussed in
previous work and are crucial to simulating droplets in turbulence. First is numerically
resolving to a sufficient degree the several lengthscales that govern different aspects
of these simulations. Of these, a lengthscale central to emulsification is the maximum
stable droplet diameter for a constant turbulence intensity. This was first given by
Hinze (1955), who expressed the critical Weber number for droplet breakup (i.e. the
ratio between inertial stresses across a droplet and restoring surface tension forces) in
terms of the energy dissipation rate ǫ, and is thus called the Hinze scale

dmax = 0.725(ρc/γ )−3/5ǫ−2/5, (1.1)

where ρc and γ are the carrier fluid density and interfacial tension, respectively, and
0.725 is a fitting constant. Since the dissipation field is far from uniform and is highly
intermittent, it is now accepted that the local variations in ǫ also set local Hinze
scales, and an entire spectrum of droplets centred around dmax tends to arise. Further,
deviations from the Hinze scale occur due to droplet coalescence in dense suspensions,
as the original scaling was derived for dilute systems with negligible coalescence. A
closely associated lengthscale is the interface width ζ , which in physical systems can
be of the order of nanometres for micron to millimetre size droplets. However, as a
limitation of our simulation technique (and every other diffuse interface method), the
interface width extends over a few computational grid cells. The ratio between ζ and
the droplet diameter d is termed the Cahn number Ch= ζ/d (Komrakova et al. 2015b),
and extreme values of Ch are undesirable. While we require Ch ≪ 1, coalescence
is expected to be fully suppressed in the limit Ch → 0 (Shardt et al. 2013; Shardt,
Mitra & Derksen 2014), and therefore the value of Ch should also be finite. Hence
the relative separation between d and ζ needs to be considered.

Next, the two lengthscales characterizing turbulence are the energy injection scale L,
which is determined by the forcing scheme, and the smallest (or Kolmogorov) scale η,
which is determined by the viscosity ν and the dissipation rate ǫ. A wide separation
between L and η means a higher Reynolds number Re, which can be expressed as
Re ≈ (L/η)4/3. A final lengthscale of importance in simulations is the size of the
simulation domain, which along one spatial direction can be considered to be Nx, and
this is generally chosen to be close to L. As droplets will break up due to extension
under turbulent stresses, the domain size Nx should be sufficiently larger than the
maximum droplet elongation before breakup to yield meaningful results (particularly
for simulations on periodic domains, where large droplets would begin to interact with
images of themselves). Here a particular caveat is also the simplistic description of
highly deformed droplets, where an equivalent droplet diameter d = (6V/π)1/3 gives
the impression of Nx ≫ d, whereas in the form of long, slender filaments, droplets can
extend across the entire domain. This can give rise to elongated droplets that remain
connected due to periodicity, and this is more prone to occur at high volume fractions
under weak turbulence, as for instance can be seen in Skartlien et al. (2013).

Comparing these lengthscales, the required spatial separation between them for
simulating droplets in the inertial range, at least from a stance of reasoning, would
follow as

Nx ≫L≫ d ≫ η≫ ζ , (1.2)
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while Nx >L may also be sufficient, and most studies currently are limited to Nx ≈L.
Also, d can vary over a range of values, extending up to d ∼η if the Kolmogorov scale
is over-resolved. Upon conceding to limitations of modelling, current simulations can
at best reproduce

Nx >L≫ d ≫ η≈ ζ . (1.3)

We try to maintain such a separation of scales, except that we have ζ > η. This is a
limitation of the current study, as physically the interface thickness is much smaller
than any turbulence lengthscale. This issue is further discussed in § 4. Lastly, having
η > d would mean sub-Kolmogorov droplets. These droplets can also deform and
break up due to the action of viscous stresses instead of inertial stresses (Elghobashi
2019).

We begin with a description of the numerical method in § 2, followed by a brief
validation of the turbulence forcing scheme. We then present results from turbulent
emulsions in § 4, where first the effect of varying the volume fraction is shown
in § 4.2, followed by a generalization of the Hinze scale in § 4.7. The effect of
varying the turbulence intensity is shown in § 4.8, along with a demonstration of
controlling droplet dissolution by reducing the Cahn number. Section 4.12 discusses
the importance of sufficient resolution of the largest scales and § 4.13 shows the
influence of the turbulence forcing wavenumber on the dispersion morphology.
Finally, in § 5 we discuss some general results regarding emulsion dynamics, with the
quasi-equilibrium limit cycle presented in § 5.1, droplet-vorticity alignment in § 5.2
and influence of droplets on local flow topology in § 5.3, after which we end with
the conclusions.

2. Numerical method

2.1. Lattice Boltzmann method

Each component σ ∈{α,β} obeys the standard lattice Bhatnagar–Gross–Krook (LBGK)
equation with a single relaxation time, which can be written as (Krüger et al. 2017)

f σi (x + ci1t, t +1t)= f σi (x, t)− f σi (x, t)− f
eq,σ
i (x, t)

τ σ
1t, (2.1)

where f σi is the distribution function of component σ along the discrete velocity
direction ci. Here τ σ is the lattice relaxation time towards local equilibrium which
relates to the macroscopic component viscosity νσ = c2

s (τ
σ − 1/2) where cs = 1/

√
3 is

the lattice speed of sound (the mixture viscosity is a more complex expression when
the components have different τ ). The equilibrium distribution f

eq,σ
i is given by the

local Maxwellian as

f
eq,σ
i = wiρ

(
1 + ueq

· ci

c2
s

+ (ueq
· ci)

2

2c4
s

− ueq
· ueq

2c2
s

)
, (2.2)

where wi are the LB weights in each direction i and ueq is the equilibrium velocity
which is given as

u
eq = u

′ + τ σF
σ

ρσ
. (2.3)

The density of a component ρσ =
∑

i f σi , and F
σ incorporates all the forces (here

the inter-component interactions and the turbulence forcing) into the common fluid
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velocity u′ between the two components which is given as

u
′ =

∑

σ

ρσuσ

τ σ

∑

σ

ρσ

τ σ

, (2.4)

where uσ is the bare component velocity. This is calculated in its usual form:

u
σ = 1

ρσ

∑

i

f σi ci. (2.5)

For details see Succi (2001) and Krüger et al. (2017). The inter-component interaction
force, F

SC, is modelled using the method of Shan & Doolen (1995), which can be
written as

F
SC,σ (x)= −Gσσψ

σ (x)
∑

σ 6=σ
ψσ (x + ci1t)ciwi1t, (2.6)

where ψσ is the pseudopotential function for component σ and in this study we
have chosen ψσ = ρσ (while other definitions are possible). This force between
the components is kept to be repulsive, hence the interaction strength parameter
Gσσ should have a positive value. It should be noted that the fluids remain
partially miscible, and essentially the final composition consists of α-rich and
β-rich regions, while a small amount of one component remains dissolved in
the other. A higher magnitude of Gσσ results in lower solubility and gives rise
to a higher interfacial tension. The total density of the fluid is the sum of the
two fluid densities, ρ tot =

∑
σ ρ

σ , and the hydrodynamic velocity is given as
u = (1/ρ tot)

∑
σ (u

σρσ + (1/2)Fσ1t). The equation of state for this multicomponent
system is (Krüger et al. 2017)

p = c2
s

∑

σ

ρσ + c2
s1t2

2

∑

σ ,σ

Gσσψ
σψσ . (2.7)

Lastly, the interfacial tension γ can be calculated using the Laplace law 1p = 2γ /r,
where 1p is the pressure difference across the interface of a spherical droplet.

The simulations here have been performed on a D3Q19 lattice, i.e. a three-
dimensional lattice with a set of 19 discrete velocity directions. Further, the lattice
spacing 1x and time step 1t are both set equal to 1, and consequently all quantities
are expressed in dimensionless lattice units [lu].

2.2. Turbulence forcing

To generate and sustain turbulence in the fluid, a constant source of energy is
required, which is constantly being dissipated by viscosity at the smallest scales
(i.e. the Kolmogorov scales). This is done by setting the largest scales of flow
into motion, and if the fluid viscosity is low enough, these large structures become
unstable and give rise to successively smaller scales. One of the ways to achieve
this numerically is by employing a low-wavenumber spectral forcing, as given by
Alvelius (1999), while alternative techniques could also be used (Eswaran & Pope
1988; Rosales & Meneveau 2005). This forcing was also implemented by Ten Cate
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et al. (2004) in LB to simulate the response of clouds of spherical solid particles
to homogeneous isotropic turbulence. A very similar form of the forcing is used by
Perlekar et al. (2012), which is constructed directly in real space but could be made
to have a similar effective spectral form as Ten Cate et al. (2004, 2006), albeit with
less control over output parameters, as we do in this study. The forcing is divergence
free by construction and can be written as

Fσ
x =

kb∑

k=ka

ρσ

ρ tot
A(k)[sin(2πky + φy(k))+ sin(2πkz + φz(k))],

Fσ
y =

kb∑

k=ka

ρσ

ρ tot
A(k)[sin(2πkx + φx(k))+ sin(2πkz + φz(k))],

Fσ
z =

kb∑

k=ka

ρσ

ρ tot
A(k)[sin(2πkx + φx(k))+ sin(2πky + φy(k))].





(2.8)

Here each φi(k) is a unique random phase. Alternatively, φi(k) can be evolved as a
stochastic process, as done in Perlekar et al. (2012), but in our approach φi(k) (and
hence the forcing) varies as white noise in time. This ensures that the force is not
related to any timescale of turbulent motion, and is a choice also made in Ten Cate
et al. (2006). The force is distributed over a small range of wavenumbers ka 6 k 6 kb,
while the contribution of each of these wavenumbers is determined by A(k), which
centres the Gaussian around kf in Fourier space, given as

A(k)= A exp
(

−(k − kf )
2

c

)
, (2.9)

where kf is the central forcing wavenumber, c is a width over which to distribute the
force amplitude and is set to c = 1.25, and A is a forcing magnitude. This method
ensures that there is a dominant central wavenumber kf (which can also be a fraction)
in the forcing scheme, while neighbouring wavenumbers also contain some energy,
which makes the scheme more stable (Ten Cate et al. 2006). Lastly, the total power
input to the fluid can be written as the sum of two terms as follows:

P = P1 + P2 = 1
2 fk fk1t + uk fk, (2.10)

where the two terms are the force–force and force–velocity correlations respectively,
and uk, fk refer to the volumetric velocity and force fields. The force–velocity
correlation, P2, should be 0 to avoid an uncontrolled growth of energy in the fluid
(Alvelius 1999), and it is achieved by varying the force term at each time step. This
is computationally expensive, hence some studies (Ten Cate et al. 2004, 2006) vary
the force by choosing randomly from a pre-computed set of force fields at each time
step. This was found to introduce a non-zero contribution from the P2 term, where the
steady-state kinetic energy was roughly 10 times larger than with a unique random
force at each time step – hence in this study we adhere to the latter approach.

In the continuum (long-wavelength) limit, the PP-LB model solves the Navier–
Stokes equations for the two-fluid mixture with a body force (see Scarbolo et al.
2013)

ρ tot

(
∂u

∂t
+ u · ∇u

)
= −∇p + ∇ · (µ∇u +µ∇u

T)+
∑

σ

F
σ , (2.11)
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where p is the pressure (refer to (2.7)), µ =
∑

σ ρ
σνσ is the dynamic viscosity and

F
σ is the total force acting on component σ , which here is given as F

σ = F
σ
PP + F

σ
turb

(i.e. the sum of the pseudopotential contribution as given by (2.6) and the turbulence
contribution given by (2.8)). The per component continuity equation includes an
additional term, i.e. the divergence of the diffusive current J

σ (as given in Scarbolo
et al. (2013)) which causes phase segregation between the two components, and has
the form

∂ρσ

∂t
+ ∇ · (ρσu)= ∇ · J

σ , (2.12)

where

J
α = ραρβ

ρ tot

[
c2

s

(
τ − 1

2

)(
∇ρα

ρα
− ∇ρβ

ρβ

)
− τ

(
F
α

ρα
− F

β

ρβ

)]
= −J

β . (2.13)

It can be seen that the turbulence force contribution to J
σ cancels out since

F
α
turb/ρ

α = F
β

turb/ρ
β . Further, the flux of each component is negligible away from

interfaces where gradients of density and the pseudopotential force vanish. The global
continuity equation, obtained by adding individual component continuity equations, is
not influenced by the diffusive current term (since J

α = −J
β). For more details on

the continuum form of the equations, refer to Shan & Doolen (1995), Scarbolo et al.

(2013) and chap. 4 of Krüger et al. (2017).

2.3. Turbulence quantities

The largest scale in the system is given by the domain size Nx, which sets the
minimum wavenumber kmin = 2π/Nx. All other wavenumbers are integer multiples of
kmin, with the maximum wavenumber being kmax = kminNx/2 = π. The smallest scale
of turbulence (Kolmogorov scale) is calculated as η ∼ (ν3/ǫ)1/4 where ν and ǫ are
the kinematic viscosity and energy dissipation rate respectively. The criterion for a
resolved DNS is that kmaxη > 1 (Moin & Mahesh 1998), and the Kolmogorov scale
should obey η > 0.318 [lu] (Ten Cate et al. 2006). We shall mention the forcing
wavenumber kf and the wavenumber bounds as multiples of kmin in this study. For a
central forcing wavenumber kf , the associated large scale length then becomes

L∼ 2π

kf kmin

= Nx

kf

. (2.14)

Further, the Taylor microscale is calculated as

λ=
(

15νu′2

ǫ

)1/2

, (2.15)

where u′ is the root mean square velocity along one direction, and u′
x = u′

y = u′
z in

isotropic turbulence. The rate of energy dissipation 〈ǫ〉 can be found in two ways, as
ǫ ≈ ν〈ω2〉 ≈

∑
k 2νk2E(k)/N3

x where 〈ω2〉 is the average enstrophy and E(k) is the
kinetic energy spectrum. Using λ, the Taylor Reynolds number is calculated as

Reλ = u′
λ

ν
. (2.16)
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Lastly, the Kolmogorov timescale is given as

τk =
( ǫ
ν

)−1/2
. (2.17)

For eddies in the inertial range with a size l, the velocity u(l) and timescale
τ(l) are determined uniquely by ǫ and l alone as u(l) = (ǫl)1/3 ∼ U(l/L)1/3 and
τ(l)= (l2/ǫ)1/3 ∼ T (l/L)2/3, where L, T and U are the characteristic length, time and
velocity of the largest eddies (with T =L/U ). We consider U ≈ 〈Ek〉1/2 as the largest
eddies contain most of the kinetic energy, and generally u′ < U . The characteristic
velocity at a particular lengthscale can also be found from the kinetic energy spectrum
as u(l)≈

√
E(kl) where kl = 2π/l.

3. Single-phase turbulence

We begin with a single-phase turbulence simulation to show that the forcing scheme
is able to maintain a statistically stationary turbulent flow (simulation ‘SP’ in table 1)
and to compare it with results available in the literature. A domain of 2563 lattice
nodes representing a length (2π)3 is initialized with a uniform initial density of ρα =
4.0 [lu]. The relaxation time is set to τ = 0.5141 which gives a viscosity of ν= 0.0047
[lu] (Perlekar et al. (2012) use a similar value with τ = 0.515), which is a low enough
viscosity to sustain turbulence while still being numerically stable. The forcing is
concentrated around kf = 2kmin and is distributed in the range of k = kmin to 8kmin,
and is applied from t = 0 to a fluid initially at rest, i.e. with zero velocity. Further,
A = 0.0005, which generates a turbulent flow with a Taylor microscale of λ= 13 [lu],
Reλ = 95, τk = 97 [lu], η = 0.7 [lu] (kmaxη = 2.2) and 〈ǫ〉 ≈ 5 × 10−7 [lu], which are
calculated a posteriori. The simulation is performed for 1051t, which corresponds to
1000τk.

Figure 1 shows the evolution of 〈Ek〉 and 〈ω2〉 which attain their steady-state values
around 75τk and continue to oscillate around this value. Note that the turbulence
forcing scheme is steady in the sense that it leads to the balance of energy injection
and dissipation. The large-scale instability itself is not steady, and the force variation
in time leads to intermittency of the power input which is a standard feature of
continuously forced turbulence (Alvelius 1999; Rosales & Meneveau 2005). Further
in figure 1 (see inset), the crests and troughs of the 〈Ek〉 evolution show up in the
〈ω2〉 evolution with a slight delay, where the quantities have been normalized with
their time-averaged values over the latter 3/4 of the simulation duration. This has
been observed before, and ascribed to the energy cascading mechanism (Pearson et al.
2004; Biferale et al. 2011) while Tsinober (2009) acknowledges this feature without
invoking a cascade.

Figure 2 shows typical velocity and enstrophy field snapshots from a planar cross-
section in the centre of the domain at 500τk. The velocity field shows motions across
various scales, while the enstrophy field (which is the square of the vorticity) shows
typical small-scale localized structures. Also note that ω2 assumes values as much
as 10 times the average 〈ω2〉 (while at higher Reλ, more extreme values are found),
showing that intermittency is well reproduced in the simulations. This patchy structure
of enstrophy is an important factor to consider in simulations of turbulent dispersions,
as it leads to varying degrees of droplet–vorticity interactions which can in turn lead
to droplet breakup.

The kinetic energy spectrum is shown in figure 3, along with a benchmark spectrum
from the Johns Hopkins Turbulence Database (Li et al. 2008) for a homogeneous
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FIGURE 1. Evolution of average kinetic energy 〈Ek〉 and enstrophy 〈ω2〉 in the
single-phase turbulence simulation with Reλ = 95. Both 〈Ek〉 and 〈ω2〉 reach steady state,
confirming the balance between the energy dissipation and power input. In the inset, both
profiles have been normalized by their time-averaged value over the latter 3/4 of the
simulation duration.
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FIGURE 2. (Colour online) Cross-sections (at z = Nx/2) show snapshots of the velocity
magnitude |u| (a) and enstrophy ω2 (b) at time t = 500τk. Features typical of turbulent
flow can be seen, where the velocity field shows features across several lengthscales while
enstrophy remains localized in small-scale structures.

isotropic turbulence simulation with Reλ = 433 (on a grid of 10243, generated with a
spectral solver). The energy E(k) has been normalized by the total energy

∑
k E(k),

and the wavenumber is normalized to show multiples of kmin, which is done to
compare the two spectra. A well-developed inertial range is seen to exist, following
the k−5/3 spectral slope, which falls off around k = 30kmin in our simulation. Lastly,
in this simulation u′ = 0.034 [lu], and since the speed of sound is cs = 1/

√
3 [lu], the

flow Mach number is Ma = 0.06 which is well within the incompressibility limit.
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FIGURE 3. Kinetic energy spectrum for the single-phase simulation shown together with
a sample spectrum from the Johns Hopkins Turbulence Database (JHTD, with Reλ= 433).
The chosen normalization is only to compare the shape of the two spectra along with a
k−5/3 inertial range scaling. The spectrum is further averaged over 20 realizations separated
by 50τk.

4. Turbulent emulsions

4.1. Simulation set-up

The turbulent emulsion simulations are initialized with two fluids, which we denote
by α (the carrier fluid) and β (the droplet fluid), with a liquid–liquid density ratio
ρβ/ρα = 1, which well represents many oil-in-water emulsions. For a chosen volume
fraction φ of fluid β, a single spherical droplet (a β-rich region) is initialized in
the centre of the domain, which is otherwise α-rich. The droplet density is denoted
by ρ in

β , i.e. the density of β in the β-rich region, while ρout
β denotes the dissolved

amount of component β in the α-rich region (i.e. the continuous phase), and likewise
for component α. Further, ρavg

β is used to refer to the average density of component
β in the entire domain. During the simulation, these density values can change to
some extent depending on the Gαβ parameter, though due to the symmetry of the
model we have ρ in

β /ρ
in
α = 1 and ρout

β /ρ
out
α = 1. We also keep νβ/να = 1 (with να =

νβ = 0.0047 [lu]). Spurious velocities (usp) in these simulations have been limited
to values sufficiently smaller than the physical velocity that their influence on the
results is negligible. This was checked by performing additional quiescent simulations
i.e. a droplet suspended in the continuous phase without any turbulence forcing, for
both liquid–liquid repulsion strengths considered in this study (i.e. Gαβ , which leads
to the interfacial tension γ ). The maximum spurious current magnitude usp

max (found
only at the interface) was less than the physical velocity scale (u′) by more than
a factor 10, and the spurious currents decay to 10 % of this maximum magnitude
within five grid cells, while the average spurious current magnitude usp

avg is less than
u′ by a factor more than 100. Given that the speed of sound in these simulations
cs = 1/

√
3, we maintain that usp ≪ U ≪ cs, which is in line with our recent findings

for emulsion droplets simulated with PP-LB (Zarghami et al. 2015; Mukherjee et al.
2018; Berghout & Van den Akker 2019).

We carried out three sets of simulations, the details of which are mentioned in
table 1. In all these simulations, the turbulence force is applied starting at t = 0. The
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turbulence energy density 〈Ek〉 in an emulsion, for the same forcing amplitude, can
be an order of magnitude lower than in single-phase turbulence. The Kolmogorov
scale values have been calculated using the scaling η ≈ (ν3/〈ǫ〉)1/4 where 〈ǫ〉 is the
spatio-temporally averaged dissipation rate (with 〈.〉 denoting time averaging after the
first quarter of the simulation time, during which the flow is well developed). We
report η up to two decimal places that follow from this scaling. The three sets are
divided as follows.

(i) Set 1 (P1–P5): in these simulations, only the dispersed-phase volume fraction
has been changed (from φ = 0.01 to φ = 0.45). Here η is found to increase in
simulations P1–P5, which is because the turbulence forcing scale L remains the
same while Reλ decreases, hence reducing the separation between the largest and
smallest scales.

(ii) Set 2 (T1–T5): in these simulations, the turbulence force amplitude is varied to
change Reλ (at a fixed volume fraction φ = 0.10). For case T5, the interfacial
tension has also been increased. Due to increasing Reλ in these simulations, since
L is kept constant, η is found (as expected) to decrease. An additional simulation
T3R has been performed, which is equivalent to T3, but has a larger domain
size (N = 3843). The energy density is the same in T3 and T3R (while the other
turbulence statistics turn out to be slightly different). This is to demonstrate the
effect of the Cahn number on droplet dissolution.

(iii) Set 3 (D1–D5): in simulations D1–D4, the domain size is increased while
keeping the forcing lengthscale L, amplitude and volume fraction (φ = 0.15)
fixed, which keeps the turbulence energy density (or Reλ) fixed. An additional
simulation, D5, has been performed where the turbulence intensity and volume
fraction have been increased for comparison with case D4. For all cases, η
remains almost constant as Reλ is kept constant by varying L (so that the ratio
L/η is constant). In simulation D5, Reλ is increased fourfold in comparison to
D1–D4, yet η is the same as the increase in Reλ is achieved by the added scale
separation due to a fourfold decrease in the forcing wavenumber in D5 (kf = 1.5)
as opposed to D4 (kf = 6.0).

To study the droplet characteristics in these simulations, we segment the droplets in
space (also known as clustering) by thresholding the droplet density field at a cutoff
value ρc/ρ in

β = 0.57 (which is effectively the density along the interface where ρc ≈
ρα =ρβ) based on the algorithm used in Siebesma & Jonker (2000). This allows us to
identify and mark all lattice points within individual droplets, which gives the droplet
volume V , which in turn is used to calculate an effective diameter d = (6V/π)1/3.
Estimating the surface area of these droplets, which are in voxel form, requires more
care. Often, the ‘GNU triangulation surface’ (GTS) library (Popinet & Jones 2004)
is used in studies due to its efficient surface splitting operations (without the need
for volumetric droplet segmentation). However, it was not used in this study as it
did not provide a straightforward way of identifying droplets cut off at domain edges
due to periodicity (an issue implicitly resolved by our segmentation algorithm). Also,
the GTS library was found to under-predict the surface area of a sphere by around
10 %. Instead, we use the method proposed by Windreich, Kiryati & Lohmann (2003)
(originally developed for medical MRI data) to calculate surface area directly from
voxels using a look-up table which divides surface voxels into nine classes, and each
class has a weighted contribution to the surface area. Using only the first four of
these nine classes, the area estimation error for a sphere was found to decrease to
1 %, which was sufficiently accurate for our study.
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Sim N ν Gαβ φ A ka, kf , kb γ 〈Ek〉 〈ǫ〉 τk Reλ η

SP 2563 0.0047 — — 0.0005 2.0 — 1.8 × 10−3 5.0 × 10−7 97 95 0.7

P1 2563 0.0047 0.015 0.01 0.0005 1, 2, 8 0.017 2.0 × 10−4 2.21 × 10−8 461 51 1.47
P2 2563 0.0047 0.015 0.06 0.0005 1, 2, 8 0.017 2.0 × 10−4 2.10 × 10−8 474 53 1.49
P3 2563 0.0047 0.015 0.15 0.0005 1, 2, 8 0.017 1.7 × 10−4 1.93 × 10−8 493 47 1.52
P4 2563 0.0047 0.015 0.2 0.0005 1, 2, 8 0.017 1.5 × 10−4 1.75 × 10−8 518 45 1.56
P5 2563 0.0047 0.015 0.45 0.0005 1, 2, 8 0.017 1.3 × 10−4 1.65 × 10−8 534 39 1.58

T1 2563 0.0047 0.015 0.10 0.00025 1, 1.5, 8 0.017 8.4 × 10−5 4.90 × 10−9 980 44 2.14
T2 2563 0.0047 0.015 0.10 0.0005 1, 1.5, 8 0.017 2.4 × 10−4 1.87 × 10−8 502 64 1.54
T3 2563 0.0047 0.015 0.10 0.00075 1, 1.5, 8 0.017 4.6 × 10−4 4.78 × 10−8 313 78 1.22
T3R 3843 0.0047 0.015 0.10 0.00065 1, 1.5, 8 0.017 4.9 × 10−4 3.44 × 10−8 369 100 1.32
T4 2563 0.0047 0.015 0.10 0.001 1, 1.5, 8 0.017 6.5 × 10−4 8.36 × 10−8 237 84 1.06
T5 2563 0.0047 0.016 0.10 0.001 1, 1.5, 8 0.04 6.6 × 10−4 7.70 × 10−8 247 90 1.08

D1 1283 0.0047 0.015 0.15 0.0005 1, 1.5, 6 0.017 1.2 × 10−4 1.80 × 10−8 511 34 1.55
D2 2563 0.0047 0.015 0.15 0.0005 1, 3, 6 0.017 1.1 × 10−4 1.77 × 10−8 514 30 1.56
D3 3843 0.0047 0.015 0.15 0.0005 2, 4.5, 8 0.017 1.1 × 10−4 1.81 × 10−8 509 30 1.55
D4 5123 0.0047 0.015 0.15 0.0005 3, 6, 9 0.017 1.1 × 10−4 1.87 × 10−8 501 30 1.54
D5 5123 0.0047 0.015 0.2 0.0005 1, 1.5, 6 0.017 4.2 × 10−4 1.80 × 10−8 511 118 1.55

TABLE 1. Simulation parameters for all cases. Here viscosity ν and interfacial tension γ
are in lattice units [lu], along with length and time measured as multiples of 1x and 1t.
The density and viscosity ratio between the components is kept at unity. The turbulence
forcing is distributed over the range of wavenumbers from ka to kb centred at kf . The
fluid densities are initialized to ρ in

α,β = 4.0, ρout
α,β = 0.77. The average kinetic energy 〈Ek〉 =

(
∑

k E(k))/N, and the average rate of energy dissipation 〈ǫ〉 = (
∑

k 2νk2E(k))/N.

4.2. Effect of volume fraction

We now show results from simulations with varying dispersed-phase volume fractions
φ ∈ {0.01, 0.06, 0.15, 0.2, 0.45} under identical turbulence forcing conditions
(corresponding to P1–P5 in table 1). These simulations are performed for 105 time
steps. Figure 4 shows the dispersion formation process at various time instances
starting from the initial spherical droplet of component β shown as the iso-surfaces
representing ρβ = ρα. The droplet begins to deform under the turbulent stresses,
eventually breaking up to form a dispersion with a characteristic distribution.

Of the various volume fractions considered, φ = 0.06 and 0.15 are most emulsion-
like, i.e. they have a profusion of small droplets with a few large connected filaments.
At φ = 0.01, the dispersed phase is too dilute to be considered an emulsion,
although the droplet dynamics is interesting as the number of droplets Nd and
their characteristic diameters d are small, and hence most of the droplets remain
dispersed with relatively few coalescence events, and when droplets do coalesce, they
break up soon after. At φ > 0.2, most of the fluid volume remains connected, which
is aggravated by the enhanced coalescence inherent to diffuse interface methods
(Komrakova et al. 2015a; Roccon et al. 2017). This in turn is due to insufficient
resolution of the interface with respect to the droplet sizes (Shardt et al. 2013), an
effect we discuss more in depth in § 4.12. At higher turbulence intensity, the large
connected regions can be expected to break into smaller droplets, and any coalescence
will generate droplets of sizes larger than the maximum stable diameter, which will
again break up.
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FIGURE 4. (Colour online) Dispersion formation under turbulence, for increasing volume
fractions φ ∈ {0.01, 0.06, 0.15, 0.2, 0.45} corresponding to simulation P1–P5 in table 1 (top
to bottom). The time instances are t/τk ≈ 0, 10, 40, 100 (left to right), and the dispersions
are subjected to identical turbulence forcing.

Before discussing further results, we first show a quantitative sample of the typical
data from these simulations. In figure 5, the dispersed-phase density ρβ , a single
velocity component ux and a single vorticity component ωx are shown along an
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FIGURE 5. (Colour online) A sample of the dispersed-phase density (ρβ , scaled by a
factor of 1/200), x-velocity (ux) and x-vorticity (ωx) are shown along an arbitrary line
passing through the P4 dataset along the x-axis, at time t = 190τk when the turbulence
and dispersion are fully developed.

arbitrary line passing through a droplet in the P4 dataset, along the x-axis, at time
t = 190τk. At this time, the flow is well within the fully developed turbulent regime,
along with the typical dispersion morphology having been attained. The first thing to
note is that the velocity and vorticity fields are sufficiently well resolved and vary
uniformly, i.e. there are no severe jumps due to spurious currents near the interfaces
(only a small subtle spike), which shows that the physical velocity scales dominate
over the spurious velocities.

The velocity field in figure 5 varies gradually through the interface. This is
reasonable due to the continuity of tangential stress across the interface and, we
again emphasize, is inevitable due to the condition ζ > η. Physically, this situation
will not occur since the interface width is typically of the size O(10−9) [m], and
the smallest turbulent fluctuations, for micrometre sized droplets, may extend up to
roughly O(10−6–10−7) [m] (while they depend on Reλ). The finite interface width is
a limitation which will be encountered in any diffuse interface method, and which
may be alleviated by adaptive mesh refinement near the interface as presented by
Yu & Fan (2009), or by increasing the droplet resolution while keeping the interface
thickness fixed (i.e. decreasing the Cahn number Ch). The latter is done by adopting
a larger simulation domain, as shown by Komrakova et al. (2015a), and it also
remedies other diffuse interface artifacts, as will be subsequently discussed.

4.3. Phase fraction evolution

Figure 6 shows the evolution of the dispersed-phase volume fraction φ normalized by
the initial volume fraction φ0. There is a clear decrease over time (up to around 100τk)
in the relative volume fraction, beyond which the value plateaus to a level around
which it continues to oscillate (this will be confirmed subsequently from simulations
T1–T5 in § 4.8 which were performed for a five times longer duration). This relative
reduction in φ is more pronounced at lower φ values (up to around 30 %) than at
higher φ (around 2 %–5 %). Note that this is not a mass conservation issue, as the
total component mass is perfectly conserved in the system, and only the amount of
component β present as the dispersed phase reduces, which gets dissolved in the α-
rich (continuous phase) region. This is also why the relative decrease in φ is strongest
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FIGURE 6. (Colour online) Evolution of volume fraction φ normalized by the initial
volume fraction φ0, for the same turbulence intensity across simulations. There is more
droplet dissolution for lower φ values, while the decrease is not monotonic as new smaller
droplets can be formed as well.

for φ = 0.01, as the dissolution of β into the continuous phase is provided by a very
low number of droplets.

The reason for the reduction in φ is twofold. First is the dissolution of small
droplets due to a finite interface width, which is an issue inherent to most diffuse
interface methods. Yue, Zhou & Feng (2007) showed that there is a slow drift in the
droplet density due to diffusion, which also leads to droplet shrinkage. They also show
that a small droplet in a large domain is more prone to dissolution, which is reflected
in figure 6 where the lowest φ simulation suffers most from droplet dissolution. This
effect is also tied to the Cahn number Ch. If Ch ∼ O(1) (or greater), the droplet
becomes unstable and is prone to dissolution. On the other hand, Shardt et al. (2013)
showed for droplet collision in shear flow that coalescence is inhibited with decreasing
Ch. In the limit of Ch → 0, coalescence would cease to occur, while increasing Ch
leads to coalescence at higher capillary numbers. These considerations mandate having
a finite Ch in the range 0<Ch ≪ 1 (for all droplet sizes in the system) for achieving
steady-state simulations while allowing for both coalescence and breakup. The effect
of Cahn number on droplet dissolution is analysed subsequently in § 4.8.

The second reason for the reduction in φ is its sensitivity to the segmentation
threshold. In appendix A we demonstrate that only this result, i.e. the evolution
of the volume fraction, depends on the choice of the segmentation threshold. Part
of the droplet-phase fraction goes into constituting the increased interfacial region
(i.e. roughly the total surface area of all droplets SA multiplied by the interface width
ζ ). On slightly varying the segmentation threshold to lower values (so that it is
closer to ρout

β ), the apparent volume fraction loss is reduced (which may indicate that
ρc 6= (ρout + ρ in)/2), although the exact choice of ρc does not change our results.
Further, the reduction in φ is also not monotonic, as mass of component β dissolved
in the α-rich region can eventually accumulate inside other droplets.

Droplet dissolution can be a debilitating numerical issue, where for instance Biferale
et al. (2011) and Perlekar et al. (2012) had to resort to artificially inflating droplets
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FIGURE 7. (Colour online) Evolution of the number of droplets (Nd) in the system, which
attains its characteristic value around 75τk and oscillates around a temporal mean. The
φ = 0.06 case produces the highest number of droplets (around 250), which is seen in
(b) where Nd is Nd averaged from 75τk to 200τk, and the error bars show the standard
deviation.

to maintain a constant phase fraction and Komrakova et al. (2015a) reported that
they could not attain steady-state simulations with the free-energy LB method at low
volume fractions as all droplets dissolved away into the continuous phase. In our PP-
LB simulations, this issue is due to an interplay of three main factors: (i) the liquid–
liquid repulsion Gαβ which keeps the two components demixed; (ii) the turbulence
intensity which breaks large droplets into smaller ones; and (iii) the phase fraction
which at low values makes ρout

β ≈ ρ
avg
β (i.e. at low φ, phase segregation can become

weaker). Despite being present, droplet dissolution is limited to a minor effect in our
simulations. More precisely, the PP-LB method employed in this study can be used to
simulate, reasonably well, certain regions of the turbulent emulsions parameter space
where droplet dissolution is not significant. Namely, for a given turbulence intensity
(Reλ), there will be a critical lower bound on the interfacial tension γc such that
droplets with γ > γc can be simulated. For increasing Reλ, γc would increase as well,
and its exact dependence on Reλ could be investigated by numerically mapping the
phase space, which is outside the scope of the current study. Similarly, there will
be a lower bound on the value of φ, below which all droplets will dissolve due to
weak phase segregation when ρout

β ≈ρavg
β . Considering these related effects, we restrict

ourselves to a parameter range where we can attain long stable simulations to collect
meaningful statistics pertaining to the droplet coalescence and breakup equilibrium.

4.4. Droplet number density evolution

Figure 7 shows the evolution of the number of droplets (Nd) in the system for varying
φ. It is seen that Nd begins to increase following the first breakup events around 25τk

and rises steadily to its characteristic value at approximately 75τk, around which it
continues to oscillate. The oscillations in Nd are indicative of competing coalescence
and breakup dynamics. The falls in the Nd evolution profiles are due to coalescence
events, which generate droplets of large sizes that are unstable. These droplets then
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FIGURE 8. (Colour online) Evolution of the droplet number density Nd and the relative
volume fraction φ/φ0 is compared for different dispersed-phase initial conditions for
simulation P3 with φ = 0.15. The ‘single’ case starts with one droplet of φ = 0.15 while
the ‘multiple’ case distributes the same droplet volume over 216 smaller droplets, all
equally spaced. Both cases proceed to the same final state, with almost the same average
morphology, and the coincidence is expected to increase over a longer simulation duration.

break up under turbulent stresses and Nd increases again. Breakup is delayed for φ=
0.01 as compared to the other cases and Nd only begins to increase around 50τk. This
is because the size of the initial droplet is much smaller (∼64 [lu]) than the forcing
wavelength (∼128 [lu]), and the droplet starts to advect initially, as seen from figure 4.
When smaller scales are generated (around 50τk, as can be seen from the enstrophy
evolution in figure 1), the droplet begins to shear and break. The evolution of Nd

does not show large fluctuations for φ= 0.01 due to relatively fewer coalescence and
breakup events in this case, which is because the droplets are smaller and more distant
from each other than in higher φ cases.

Although φ= 0.15 and 0.2 simulations have a larger volume of fluid β, the number
of droplets generated is lower than for φ=0.06. This is because of a higher propensity
for coalescence in these systems, which generates large connected regions and smaller
satellite droplets. This is most prominently seen for φ= 0.45, where Nd is even lower
than for φ= 0.01, as most of the fluid forms extended filaments that remain connected
across the periodic boundaries. Increasing the turbulence intensity can be expected to
generate more droplets at higher φ, and hence for a given Reλ, there will be a specific
φ that maximizes the number of droplets formed and hence produce a more emulsion-
like droplet size distribution.

Once the turbulent emulsion achieves its ‘steady state’ (albeit fluctuating), it holds
no memory of the initial conditions of the dispersed phase. To demonstrate this,
simulation P3 (with φ = 0.15) is repeated, where instead of a single droplet, 216
smaller droplets (together also comprising φ = 0.15), equally spaced on a regular
lattice, are initialized. Figure 8 shows the droplet number density and volume fraction
evolution for the two initial conditions for P3. The multiple droplet system proceeds
with dominant coalescence up to t ≈ 30τk, after which breakup and coalescence begin
to occur simultaneously. Then Nd soon reaches its typical value, similar to the single
droplet initialization, and the time-averaged droplet number density Nd (between
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FIGURE 9. (Colour online) Droplet size distributions for varying volume fractions (on
a 2563 domain). Case (a) φ = 0.01 shows a peak around d/η ≈ 10, which rapidly falls
off at higher d/η. Cases (b) φ = 0.06 and (c) φ = 0.15 have a wider range of droplet
sizes, and the distribution follows a d−10/3 scaling in the range d> dmax. The distributions
also weakly show a d−3/2 scaling over some droplet sizes in the range d < dmax (most
prominently case (d)). For φ > 0.20, a significant secondary peak at high d/η indicates
the few large connected regions that form in the periodic simulation domain, along with
multiple smaller satellite droplets. The vertical dashed line shows the Hinze scale and the
vertical dotted line marks the limit to the left of which the Cahn number Ch ∼ O(1) and
droplets become unstable.

75τk–200τk, shown in the inset of panel (a)) is very similar for both cases. Although
not equal within the duration of these simulations, Nd can be expected to converge to
the same value when averaged over a longer duration. The relative volume fraction
evolution is also very similar for both initial conditions, in particular for t> 150τk.

4.5. Droplet size distribution

Figure 9 shows the distribution of the equivalent droplet diameter d = (6V/π)1/3

(where V is the droplet volume) for varying φ (calculated with 25 000–35 000 droplets
identified between times 75τk–200τk, sampled at each τk). Case (a) φ = 0.01 shows
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a peak around d/η ≈ 10, beyond which the distribution rapidly falls off due to the
dispersion being dilute (see figure 4d). Due to infrequent coalescence, large droplets
are not formed very often. This was also reflected in the Nd evolution (figure 7)
which does not fluctuate as much as higher φ simulations. Cases (c,d) with φ > 0.15
(and to a small extent case b) show two power-law regimes in the droplet distribution.
The occurrence of droplets of sizes d > dmax (where dmax is the Hinze (1955) scale)
falls off with a d−10/3 slope, while droplets of sizes d< dmax show a weak d−3/2 slope
(the latter is more prominent in figure 9d).

The d−10/3 scaling was originally postulated and shown for air bubbles in breaking
ocean waves by Garrett et al. (2000). The scaling was derived from dimensional
and mechanistic arguments (that bubble lifetimes depended on bubble sizes), with
assumptions of a purely inertial breakup process that depends only on the turbulence
intensity (determined by ǫ) and the rate of supply of the dispersed phase (i.e. volume
of air entrained per volume of water per second). This led to a d−10/3 scaling for
the droplet spectrum P(d), which was again verified by Deane & Stokes (2002) for
air bubbles above the Hinze scale in breaking waves. Deane & Stokes (2002) further
showed that bubble sizes below the Hinze scale follow a d−3/2 distribution, which
was also dimensionally motivated (while including surface tension effects for smaller
droplets). They found the scalings to hold for a brief period before the turbulence
decayed. Skartlien et al. (2013) showed that the droplet distribution in their turbulent
emulsion simulations also follows a d−10/3 scaling, which can be expected since the
power law of Garrett et al. (2000) is valid for homogeneous isotropic turbulence.
Our results also verify that the conditions for purely inertial breakup of the dispersed
phase are met in these simulations. The d−3/2 scaling is seen up to only a few droplet
sizes in the range d< dmax for most simulations. This is because as droplet sizes get
smaller, the Ch → 1 limit is reached and the droplets become unstable and prone to
dissolution, which is why the distribution begins to fall off to the left of d/η≈ 5.

Also, for φ > 0.15, a secondary peak appears at high d/η, which is due to a few
large connected regions forming due to coalescence, which remain connected despite
occasional satellite droplets breaking off. Such large connected regions of the droplet
fluid (for instance see figure 4t) are also identified as ‘droplets’ in the segmentation
step which considers all contiguous droplet fluid regions as individual droplets and
ascribes an equivalent diameter to them. Due to the presence of these large regions,
droplets in an intermediate range are less frequent, as upon formation they would soon
coalesce with the larger connected region. This is first a consequence of having a
high volume fraction at a lower turbulence intensity. At higher Reλ, the large region
would be unstable and hence break apart forming droplets with a range of diameters.
Secondly, the formation of this larger connected region also depends on Ch. If a
simulation is performed on a much larger domain for the same volume fraction φ =
0.20 and turbulence intensity Reλ= 45, due to an increased separation between d and
ζ (lower Ch), coalescence would be inhibited. We estimate that the uncertainty in
determination of d is around 10 %.

Further, η≈ 1.5 [lu] here and given that the interface width ζ ≈ 5–6 [lu], the Ch for
these droplets is approximately in the range 0.03<Ch<1.5. The smallest droplets that
are meaningfully resolved are of the size d ≈ 12–15 [lu]. In physical systems, small
droplets are stable and can only be destroyed by coalescence. Resolving droplets in
this range of diameters (where d/η∼O(1)) will require over-resolving the Kolmogorov
scale (to decrease the relative Ch), as was done by Komrakova et al. (2015a). Lastly,
the lengthscales are ordered as Nx >L≫ d ≫ ζ > η for cases P1–P3 while Nx >L>
d ≫ ζ >η for cases P4 and P5 (where due to higher φ, the long droplet filaments can
be of length ∼L).
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4.6. Multiphase kinetic energy spectra

In this section, we study the wavenumber spectra of the multiphase flow field. For
computing the spectra using the Fourier transform, the entire volumetric flow field
including both fluid components is considered, as we intend to study the velocity
variations in both the continuous and dispersed phases. This is important since there is
a considerable amount of flow inside the droplets as well, especially for large droplets
with sizes in the inertial range. Using the entire volumetric flow field in our case is
acceptable since the viscosity and density ratios between the fluids are exactly 1. In
the case of a non-unity viscosity ratio (and especially at large values), the velocity
profile across a sharp interface is not smooth, as it has to satisfy the tangential stress
continuity condition. The sharp change in the velocity gradient across the interface
adversely affects the spectra (in the manner of a Dirac pulse added on top of a smooth
field). In any diffuse interface method, the velocity profile across the interface will
be smooth by definition, even when µα 6= µβ , and the velocity gradient will also
vary smoothly within the width of the interface. This alleviates the situation slightly,
although without remedying it. In these cases, one might have to resort to using the
wavelet spectra instead (Freund & Ferrante 2019), or use the frequency spectra from
Lagrangian trajectories in the continuous phase, which has been shown to improve the
spectral velocity representation for turbulence with solid particles (Lucci, Ferrante &
Elghobashi 2010).

Figure 10 shows the kinetic energy spectra in (a) for the droplet-laden simulations,
in comparison to the single-phase turbulence simulation with identical forcing. The
first effect to note is the suppression of the inertial range (i.e. deviation from the k−5/3

law) which is seen more clearly in the compensated spectra shown in (b), which is
an effect that has also been found previously (Perlekar et al. 2014). For increasing φ,
the spectra between 1< k/kf < 10 shift away from the inertial range scaling and the
single-phase spectrum, which shows that the cascading mechanism becomes weaker.
This happens due to frequent coalescence at higher φ, which leads to the formation
of larger droplets that can interact directly with larger inertial range scales, redirecting
the kinetic energy from its cascading process into droplet deformations and breakup.
Interestingly, the spectra pass through a single point, which is marked by the vertical
line in (b). This point is very close to the inverse of the Hinze lengthscale given by
dmax = 0.725(ρ/γ )−3/5ǫ−2/5. Since ǫ varies slightly among cases P1–P5, so does dmax

(within 5 %), which is why we indicate the length as ∼dmax in figure 10(b).
Beyond the inverse Hinze scale, the higher φ simulations contain higher energy at

the smaller scales (large wavenumbers). This is due to coalescence, which generates
small-scale eddies, and is more frequent at higher φ. Two or more droplets coalescing
add kinetic energy to the flow by loss of surface energy due to a reduction in overall
surface area. The φ = 0.01 simulation has the lowest energy at high wavenumbers,
as coalescence events are rare, and the droplet sizes are smaller, which in turn
derive energy from eddies corresponding to slightly higher wavenumbers. While the
spectra reflect these effects, they do not give any insight into the direction of the
energy cascade. It would be interesting to study the effect of droplets on spectral
energy transfer across scales, using the approach given by for instance Alexakis
& Biferale (2018), which would allow one to quantify the scale-dependent cascade
direction, which we leave for future work. The crossover of the multiphase spectra
(for φ > 0.15 cases) with the single-phase spectrum shows that the dissipation range
has higher energy in the presence of droplets, as was also reported by Perlekar et al.
(2014). Interestingly, Ten Cate et al. (2004) also found such a spectral crossover at
increasing volume fractions for solid spherical particles in turbulence.
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FIGURE 10. (Colour online) Kinetic energy spectra are shown in panel (a), which are
obtained from varying φ simulations, i.e. P1–P5 (averaged between 75τk and 100τk,
sampled every 2τk), where E(k) = E(k)/

∑
k E(k). At higher φ values, the turbulence

cascade is suppressed at intermediate wavenumbers (seen as deviations from Kolmogorov’s
k−5/3 scaling). Panel (b) shows the compensated spectra, where the trends can be seen
more clearly. At higher wavenumbers, droplet coalescence adds kinetic energy to the
smaller scales, which is stronger at higher φ values due a higher chance of coalescence in
a dense dispersion. The vertical line in panel (b) corresponds approximately to the inverse
of the Hinze scale.

Lastly, a small jump in the spectra at k/kf ≈ 50 is consistently seen for all cases,
which corresponds precisely with the interface width in our simulations (i.e. 5–6 [lu]).
The extra energy there is due to the spurious currents present in the system, which
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FIGURE 11. (Colour online) Compensated spectra for cases P1 and T5 showing the
presence of an inertial range.

are found to be much weaker than the physical velocity scales. Komrakova et al.
(2015a) reported that spurious currents completely dominated the higher wavenumbers
of the kinetic energy spectra in their turbulent dispersion simulations, due to which the
spectra could not be well represented. Our work does not suffer from this problem,
and although spurious currents are present, they do not adversely influence our results.

4.7. Generalized Hinze scale and Weber number spectra

The derivation of the Hinze scale is under the assumption of a developed inertial range
and is taken to hold for dilute suspensions without coalescence. The inertial range
scaling can be found for a small range of wavenumbers for simulations P1 and P2
(φ = 0.01, 0.06) which are relatively dilute, have infrequent coalescence and contain
droplets that are smaller than the largest inertial range scales. For these cases, the
assumptions of Hinze (1955) are reasonably well approximated.

If a large amount of the dispersed phase is present, and turbulent shear cannot
overcome surface tension to cause large droplets to fragment into (on an average)
smaller droplets, the droplet lengthscale can be large. At larger φ, coalescence
becomes significant as well. In these cases, there is a deviation from the k−5/3

inertial scaling (simulations P3–P5). This is because the large droplets can directly
extract kinetic energy from the larger inertial range scales of flow into deformation
and breakup energy, which in turn hinders the cascading mechanism. Whether this
happens depends on the ratio of inertial to surface tension forces, i.e. the Weber
number. For instance, the k−5/3 scaling is found again for simulation T5, where
φ = 0.10, Reλ = 91 and γ = 0.04. In this case, the largest droplet sizes correspond to
scales in the middle of the inertial range, such that a small range of wavenumbers
exhibit the k−5/3 scaling, similar to simulation P1, which is shown in figure 11.

Generally, at higher volume fractions, the Hinze scale is not expected to be valid
due to frequent coalescence. Even without coalescence, droplet–eddy interactions
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become hindered due to the presence of multiple droplets. Another lengthscale
becomes important in such cases, which is the inter-droplet spacing which scales as
1x ∝ φ−1/3d. Even at seemingly low volume fractions, say φ = 0.10, the inter-droplet
spacing is of the order of two droplet radii, due to which the dilute suspension
assumption breaks down. One can, however, still consider a critical Weber number
at a lengthscale dmax, such that on average, at larger lengthscales breakup dynamics
will dominate, and at lower lengthscales coalescence will dominate. This was also
the original idea of Hinze, where the critical Weber number was described using the
velocity scale at length d arising from Kolmogorov’s theory, ud ∼ 〈ǫ〉1/3d1/3, as

Wecrit =
ρu2

dd

γ
. (4.1)

The use of 〈ǫ〉 is merely to express the velocity at a given scale, under the
condition that power input is balanced by the energy dissipation and the inertial
scales only transfer energy without dissipating it (basically the theory of Kolmogorov
(1941)). Since the power input is generally known, this allows an estimation of the
typical droplet sizes that will arise in a dispersion. Since in high volume fraction
simulations (P3–P5) the Kolmogorov (1941) scaling does not hold, only 〈ǫ〉 and d
alone cannot be used to determine ud. The power input now is balanced in part by
dissipation and in part by the changes in interfacial energy, while the dynamics of
the ‘intermediate’ (that would usually be called ‘inertial’) range of scales is more
complex. We propose an alternative scaling to determine ud, using the multiphase
kinetic energy spectra E(k), which implicitly takes into account the average velocity
dynamics at lengthscale d.

The volume-averaged energy spectra 〈E(k)〉 (with units L3T−2) and the droplet
wavenumber kd = 2π/d (with units L−1) can be used to determine a velocity as

u2
d ∼ kd〈E(kd)〉, (4.2)

while other combinations of kd and E(kd) are also possible. This velocity scale can
replace that in (4.1) to calculate a Weber number spectra for all k as follows:

We(k)= ρk〈E(k)〉d
γ

. (4.3)

If the critical Weber number can be found, for instance using Lagrangian tracking
as done by Perlekar et al. (2012), a generalized Hinze scale can be approximated for
any form of the energy spectrum E(k) that may arise in a multiphase system which
does not obey the k−5/3 scaling and whose form may not be known a priori. Even if
the critical Weber number is not quantifiable directly, an indication of the scale kd at
which We ≈ 1 can be found, such that droplets at scales k < kd will be more prone
to breakup, while droplets at scales k> kd will mostly coalesce. If we plug into (4.3)
the Kolmogorov energy spectrum E(k)∼ ǫ2/3k−5/3, we get the term kǫ2/3k−5/3d, which
gives us ǫ2/3k−2/3d ∼ ǫ2/3(2π/d)−2/3d ∼ ǫ2/3d5/3 (to within multiplicative constants).
Solving this equation for d, for a known critical Weber number, yields the classical
Hinze scale d ∼ (γ /ρ)3/5ǫ−2/5. Hence (4.3) can be treated as a generalization of the
Hinze scale, applicable to dense and dilute suspensions alike.

In figure 12, the Weber number spectra as given by (4.3) are shown for cases P3–P5,
which were sufficiently dense suspensions for the chosen Reλ such that the inertial
range scaling is affected by the dispersed phase. A range of wavenumbers gives
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FIGURE 12. (Colour online) Weber spectrum We(k) for cases P3–P5, along with a close
look (inset) at case P3 near We = 1, which occurs at k/kf = 2.5, which closely corresponds
to the scale at which there is a transition in the droplet distribution power-law slopes
(figure 9c,d).

We > 1, which should correspond to breakup-dominated scales. Case P3 is shown
in the inset, where we have We = 1 at k/kf = 2.5, i.e. k = 5. This corresponds to
a droplet scale of around d ≈ 50 [lu]. From figure 9(c), we see that the droplet
distribution begins to fall off with the d−10/3 slope around d/η ≈ 30, which gives
d ≈ 45 [lu]. These two values are of the same order, which shows that the unstable
scale prediction from the Weber spectrum well approximates the cutoff droplet scale
kd, such that in the range k> kd, droplets can be expected to predominantly undergo
breakup (the d−10/3 regime), while in the k < kd range droplets are stable (the d−3/2

regime). Deane & Stokes (2002) also refer to the scale at which they observed this
transition between the two scaling regimes to be the critical (Hinze) scale.

4.8. Effect of turbulence intensity

As mentioned earlier, the idea behind applying turbulence is to cause fragmentation
of the dispersed phase, and the number of droplets thus formed depends upon the
intensity of turbulence. We now keep the volume fraction fixed at φ= 0.1 and increase
the turbulence intensity by increasing the forcing amplitude. These are simulations T1–
T5 in table 1, and are run for t = 0.5 million time steps each, though the simulations
will have different τk. Figure 13 shows the evolution of the normalized phase fraction
over time, and as expected, at higher turbulence intensities (which leads to a higher
Reλ), φ/φ0 reduces over time to an individual stable value. In case T4, all the droplets
dissolve within 600τk, which shows that for this combination of parameters (refer
to table 1), turbulence forcing undesirably outclasses the PP-LB phase segregation.
The small droplets formed in this system are subsequently unstable (due to Ch ∼
O(1)), which causes complete dissolution of the dispersed phase. Upon increasing the
liquid–liquid repulsion parameter Gαβ (hence also changing the fluid composition and
dimensionless numbers that include interfacial tension, like the Weber or Ohnesorge
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FIGURE 13. (Colour online) Evolution of the relative volume fraction φ/φ0 for varying
turbulence intensity simulations (cases T1–T5 in table 1). Increasing Reλ causes greater
droplet dissolution leading to a lower settling value of φ/φ0. This effect limits the
parameter space that can be simulated with the original PP-LB method, as shown by cases
T4 and T5.

number) in case T5, we see that for the same turbulence intensity as case T4, φ/φ0

remains stable. This reaffirms that with the original PP-LB method certain regions
of the turbulent emulsions parameter space can be simulated on a given mesh size,
while in other cases (case T4 and to some degree also case T3) simulations may
require additional numerical remedies like the mass correction scheme of Biferale
et al. (2011) and Perlekar et al. (2012) or an enhanced Kolmogorov scale resolution
(to achieve higher Cahn numbers) as done by Komrakova et al. (2015a). We now
briefly demonstrate the latter method.

4.9. Decreasing the Cahn number to control droplet dissolution

The Cahn number for a simulation can be decreased by increasing the domain size
Nx, while the turbulence intensity and energy injection scale (forcing wavenumber) are
kept the same. In this case, the Kolmogorov scale η increases because the separation
between the energy injection scale L and the dissipation scale η remains fixed, while
L increases. Since the interface width ζ remains unchanged, and the droplet size d
increases, ζ/d decreases. The shrinkage and dissolution of droplets occurs due to the
slow diffusion process, which has a timescale τd ∝ N2

x . Hence decreasing the Cahn
number has two effects which together reduce droplet dissolution. The first is that a
larger domain size leads to a higher τd, which can be made sufficiently larger than
the flow timescale T such that the slow mass diffusion does not influence the results.
Secondly, since on average the droplets are larger, there will be fewer small droplets
that are unstable and prone to dissolution.

Simulations T3 and T4 suffer most strongly from droplet dissolution, so we test
how increasing the resolution of these simulations can reduce this effect. Figure 14
shows a comparison between simulations T3 and T3R. Panel (a) shows that the two
simulations have very similar average kinetic energy 〈Ek〉 and enstrophy 〈ω2〉, although
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FIGURE 14. (Colour online) Decreasing the Cahn number is shown to reduce droplet
dissolution. Simulation T3 is performed again on a larger domain (i.e. simulation T3R),
while keeping the energy density the same, as shown in (a). Panel (b) shows the volume
fraction evolution for the two simulations. The droplet dissolution effect is lower in T3R
and the stable φ value is a factor 2 higher than T3. Upon scaling time with the square
of the domain size, the two curves collapse for the initial droplet dissolution phase until
steady state is reached. Lower droplet dissolution is an effect of increased separation
between the flow timescale and component diffusion timescale (as shown in the inset
of (b), where φ reduces at a slower rate for T3R).

〈ω2〉 is found to be slightly lower in T3R which leads to slightly higher Reλ in T3R
than in T3. This is because with the current formulation of the turbulence forcing
mechanism it is not possible to exactly set the Reλ of the simulation and it depends
on the forcing amplitude A. Despite this difference, the higher resolution of T3R leads
to less droplet dissolution as seen from (b). Upon non-dimensionalizing time with the
domain size Nx, the initial reductions in φ for T3 and T3R overlap, which shows
that the diffusive mass redistribution occurs over a longer timescale proportional to
N2

x . In non-dimensional units, these physically long duration simulations over 1000τk

are well within 10−2 diffusive time units, showing that the timescale of flow is much
faster. Further, T3R has a higher φ value at steady state, where droplet dissolution is
reduced from 80 % to 50 %. This is an indication that fewer droplets with Ch ∼ O(1)
are formed. The inset in (b) shows the evolution of φ over time non-dimensionalized
with τk. The steady-state φ is found to be achieved sooner, and at the limit of much
higher resolution, diffusional mass transfer will not influence the flow. The same effect
was found upon performing a refined version of simulation T4 (T4R, not shown here),
where increasing the resolution from 2563 to 3843 reduced droplet dissolution from
100 % to about 80 %. We omit cases T3 and T4 from further analysis due to severe
droplet dissolution.

4.10. Droplet number density evolution

Figure 15 shows the evolution of the number of droplets for cases T1, T2 and T5.
Increasing Reλ increases the average number of droplets in the system (obtained
by averaging Nd after steady-state conditions are reached for each simulation) from
around Nd = 50 for Reλ = 44 to Nd = 600 for Reλ = 90. Further, two interesting
features in the evolution of Nd can be noted. The first is that the variation in Nd

increases with Reλ, which results in a larger standard deviation of Nd. This also
makes it possible to generate a wider distribution of droplet diameters in the system,
due to higher intermittency (Garrett et al. 2000). The second striking feature is the
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FIGURE 15. (Colour online) Evolution of the number of droplets (Nd) for increasing
turbulence intensity, indicated by Reλ. Increasing Reλ leads to a larger number of droplets
in the system, also widening the droplet distributions as seen from the fluctuations in the
Nd evolution. N(d) is obtained by averaging N(d) after steady-state conditions are reached.

quasi-periodic rise and fall in the droplet number concentration (with a period of
around 8T –10T ), most distinctly seen for the Reλ = 90 simulation (case T5). There
seems to be an upper limit to the number of droplets that can be formed which,
apart from constraints of resolution and maximum sphere packing of the domain
while keeping the diffuse interfaces apart, indicates also the underlying physical
mechanisms. At its peak, Nd ≈ 900 here, a state corresponding to most droplets being
rather small that cannot undergo additional breakup as they would all be well below
the Hinze scale. These droplets are advected around by the flow and they begin to
coalesce when they collide, causing Nd to drop to its lower limit, where a significant
number of droplets will again be larger than the Hinze scale, and they begin to break
and this cycle continues. We shall revisit this feature in detail in § 5.1.

4.11. Dispersion morphology

The dispersion morphology can be quantified with the concentration spectrum
k2S(k, t), a quantity commonly used to describe coarsening dynamics (or spinodal
decomposition) (Chen et al. 2000; Perlekar et al. 2014). Here S(k, t) is the
shell-averaged structure factor which is obtained using the Fourier transform φ̂k

of the density–density correlation function φ − φ, where φ = (ρα − ρβ) and φ is the
mean value of φ. The quantity φ̂k is shell-averaged in wavenumber space to obtain
S(k, t) as follows:

S(k, t)=

∑

k

|φ̂k|2

∑

k

1
. (4.4)

Here
∑

denotes summation over wavenumber shells k ∈ [k − 1/2, k + 1/2] where k =√
k · k. Further, a characteristic length L(t) can be calculated using the first moment
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FIGURE 16. (Colour online) Concentration spectrum and characteristic length
characterizing the dispersion morphology for increasing turbulence intensity simulations,
corresponding to cases T1, T2 and T5 in table 1. The structure factor S(k, t) was time
averaged over 10 realizations separated by ≈50τk, and further normalized by

∑
k S(k, t)

to compare the relative difference in concentration at each wavelength. Increasing Reλ
generates smaller droplets which is seen in the reduction of the characteristic length.

of S(k, t) as follows:

L(t)= 2π

∑

k

S(k, t)

∑

k

kS(k, t)
. (4.5)

Figure 16 shows the concentration spectrum for cases T1, T2 and T5. As Reλ is
increased, smaller droplets begin to dominate the system, which is seen from the shift
towards higher wavenumbers in k2S(k, t). This is also reflected in the time-averaged
characteristic length L which decreases from 100 to around 40 [lu]. Note, however,
that T5 has a higher surface tension than T1 and T2, and it is γ and Reλ together
that determine the morphology of the emulsion for a given dispersed-phase volume
fraction.

4.12. Effect of domain size

In simulations corresponding to D1–D4 in table 1, we successively increase the
domain size Nx while keeping the turbulent energy density the same. This essentially
creates a separation between the domain size Nx and the forcing scale L, and allows
for a better resolution of the largest droplet extension before breakup. So far, studies
on turbulent dispersions have focused on maximizing the turbulence intensity, which
is reflected in the general proclivity for achieving higher Reλ in DNS with Lagrangian
objects like particles or droplets (Toschi & Bodenschatz 2009). This finds implicit
justification in that Reλ in real systems where droplets and turbulence interact is
typically very high (where Reλ =

√
15Re for homogeneous isotropic turbulence).

For instance, emulsification in a valve homogenizer or colloid mill can occur at
Re ∼ 30 000 (Davies 1985; Vankova et al. 2007) and emulsification in stirred vessels
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has been studied at Re ∼ 15 000 (Boxall et al. 2011) – for all these situations
Reλ > 500, which is several times larger than the range considered in the current
study. In periodic domain DNS, a high Reλ is achieved by minimally resolving the
Kolmogorov scale (the kmaxη > 1 condition (Moin & Mahesh 1998)), while forcing
turbulence at the largest possible scales, i.e. L ≈ Nx or kf ≈ 1 − 2kmin. This wide
separation of scales manifests a high Reλ. There are a few connected issues regarding
the relative resolution of the various lengthscales, which is the focus of this section.

The first issue, emphasized by Komrakova et al. (2015a), is the utility of over-
resolving the Kolmogorov scale (η≈ 10 as opposed to 1 [lu]), which helped remedy
the rapid dissolution of droplets in their simulations. The increased resolution of η
and d can also be seen as a reduction in the size of the interface ζ , i.e. a decrease in
the Cahn number Ch, since the interface thickness (in terms of the number of lattice
spacings) remains constant while smaller droplets and turbulent lengthscales become
better resolved (i.e. they become larger relative to ζ ). Droplet dissolution also depends
on the relative strengths of turbulence and phase segregation (effectively the interfacial
tension), as was demonstrated in § 4.8.

The other issue is that weak large-scale forcing introduces a caveat that droplets
tend to deform into long slender filaments that stay connected across the periodic
domain. The lengthscale of the largest droplet extension before breakup dext can
become comparable to Nx, which means that breakup cannot be resolved. The
dispersion then forms a complex tangled structure, which does not morphologically
resemble an emulsion. This issue is aggravated by high volume fractions of the
dispersed phase.

In simulations D1–D4, we increase the forcing wavenumber kf by the same factor
as the domain size Nx (while keeping the forcing amplitude A the same). The upper
and lower wavenumber bounds (ka, kb) are also suitably adjusted to distribute the
forcing over a reasonable wavenumber range (and all integer values in the range k ∈
[ka, kb] are considered). This ensures that the energy density remains the same in
these simulations, while larger droplet deformations (dext) can be resolved accurately.
Successively increasing the domain size in this way allows separating Nx from L.
Note that doing this does not decrease Ch for droplets, as that would entail scaling L

proportionally with Nx while weakening the forcing amplitude such that Reλ remains
constant and η is over-resolved (the approach of Komrakova et al. (2015a)). We do
not additionally pursue this as droplet dissolution is not significant in most of the
parameter range considered in this study.

Figure 17 shows the droplets in the system (volume rendered) at 400τk for
increasing domain sizes. It can be seen that the largest structures in the 1283 domain
span a significant fraction of the domain, whereas for increasing domain sizes the
typical large-scale structure becomes better resolved in relation to the domain size.
The volume-averaged droplet number density for these simulations was found to be
almost identical.

The domain size limitation becomes apparent when considering the droplet
distribution, as shown in figure 18. For the case of Nx = 1283 (D1), the distribution is
limited to a small region around the peak, clearly being cut off at a secondary peak
emerging at higher d/η due to a lack of resolution of larger structures. This case is
under-resolved, the issue made acute with the small domain size, significant φ and
moderate Reλ ≈ 30. We include this case to emphasize that the same issue might
arise in simulations with higher Reλ and Nx of high volume fraction dispersions.
Upon increasing Nx, the distribution successively assumes a longer tail which closely
follows the d−10/3 scaling for droplets larger than the Hinze scale.
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FIGURE 17. (Colour online) Volumetric droplet distribution for increasing domain sizes
while maintaining the same energy density (power input) for cases D1, D2 and D3 with
Nx = 1283, 2563 and 3843 respectively. The resolution of large droplet extensions becomes
feasible at higher domain sizes. Here dark blue to orange goes from the droplet interior
to the matrix phase.

Figure 19(a) shows the concentration spectrum for cases D1–D4, which first reflects
the proper scaling as the spectra coincide for k/kf >1. The importance of resolving the
dominant lengthscales characterizing the dispersion morphology vis-à-vis the domain
size Nx becomes apparent. The smallest wavenumber (largest lengthscale) that can
be represented depends on Nx as kmin = 2π/Nx. For case D1, kmin is very close to
the wavenumber corresponding to the peak in the concentration spectrum, i.e. the
dominant wavenumber kd (or lengthscale Nx/kd). If kmin ≈ kd, two issues would tend to
arise. First, the dominant lengthscale of the emulsion morphology is comparable to the
domain size making its dynamics under-resolved. Secondly, this structure will strongly
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FIGURE 18. (Colour online) Droplet size distributions for cases D1–D4, all with φ =
0.15 and Reλ ≈ 30. The total number of droplets considered between times 150τk–600τk

are ≈5000, 40 000, 54 000, 133 000 for Nx = 128, 256, 384, 512 respectively. The dashed
vertical line shows the Hinze scale and the dotted vertical line marks the limit Ch ∼ O(1).

interact with an image of itself due to periodicity of the domain, which is undesirable.
For successively larger domains, the dominant lengthscale does not change (due to
the same energy density across simulations). Further, the separation of kmin and kd is
increased, which confirms that the largest structures (∼Nx/kd) are well resolved, while
even larger structures (in the range of k< kd) are formed but not sustained as the peak
of S(k) resides at kd. The characteristic length evolution in figure 19(b) also shows
that the morphology obtained for D1–D4 is similar, and that the typical lengthscale
L(t)≈ 80 becomes better resolved in relation to the grid size upon increasing Nx.

4.13. Effect of forcing wavenumber

To highlight the consequences of forcing turbulence at the largest possible scale,
i.e. having L comparable to Nx (hence maximizing Reλ), we performed an additional
simulation D5 with kf = 1.5kmin and φ= 0.2 to compare with D4 (kf = 6kmin, φ= 0.15),
while keeping the forcing amplitude the same, which results in Reλ = 118 for case
D5 (while Reλ= 30 for D4). Figure 20 shows the typical morphology of the droplets
(at a random time instance), where visibly the D4 case seems to have smaller, more
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FIGURE 19. (Colour online) Dispersion morphology characterized with the
(a) concentration spectrum k2S(k, t) and (b) characteristic length L(t) for cases D1–D4.
The concentration spectrum is averaged between times 150τk–600τk, sampled every 4τk.
The importance of separation between the domain size Nx or kmin and the dominant
lengthscales characterizing the dispersion, i.e. kd or L(t), is evident from the fact that
these two lengthscales can become comparable.

spherical droplets, while D5 shows more elongated filaments. Despite the higher
Reλ, the dispersion does not comprise smaller droplets as droplet sizes depend on
〈ǫ〉 which remains mostly unchanged. The presence of elongated filaments in D5
reflects the nature of the turbulence forcing. For a long cylindrical filament, a higher
wavenumber forcing will generate more curvature variations. This would increase
the possibility of filament breakup driven by Rayleigh–Plateau instabilities. A lower
wavenumber forcing would generate weaker curvature differences in a long filament,
and the timescale of breakup of these filaments might be comparable to the timescale
of the large eddies, in which case the filaments will only break when the direction
of the large-scale shear changes.

We further quantify the differences by calculating the droplet distribution for D4
and D5 (which have slightly different φ), while also comparing simulations D2 (with
kf = 3.0 and Reλ = 30) and P3 (kf = 2.0 and Reλ = 47) which have the same φ,
shown in figure 21. Indeed, the D5 case deviates from the d−10/3 distribution above the
Hinze scale, reflecting the infrequent breakup of the long filaments that would lead to
droplets in this range of sizes. This deficit of droplets shows up in a secondary peak
at high d/η, which corresponds to the fewer, larger structures being sustained instead.
A similar difference is seen between cases D2 and P3, where the P3 case shows a
small peak at high d/η, again attributed to a lower wavenumber forcing. The same
behaviour is reflected in the concentration spectrum as well between the cases (not
shown here) where there is a relative increase in concentration at low wavenumbers
for cases D5 and P3, although the characteristic length remains similar.

It is worthwhile to summarize the results from the domain size comparison and
to draw conclusions. At modest Reλ (<120 in this study), the turbulence forcing
wavelength and domain size influence the morphology. Having Nx > L ≫ d (as in
case D4) ensures sufficient resolution of the droplet breakup dynamics, while having
Nx ≈ L ≫ d (case D5) causes the formation of longer filaments of the droplet fluid.
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t £ 400†k

D5

D4

FIGURE 20. (Colour online) Volumetric droplet distribution for cases D4 and D5, where
the forcing wavenumber is changed from kf = 6 to kf = 1.5, shown at 400τk. The D4 case
shows a preponderance of smaller, more spherical droplets while D5 has more elongated
filaments, possibly sustained due to the long wavelength of the forcing.

Spatially, this causes the formation of larger droplets d/η > 100 at the cost of some
intermediate droplets 20< d/η < 100, for d/η above the Hinze scale.

5. Turbulent emulsion dynamics

5.1. A quasi-equilibrium (limit) cycle

Droplet number density plots such as figure 15 show oscillations of Nd around a
typical mean value which characterizes the dispersion morphology. So far, studies on
droplets in turbulence refer to this state as a ‘steady state’ where coalescence and
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FIGURE 21. (Colour online) Droplet size distributions comparing (a) cases D4 (kf = 6.0,
φ = 0.15, Reλ = 30) and D5 (kf = 1.5, φ = 0.20, Reλ = 118), and (b) cases D2 (kf =
3.0, Reλ = 30) and P3 (kf = 2.0, Reλ = 47).

breakup equilibrate. Since these oscillations can be significant (with their extreme
values remaining bounded, similar to kinetic energy and dissipation), the dynamics
should more accurately be called a quasi-equilibrium (limit) cycle in the system
state-space comprising (i) kinetic energy 〈Ek〉, (ii) enstrophy 〈ω2〉, which is defined as
〈ω2〉 = 〈ω · ω〉 (where ω = ∇ × u is the vorticity), (iii) interfacial energy 〈Eγ 〉 = 〈SAγ 〉
(i.e. the product of the total interfacial area SA and the interfacial tension γ ) and (iv)
the droplet number density Nd. Here 〈.〉 denotes volume averaging of the quantities.
Coalescence and breakup equilibrate in a statistical sense only, while the instantaneous
dynamics is governed by temporal branches of alternating dominance of coalescence
and breakup. Note that the term ‘limit cycle’ is used loosely to illustrate the dynamics,
since truly closed trajectories in phase space were not found, perhaps primarily due
to intermittency and non-periodicity of the numerical solutions.

A dominant mediator of droplet breakup is the rate of kinetic energy dissipation 〈ǫ〉
(or 〈ω2〉). Since dissipation destroys turbulent kinetic energy, it is interesting to note
that its interaction with the dispersed phase is associated with interfacial wrinkling,
deformation and breakup – all mechanisms that increase the amount of surface
energy in the system at the cost of kinetic energy. This excess energy, however, is
still available in the flow field, and true destruction of it (i.e. into heat) must be
mediated via kinetic energy dissipation, which occurs by the generation of smaller
scales in the flow due to coalescence or damped oscillations of deformed droplet
interfaces. A higher globally averaged 〈ω2〉 can be expected to increase the chance
of droplet breakup (as it also reduces the effective Hinze scale), and vice-versa.
Hence the trends seen in the Nd evolution should reflect those in the evolution of
〈ω2〉, which in turn should follow the peaks and valleys of the kinetic energy 〈Ek〉
evolution.

This hypothesis is found to be true, and is shown in figure 22 in the evolution of
〈Ek〉, 〈ω2〉, Nd and 〈Eγ 〉 for case T5. Here each variable has been normalized by its
time average (between 50τk and 1000τk), such that it oscillates around a mean value
of 1, which is done merely to facilitate comparison between the different curves. The
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FIGURE 22. (Colour online) Evolution of state-space variables Nd, 〈Ek〉, 〈ω2〉 and 〈Eγ 〉
(from case T5). The y-axis is in arbitrary units [a.u.] for each quantity since they have
been normalized by their time-averaged values between 50τk and 1000τk, to scale the
fluctuations to around a mean value of 1 (to facilitate visual comparison between the
different curves). In panels (a) to (c), peaks in 〈Ek〉 are shown to be manifested in the
〈ω2〉 evolution with a small time delay, which are then found in the Nd evolution with
a further time delay, in a cascade of cause and effect. Two such instances have been
shown using the vertical lines extending from panel (a) to panel (c), which approximately
indicate individual sequences of cascading events. Similarly, peaks in 〈Eγ 〉 are found to
precede peaks in Nd, two instances of which have also been shown using the vertical lines
between panels (c) and (d).

peaks in 〈Ek〉 (a) are found to consistently be manifested in 〈ω2〉 (b) with a small
time delay, which are again found with a further time delay in the evolution of Nd

(c). Two such instances have been marked by the three successive vertical lines than
connect panels (a–c), coinciding approximately with the local peaks of the different
curves. Similarly, peaks in the evolution of 〈Eγ 〉 (d) are found to precede peaks in
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FIGURE 23. Correlation between Nd, 〈Ek〉 and 〈ω2〉 for case T5. Here Nd consistently
correlates strongly with 〈Ek〉 with a temporal delay of 0.9T , while 〈Eγ 〉 is found to attain
its maximum value before Nd, hinting that breakup occurs via extension of droplets into
long filaments.

Nd (c), two instances of which have also been similarly marked by vertical lines
spanning those two panels of figure 22. This shows clearly that the droplet surface
area (since here Eγ ∝ SA) is at its maximum before breakup, which hints that the
droplet breakup mechanism is mainly the extension of filaments. Since droplet breakup
leads to an increase in surface area – for example a spherical droplet breaking into
n equal-volume daughter droplets leads to an increase in surface area by a factor of
n1/3 – the peak in surface area prior to breakup signifies that the droplet before
breakup must be significantly elongated to have a larger surface area than the
subsequently formed daughter droplets. This also shows that a single droplet does
not break into many daughter droplets at once, and the process is cascading, since
otherwise a large number of daughter droplets will lead to higher surface areas after
breakup, not before it. A correlation between the evolution of different variables can
be calculated as

Corr(δt)= 〈Ek(t)〉〈ω2(t + δt)〉
〈Ek〉 〈ω2〉

, (5.1)

where δt is a time lag and the overbar is a temporal average. This has been done
for the different signal pairs and is shown in figure 23. Here 〈ω2〉 is found to
correlate strongly with 〈Ek〉 with a time delay of ∼0.3T while Nd shows a very
strong correlation with 〈ω2〉 at a time delay of ∼0.6T . Consequently, a significant
correlation between Nd and 〈Ek〉 is found at ∼0.9T . The converse effect of droplets
on turbulence is also hinted at in this figure, where the valleys of the Nd evolution
often coincide with peaks in the 〈Ek〉 evolution. This shows that when the droplet
number density reduces due to coalescence, the excess surface energy is released into
the flow as kinetic energy, which has been expounded by Dodd & Ferrante (2016).
Since turbulence in our simulations is constantly forced (as opposed to Dodd &
Ferrante (2016) who simulate droplets in decaying turbulence) the variation in 〈Ek〉 in
our simulations comes from a more complex confluence of the power input as well
as the droplet dynamics. The correlation of surface energy 〈Eγ 〉 and Nd is shown in
figure 23(c), where a weaker but certain correlation between 〈Eγ 〉 and Nd is found
with a time lag of 0.8T .

We also observed this time-delayed dynamics of 〈Ek〉 and Nd for cases with
different parameters such as turbulence forcing amplitude and interfacial tension,
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although for some cases the effect was less explicit. Particularly, for weaker γ or
lower Reλ, the Nd oscillations were not as extreme as for case T5 (where turbulence
intensity and interfacial tension are both relatively stronger forces), although the 〈Ek〉
and Nd correlation was found to be strong. Generally, the dynamics can be described
as follows. First, the large-scale structures generate higher velocity gradients at the
dissipation scale (which may be due to the energy cascade if such exists) with an
initial time lag. This larger dissipation rate is felt by the droplets, which respond by
breaking up with a further time delay, increasing the number of droplets in the system.
This process (from peaks in 〈Ek〉 to peaks in Nd) was consistently found to take place
with a delay of around ∼0.9T across different cases, which is roughly the lifetime of
the large eddies. This finding can be important for droplet dynamics models such as
population balance equations, where breakup kernels rely upon the instantaneous local
value of ǫ. If the temporal aspect to droplet populations is important, a relaxation
time should separate cause and effect, which is not done currently as seen in the
various models reviewed by Sajjadi et al. (2013).

In summary, the turbulent emulsion dynamics can also be interpreted as a
quasi-periodic evolution in a state-space comprising 〈Ek〉, 〈ω2〉, Nd and 〈Eγ 〉.
Essentially, there are two bounded extrema in the droplet number density at a given
turbulent intensity for a certain set of fluid properties. These correspond to a state of
low Nd which is marked by fewer, relatively large droplets. When dissipation attains
a subsequent peak, several of these droplets must be larger than the instantaneous
Hinze scale – which leads to accelerated droplet breakup which takes the system to its
other extremum – a state marked with high Nd. Most of the droplets in this state are
stable and cannot undergo further breakup. As dissipation reduces, these droplets are
advected around and, due to a higher chance of droplet–droplet collisions, coalescence
dominates the next part of the state-space evolution. These two states also exhibit
slightly different dispersion morphologies, as illustrated in figure 24. The fluctuations
in Nd are caused by these two phases, where breakup and coalescence alternate in
their dominance. In the Ek–Eγ state-space, this can be viewed as (a somewhat erratic)
evolution within a bounded region of finite Ek and Eγ . We do find signatures of
this behaviour, although to more accurately describe the Ek–Eγ state-space requires
further work where the contributions from breakup and coalescence are separately
accounted for and the surface area is better resolved by simulating larger droplets in
weaker turbulence. It should be noted, though, that the dynamics we report would
correspond to local dynamics in larger droplet-laden systems such as stirred vessels
or in clouds. When considering these systems as a whole, the equilibrium properties
may not fluctuate as much as reported here, as the local fluctuations in different
regions of the system would cancel out.

5.2. Vorticity and interface alignment

Figure 25 shows snapshots of enstrophy from a vertical cross-section of the varying φ
simulations (P1–P4), with the droplet contours shown in black. Strong vortical regions
are often found in the vicinity of the droplet interface and in the droplet wakes. There
is strong interplay between the interfacial dynamics and enstrophy, as high-amplitude
vorticity regions align with the interface (Shao et al. 2018) and cause wrinkling. High
local dissipative events have also been linked to droplet breakup (Perlekar et al. 2012).

The interplay between the vorticity vector and the interface normal can be quantified
by using the distribution of the cosine of the angle between these two vectors. First,
the density field ρβ is converted to a phase indicator field ψ = (ρβ − ρout

β )/(ρ
in
β − ρout

β ),
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FIGURE 24. (Colour online) Quasi-periodic evolution of droplet morphology, cyclically
visiting a typical state ‘a’ marked by low Nd (and hence low 〈Eγ 〉) and high 〈Ek〉 and state
‘c’ marked by large Nd (and 〈Eγ 〉) and low 〈Ek〉. The transition from ‘a’ to ‘c’ happens
via a dominance of breakup shown in state ‘b’, while the return from ‘c’ to ‘a’ via state
‘d’ happens due to dominant coalescence. These snapshots are from case T5.

such that ψ = 1 in the droplet region, ψ = 0 in the carrier fluid region and 0<ψ < 1
at the interface. The typical phase indicator gradient then becomes ∇ψ = 1/ζ , and the
cosine of the orientation angle is calculated where ∇ψ > 0.01ζ (where 0.01 ensures
that all of the interfacial regions are considered, while ignoring the bulk regions where
∇ψ = 0 by construction) as follows:

cos(θ)= n̂ · ω̂, (5.2)

where n̂ = ∇ψ/|∇ψ | is the unit normal vector at the interface and ω̂ = ω/|ω| is the
normalized vorticity vector.

Using this measure, Shao et al. (2018) showed that vorticity tends to align
tangentially to droplet interfaces in turbulent flows. Here we extend their result
in figure 26 which shows the joint probability distribution of the cosine of the
orientation angle θ and the normalized vorticity vector ω/〈ω2〉1/2. The joint probability
distribution functions (PDFs) have been generated with statistics collected from six
different field snapshots, evenly spaced between roughly 100τk–200τk. The black
dashed lines mark ω = 0.5〈ω2〉1/2. Stronger vorticity (ω > 0.5〈ω2〉1/2) is found to
be more prone to align tangentially to the interface. In this range, vorticity is
associated with strong swirling motion in the plane orthogonal to the vorticity vector,
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FIGURE 25. (Colour online) Planar cross-sections (at z = Nx/2) of the enstrophy field ω2

normalized by the average enstrophy 〈ω2〉 along with droplet contours for varying φ values
(cases P1–P4). These snapshots show the typical enstrophy profiles with localized intense
vorticity often concentrated around droplet interfaces, which leads to droplet accretion.

which causes droplet accretion and subsequent tangential alignment of vorticity with
interfaces, yielding cos(θ)= 0. Weaker vorticity (ω < 0.5〈ω2〉1/2, i.e. below the black
dashed line), is incapable of exerting this influence on droplets and hence exhibits a
uniform random distribution of orientation angles with respect to the interfaces (as
all θ values seem to occur with equal probability at a given ω).

Another explanation for this effect could be that most droplets are elongated. It is a
known phenomenon that oblate objects align with the vorticity parallel to their axis, as
has been shown for sub-Kolmogorov oblate particles (Pumir & Wilkinson 2011) and
inertial spheroids (Roy, Gupta & Ray 2018). Since the elongated interfacial regions
influence the joint PDF more strongly (by being more prevalent), and since there is a
significant peak at cos(θ)= 0, the axial alignment mechanism seems plausible. On the
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FIGURE 26. (Colour online) (a) Schematic of the orientation angle θ . Here n̂ is the
normal unit vector to the interface and ω̂ is the vorticity unit vector at that point.
(b) Alignment between vorticity and the local interface normal is shown as the joint PDF
of the cosine of the angle between them and the magnitude of vorticity, for the two
extreme cases of φ= 0.01 (simulation P1) and φ= 0.45 (simulation P5), the intermediate
cases being in between these two. The contour levels have been logarithmically spaced.
Stronger vorticity (ω> 0.5〈ω2〉1/2, above the black dashed lines) tends to align orthogonal
to the interface while weaker vorticity remains randomly aligned with the interface with
a more uniform distribution.

other hand, spherical sub-Kolmogorov droplets would tend to spin in local shear of the
deep dissipation range and, if deformed, may also tend to have orientation statistics
similar to rods in turbulence (Pumir & Wilkinson 2011). This hypothesis would need
to be further tested. Our orientation statistics are valid for droplets in the inertial range,
and a simple extrapolation to sub-Kolmogorov droplets cannot be done.

5.3. Effect of droplets on flow topology

Local flow topology is described in terms of the three invariants (P, Q and R) of the
velocity gradient tensor Aij = ∂ui/∂xj, which form the coefficients of its characteristic
equation

λ
3 + Pλ2 + Qλ+ R = 0, (5.3)
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FIGURE 27. The four distinct flow topologies of turbulent flow shown in the plane
of Q and R, i.e. the second and third invariants of the velocity gradient tensor Aij.
‘SFS’ is stable focus stretching, ‘UFC’ is unstable focus compression, ‘SN/S/S’ is
stable-node/saddle/saddle and ‘UN/S/S’ is unstable-node/saddle/saddle. This figure is an
adaptation from the classification in Ooi et al. (1999).

where P = −Aii, Q = −AijAji/2 and R = −AijAjkAki/3. For incompressible flow, P = 0
(i.e. the sum of the eigenvalues). In the P = 0 plane (or the QR-plane), turbulent
flow of diverse kinds produces a teardrop-like profile for the joint probability
distribution of Q and R with four distinct flow topologies that have been illustrated
in figure 27 (adapted from Ooi et al. (1999)). The curve D = 27R2/4 + Q3 = 0
(derivation can be found in Chong, Perry & Cantwell (1990)) divides the region
with three real eigenvalues of Aij (below, where D < 0) from the region with
one real and a pair of complex conjugate eigenvalues (above, where D > 0).
The most dominant flow features are stable focus stretching ‘SFS’ (i.e. vortex
stretching) and unstable-node/saddle/saddle ‘UN/S/S’ ( i.e. bi-axial straining (Chacin
& Cantwell 2000)). Also, ‘UFC’ corresponds to unstable focus compression (or vortex
compression) and ‘SN/S/S’ is stable-node/saddle/saddle (or axial straining).

The presence of droplets or particles which interact with the flow can modify the
distribution of flow topologies, which is a modification of turbulence structure at a
more local and fundamental level than for instance modifications to the kinetic energy
spectrum. This has been well investigated for particle-laden turbulence (Rouson &
Eaton 2001; Bijlard et al. 2010) and recently shown for elastic polymers in turbulence
by Perlekar, Mitra & Pandit (2010). Although polymer additives are fundamentally
very different from droplets, both are elastic objects, and hence they may have some
similar turbulence modification effects. Recently, Shao et al. (2018) showed a mild
suppression of bi-axial straining in droplet-laden turbulence upon changing the Weber
number.

How droplets modify flow topology has not fully been investigated so far. Here,
we first show the influence of increasing dispersed-phase volume fraction on the QR
profiles calculated using simulations P1–P5. Since Reλ for these cases varies (and is
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almost a factor 2 lower than the corresponding single-phase turbulence simulation, see
table 1), the normalization factor 〈Qw〉 = 〈ω2〉/4 (Ooi et al. 1999) is calculated for
each case separately. This allows us to focus on the modification of flow features
alone, without comparing the magnitude of these extreme QR events. Figure 28 shows
the QR field sampled over the entire multiphase velocity field. For case (b) φ = 0.01,
the profile is narrower than for single-phase turbulence, case (a), although the overall
shape is similar. This might be due to the φ = 0.01 dispersion being dilute, which
makes coalescence infrequent. Overall, in this case, the flow field is similar to that
in single-phase turbulence, and coalescence-generated smaller-scale features are rare.
This seems likely, as at successively higher volume fractions, cases (c) to ( f ), the QR

profile is influenced more significantly and it tends to become more symmetric across
the R = 0 line. This follows from an increase in the axial straining part of the flow,
along with an extension of the profile into the D> 0 and R> 0 region which shows
a relative increase in vortex compression as opposed to vortex stretching (D> 0 and
R< 0).

Modification of the QR profile due to an increase in φ hints that it is a consequence
of turbulence being constrained by the dispersed phase. To validate this claim, in
figure 29 the QR profiles are shown while being sampled inside and outside the
droplet regions (marked as ‘d’ for droplet phase and ‘c’ for continuous phase). This
has been done for simulations D4 and D5 (which have the highest resolution and
significantly different Reλ = 30 and 118 respectively). The QR profiles have been
sampled at five time instances separated by 100τk. The difference between the flow
topology in the droplet and continuous phase is striking, where within the droplet
region the QR profile seems to almost have flipped across the R = 0 axis.

There is a small increase in axial straining and a significant increase in vortex
compression inside the droplets. A possible explanation for this effect could be
the presence of interfaces surrounding droplets which behave like elastic surfaces.
Vortices being stretched inside the droplets will try to elongate the droplet along
the stretching axis, and this will be counteracted by interfacial tension which would
instead tend to compress vortices. Since vortex compression contributes to energy
dissipation (Tsinober 2009), an enhancement of energy dissipation might also be
expected inside droplets from these results (further investigation of this is left for
future work). With a similar reasoning, increase in axial straining may also be an
effect of surface tension. Axial strain tends to stretch droplets into prolate ellipsoids
(cigar-like objects), while bi-axial strain would shape them into oblate ellipsoids (flat
pancake-like objects). For equivalent strain intensity, bi-axial strain would lead to a
more rapid increase in surface energy than axial strain. The increase in axial strain
may hence be another consequence of droplets trying to minimize surface energy.
More work is required to pinpoint the reason behind the droplet effects on flow
topology. These effects, along with the alignment of elongated droplets parallel to
local vorticity, can be viewed as complementary phenomena. The continuous-phase
QR profile remains mostly tear-drop like, with minor increase in axial straining and
vortex compression.

We did not directly investigate the effect of surface tension on the QR profiles,
but it can be argued that an increase in surface tension will further amplify vortex
compression and axial strain (if our hypothesis of the mechanism is correct). This
is because a higher γ will lead to a stronger surface tension force which will
counteract any increase in surface area due to deformation or breakup. At the limit
of zero surface tension both fluids will perfectly mix and one will recover the usual
tear-drop like QR profile found for single-phase turbulence. This can also be related

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

65
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.654


Turbulent emulsion dynamics 267

-40 0 40

R/¯Qw˘3/2

-40 0 40

R/¯Qw˘3/2

-7 -6 -5 -4 -3 -2 -1

40

0

Q
/
¯Q

w
˘

40

0

-40

Q
/
¯Q

w
˘

40

0

-40

Q
/
¯Q

w
˘

Single-phase ƒ = 0.01

ƒ = 0.15ƒ = 0.06

ƒ = 0.45ƒ = 0.20

(a) (b)

(c) (d)

(e) (f)

FIGURE 28. (Colour online) Joint PDFs of the second and third invariants (Q and R) of
the velocity gradient tensor show the typical teardrop profile characteristic of single-phase
turbulence being modified into a more symmetric profile with an increase in axial straining
and vortex compression. Here 〈Qw〉 = 〈ω2〉/4 and the quantities are calculated over the
entire multiphase velocity field, sampled at five time instances separated by 20τk. The
solid lines mark Q = 0, R = 0 and D = 27R2/4 + Q3 = 0, and the contour levels have been
logarithmically spaced.
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FIGURE 29. (Colour online) Joint PDFs of QR sampled in the droplet phase (‘d’) and
continuous phase (‘c’) for cases D4 and D5. The QR profile appears to flip on the
R = 0 axis for the droplet phase, with a striking increase in vortex compression and
axial straining. The continuous phase QR profile remains mostly tear-drop like with minor
increase in axial straining.

to the effect of the average droplet size, where a higher surface tension will lead to
larger droplets on average, which will influence turbulence topology more than small
droplets. Hints of this effect are visible in results from the increasing volume fraction
simulations, where on average the droplet sizes increase, which results in greater
turbulence modification. A direct comparison, however, has not been performed in
this study, and it would require larger droplet sizes while keeping the volume fraction
and turbulence intensity the same.

6. Conclusions

We perform direct numerical simulations of emulsions under homogeneous isotropic
turbulence conditions performed by using the pseudopotential lattice-Boltzmann
method. New findings on droplet size distributions, multiphase kinetic energy spectra,
coupled kinetic energy and droplet number density dynamics, interface–dissipation
interactions and modification of turbulence flow topology in emulsions are reported.
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The process of dispersion formation is investigated for varying volume fractions
of the dispersed phase and varying turbulence intensities for an emulsion with
a density and viscosity ratio of 1. Using an appropriate set of parameters (such
that the pseudopotential repulsive force between components dominates the local
turbulence force), the effect of droplet dissolution is mitigated, an issue that was
found limiting in previous work (Perlekar et al. 2012; Komrakova et al. 2015a).
While further maintaining spurious currents to well below the physical velocity
scales, the multiphase kinetic energy spectra were shown to exhibit signatures of
breakup and coalescence at wavenumbers smaller and larger than the inverse Hinze
scale respectively.

At small wavenumbers, energy is primarily extracted from the flow, where a higher
dispersed-phase volume fraction φ extracts more energy due to the profusion of
interfaces. At large wavenumbers, for successively higher φ, the energy content of
the dissipation range increases due to more frequent coalescence which generates
smaller-scale motions. The droplet distribution is shown to follow the d−10/3 scaling
that has been previously found for purely inertial breakup of the dispersed phase
(Garrett et al. 2000; Deane & Stokes 2002). High volume fraction dispersions under
moderate turbulence intensities do not exhibit the k−5/3 inertial range scaling, and in
these cases coalescence cannot be ignored either, in which case the classical Hinze
(1955) scale becomes invalid. We propose a generalization of the Hinze scale for
these situations, where instead of using the dissipation rate 〈ǫ〉 to determine the
characteristic velocity at the droplet scale d, we use the multiphase kinetic energy
spectra 〈E(k)〉 (which reflects the average energetics including coalescence and
breakup at each scale) and the droplet wavenumber kd. This gives a Weber number
spectrum We(k), which in turn can be used as an indication for the lengthscale at
which inertia and surface tension become comparable (i.e. We(k)≈ 1, or We(k)≈ Wecrit

if the critical Weber number is known). This criterion was found to predict the
lengthscale at which the droplet distribution transitions into the d−10/3 scaling
reasonably well, which is known to hold in the breakup-dominated range of scales
(Deane & Stokes 2002). Our criterion also reduces to the classical Hinze scale when
E(k) is of the Kolmogorov form, i.e. E(k)∼ ǫ2/3k−5/3.

The importance of the relative resolution between the various lengthscales that
govern turbulence droplet simulations is emphasized. We show that it is important
to resolve Nx > L to correctly capture droplet deformation and breakup at relatively
weaker turbulence intensities and high volume fractions, where otherwise the droplet
fluid can form a complex tangle of elongated filaments as the maximum droplet
deformation becomes unresolved. We also maintain L≫ d ≫ η, such that the droplets
interact mainly with the inertial range of turbulence.

In line with recent results (Shao et al. 2018), vorticity is shown to strongly align
tangentially to droplet interfaces. This effect was shown to be stronger for higher
vorticity magnitudes. The presence of dispersed phase is also shown to significantly
alter the flow topology represented by the joint PDF of QR, i.e. the second and third
invariants of the velocity gradient tensor, much more acutely than recognized (Shao
et al. 2018). The well-known tear-drop-like profile becomes almost flipped across
the R = 0 axis when sampled inside the droplet in comparison to sampling in the
carrier phase. A striking increase in axial straining and vortex compression is found
in the droplets, which hints at an interplay of interfacial tension with turbulence,
where droplets try to minimize any increase in surface energy by suppressing flow
types that cause more deformation – namely bi-axial straining and vortex stretching.
This result hints that droplets might have enhanced dissipation in their interior. The
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carrier-fluid topology retains features of the well-known tear-drop profile (Chacin &
Cantwell 2000) with only minor increase in axial straining and vortex compression.

Last but not the least, we show for the first time the dynamics of the quasi-
equilibrium between coalescence and breakup under constant energy input to the
system which leads to sustained turbulence over very long simulation times (around
100T ). This state is often called a ‘steady state’, although the dynamics more closely
resembles a limit cycle in the state-space of kinetic energy 〈Ek〉, enstrophy 〈ω2〉,
droplet number density Nd and surface energy 〈Eγ 〉. The extreme values of 〈Ek〉 are
manifested in the 〈ω2〉 evolution with a certain time delay, which then again show
up in the Nd evolution leading to a time-delayed dynamics. The dispersion oscillates
between two morphologies, the journey between them being mediated by alternating
bouts of dominant breakup and coalescence. Surface energy was found to peak prior
to droplet breakup, reflecting the underlying breakup mechanism which involves
the stretching of droplet fluid filaments, which have a higher surface area than the
subsequently formed daughter droplets.

We believe that this time-delayed dynamics will be found in localized regions
of much larger droplet-laden systems, where the overall system may not exhibit
significant fluctuations in state-space variables, as the localized fluctuations would
cancel each other. However, in smaller, finite systems (as prevalent in turbulence-
resolving droplet-laden simulations (Elghobashi 2019)), this can be an important
consideration, as the ‘steady state’ can have its own interesting dynamics. These
considerations of delayed temporal dynamics may also be relevant to developing
more realistic breakup and coalescence kernels that currently correlate state-space
variables instantaneously (Sajjadi et al. 2013), which we have not explored given the
limits of the current work.

Further investigation of the system evolution in the 〈Ek〉–〈Eγ 〉 phase space would
help describe the exact exchange of energy, where the effects of coalescence and
breakup would need to be isolated. This may be done by simulating larger droplets
in weak turbulence, which would correspond to a detailed view of individual droplets
near the dissipation range, and it is something we wish to investigate in the future.

We hope that this paper brings to attention the avenue of considering the details
of resolved simulations from different perspectives (as we have attempted, while
considering the limitations of our work). This helps reinforce our understanding
of the phenomena at different levels. A statistical perspective (looking at spectra,
time-averaged quantities etc) helps with an overall description, while a dynamical
systems perspective on the state-space helps pave the way for deciphering the
true mediation of cause and effect such as droplet–dissipation interactions and the
modification of turbulence due to droplets, which we are only now beginning to
understand.
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Appendix

In this appendix we briefly discuss the segmentation of droplets. The simulations
output a continuous density field for both components α and β. As mentioned,
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FIGURE 30. (Colour online) Normalized phase fraction evolution for varying ρc used to
segment droplets. Here ρc is reported as a fraction of ρ in

β , while ρout
β /ρ

in
β = 0.1, therefore

the useful range of ρc/ρ in
β is 0.1 to 1.0, and ρc/ρ in

β = 0.55 is halfway.

the density variation of a component indicates the presence of droplets, where the
density of component β inside the droplet ρ in

β ≈ 4.4 and that outside the droplet
ρout
β ≈ 0.4 [lu] when the flow is fully developed. The droplet identification is done by

fixing a threshold density value ρc. Every contiguous droplet-fluid region, i.e. a cluster
of neighbouring lattice cells with values above the chosen threshold (ρβ > ρc), is
identified as a droplet. For a point (i, j, k), only the six neighbours (i ± 1, j ± 1, k ± 1)
are considered in our spatial segmentation (or clustering) algorithm, which was
originally developed by Siebesma & Jonker (2000). This is a post-processing step
with a single parameter ρc, which gives the total number of droplets in the system
Nd, the individual droplet volumes V (and equivalent diameters d = (6V/π)1/3), the
droplet surface area SA and the droplet centre of mass. These results should not
significantly depend on the choice of ρc.

As the dispersed-phase density values within the interface vary between 0.1ρ in
β 6

ρβ 6 ρ
in
β , the useful range of thresholding values ρc/ρ in

β ∈ [0.1, 1.0], as ρc should lie
within the interface. Figure 30 shows the relative evolution of the volume fraction over
time for the case φ = 0.06, for different threshold values around the middle of the
usable range. Lower values of ρc account for more of the dispersed phase as droplets,
which is why the total volume fraction increases as ρc decreases. Note that this is
not a physical increase in volume fraction (as the density field is determined by the
dynamics alone) and is only a post-processing estimate – as ρc merely differentiates
whether a point is inside the droplet region or not. So the choice of ρc also determines
when a dissolving droplet stops being counted as part of the dispersed phase (though
the mass of each fluid is conserved). This is why in figure 30, a higher ρc gives a
lower φ, as more small droplets are not counted as part of the dispersed phase.

So although a lower ρc gives a higher estimate of φ, it may not be the most
appropriate choice. This is because the interface is considered to be roughly in the
middle of [ρout

β , ρ
in
β ], which is approximately 0.55ρ in

β . The clustering threshold value
used in this study, i.e. ρc = 0.57ρ in

β , is very close to the mid-way value. The minor
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FIGURE 31. (Colour online) Evolution of droplet number density Nd for varying ρc shows
that the number of droplets identified is almost independent of ρc.

difference between the two values has virtually no influence on the results, and is due
to the slight change in the equilibrium density values of the dispersed phase which is
difficult to exactly ascertain a priori.

Notwithstanding, we verify that our specific choice of ρc has little influence on
results other than the evolution of φ. Figure 31 shows the evolution of the number
of droplets Nd in the system for different threshold magnitudes, which is seen to
have minimal influence on Nd. Similarly, the droplet distribution was also found to be
virtually unaffected by the choice of ρc as long as it lies within the droplet interface.
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