
Dropout as a Bayesian Approximation:

Representing Model Uncertainty in Deep Learning

Yarin Gal YG279@CAM.AC.UK

Zoubin Ghahramani ZG201@CAM.AC.UK

University of Cambridge

Abstract

Deep learning tools have gained tremendous at-

tention in applied machine learning. However

such tools for regression and classification do

not capture model uncertainty. In compari-

son, Bayesian models offer a mathematically

grounded framework to reason about model un-

certainty, but usually come with a prohibitive

computational cost. In this paper we develop a

new theoretical framework casting dropout train-

ing in deep neural networks (NNs) as approxi-

mate Bayesian inference in deep Gaussian pro-

cesses. A direct result of this theory gives us

tools to model uncertainty with dropout NNs –

extracting information from existing models that

has been thrown away so far. This mitigates

the problem of representing uncertainty in deep

learning without sacrificing either computational

complexity or test accuracy. We perform an ex-

tensive study of the properties of dropout’s un-

certainty. Various network architectures and non-

linearities are assessed on tasks of regression

and classification, using MNIST as an example.

We show a considerable improvement in predic-

tive log-likelihood and RMSE compared to ex-

isting state-of-the-art methods, and finish by us-

ing dropout’s uncertainty in deep reinforcement

learning.

1. Introduction

Deep learning has attracted tremendous attention from re-

searchers in fields such as physics, biology, and manufac-

turing, to name a few (Baldi et al., 2014; Anjos et al., 2015;

Bergmann et al., 2014). Tools such as neural networks

(NNs), dropout, convolutional neural networks (convnets),

and others are used extensively. However, these are fields in

which representing model uncertainty is of crucial impor-

tance (Krzywinski & Altman, 2013; Ghahramani, 2015).

With the recent shift in many of these fields towards the use

of Bayesian uncertainty (Herzog & Ostwald, 2013; Trafi-

Proceedings of the 33
rd International Conference on Machine

Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

mow & Marks, 2015; Nuzzo, 2014), new needs arise from

deep learning tools.

Standard deep learning tools for regression and classifica-

tion do not capture model uncertainty. In classification,

predictive probabilities obtained at the end of the pipeline

(the softmax output) are often erroneously interpreted as

model confidence. A model can be uncertain in its predic-

tions even with a high softmax output (fig. 1). Passing a

point estimate of a function (solid line 1a) through a soft-

max (solid line 1b) results in extrapolations with unjustified

high confidence for points far from the training data. x∗ for

example would be classified as class 1 with probability 1.

However, passing the distribution (shaded area 1a) through

a softmax (shaded area 1b) better reflects classification un-

certainty far from the training data.

Model uncertainty is indispensable for the deep learning

practitioner as well. With model confidence at hand we can

treat uncertain inputs and special cases explicitly. For ex-

ample, in the case of classification, a model might return a

result with high uncertainty. In this case we might decide

to pass the input to a human for classification. This can

happen in a post office, sorting letters according to their zip

code, or in a nuclear power plant with a system responsi-

ble for critical infrastructure (Linda et al., 2009). Uncer-

tainty is important in reinforcement learning (RL) as well

(Szepesvári, 2010). With uncertainty information an agent

can decide when to exploit and when to explore its envi-

ronment. Recent advances in RL have made use of NNs for

Q-value function approximation. These are functions that

estimate the quality of different actions an agent can take.

Epsilon greedy search is often used where the agent selects

its best action with some probability and explores other-

wise. With uncertainty estimates over the agent’s Q-value

function, techniques such as Thompson sampling (Thomp-

son, 1933) can be used to learn much faster.

Bayesian probability theory offers us mathematically

grounded tools to reason about model uncertainty, but these

usually come with a prohibitive computational cost. It is

perhaps surprising then that it is possible to cast recent

deep learning tools as Bayesian models – without chang-

ing either the models or the optimisation. We show that

the use of dropout (and its variants) in NNs can be inter-

preted as a Bayesian approximation of a well known prob-

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

(a) Arbitrary function f(x) as a function of data x (softmax input) (b) σ(f(x)) as a function of data x (softmax output)

Figure 1. A sketch of softmax input and output for an idealised binary classification problem. Training data is given between the

dashed grey lines. Function point estimate is shown with a solid line. Function uncertainty is shown with a shaded area. Marked with a

dashed red line is a point x∗ far from the training data. Ignoring function uncertainty, point x∗ is classified as class 1 with probability 1.

abilistic model: the Gaussian process (GP) (Rasmussen &

Williams, 2006). Dropout is used in many models in deep

learning as a way to avoid over-fitting (Srivastava et al.,

2014), and our interpretation suggests that dropout approx-

imately integrates over the models’ weights. We develop

tools for representing model uncertainty of existing dropout

NNs – extracting information that has been thrown away so

far. This mitigates the problem of representing model un-

certainty in deep learning without sacrificing either compu-

tational complexity or test accuracy.

In this paper we give a complete theoretical treatment of

the link between Gaussian processes and dropout, and de-

velop the tools necessary to represent uncertainty in deep

learning. We perform an extensive exploratory assessment

of the properties of the uncertainty obtained from dropout

NNs and convnets on the tasks of regression and classifi-

cation. We compare the uncertainty obtained from differ-

ent model architectures and non-linearities in regression,

and show that model uncertainty is indispensable for clas-

sification tasks, using MNIST as a concrete example. We

then show a considerable improvement in predictive log-

likelihood and RMSE compared to existing state-of-the-

art methods. Lastly we give a quantitative assessment of

model uncertainty in the setting of reinforcement learning,

on a practical task similar to that used in deep reinforce-

ment learning (Mnih et al., 2015).1

2. Related Research

It has long been known that infinitely wide (single hid-

den layer) NNs with distributions placed over their weights

converge to Gaussian processes (Neal, 1995; Williams,

1997). This known relation is through a limit argument that

does not allow us to translate properties from the Gaus-

sian process to finite NNs easily. Finite NNs with distri-

butions placed over the weights have been studied exten-

sively as Bayesian neural networks (Neal, 1995; MacKay,

1992). These offer robustness to over-fitting as well, but

with challenging inference and additional computational

costs. Variational inference has been applied to these mod-

els, but with limited success (Hinton & Van Camp, 1993;

1Code and demos are available at http://yarin.co.

Barber & Bishop, 1998; Graves, 2011). Recent advances

in variational inference introduced new techniques into

the field such as sampling-based variational inference and

stochastic variational inference (Blei et al., 2012; Kingma

& Welling, 2013; Rezende et al., 2014; Titsias & Lázaro-

Gredilla, 2014; Hoffman et al., 2013). These have been

used to obtain new approximations for Bayesian neural

networks that perform as well as dropout (Blundell et al.,

2015). However these models come with a prohibitive

computational cost. To represent uncertainty, the number

of parameters in these models is doubled for the same net-

work size. Further, they require more time to converge and

do not improve on existing techniques. Given that good un-

certainty estimates can be cheaply obtained from common

dropout models, this might result in unnecessary additional

computation. An alternative approach to variational infer-

ence makes use of expectation propagation (Hernández-

Lobato & Adams, 2015) and has improved considerably

in RMSE and uncertainty estimation on VI approaches

such as (Graves, 2011). In the results section we com-

pare dropout to these approaches and show a significant

improvement in both RMSE and uncertainty estimation.

3. Dropout as a Bayesian Approximation

We show that a neural network with arbitrary depth and

non-linearities, with dropout applied before every weight

layer, is mathematically equivalent to an approximation

to the probabilistic deep Gaussian process (Damianou &

Lawrence, 2013) (marginalised over its covariance function

parameters). We would like to stress that no simplifying as-

sumptions are made on the use of dropout in the literature,

and that the results derived are applicable to any network

architecture that makes use of dropout exactly as it appears

in practical applications. Furthermore, our results carry

to other variants of dropout as well (such as drop-connect

(Wan et al., 2013), multiplicative Gaussian noise (Srivas-

tava et al., 2014), etc.). We show that the dropout objec-

tive, in effect, minimises the Kullback–Leibler divergence

between an approximate distribution and the posterior of

a deep Gaussian process (marginalised over its finite rank

covariance function parameters). Due to space constraints

we refer the reader to the appendix for an in depth review

http://yarin.co

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

of dropout, Gaussian processes, and variational inference

(section 2), as well as the main derivation for dropout and

its variations (section 3). The results are summarised here

and in the next section we obtain uncertainty estimates for

dropout NNs.

Let ŷ be the output of a NN model with L layers and a loss

function E(·, ·) such as the softmax loss or the Euclidean

loss (square loss). We denote by Wi the NN’s weight ma-

trices of dimensions Ki × Ki−1, and by bi the bias vec-

tors of dimensions Ki for each layer i = 1, ..., L. We de-

note by yi the observed output corresponding to input xi

for 1 ≤ i ≤ N data points, and the input and output sets

as X,Y. During NN optimisation a regularisation term is

often added. We often use L2 regularisation weighted by

some weight decay λ, resulting in a minimisation objective

(often referred to as cost),

Ldropout :=
1

N

N∑

i=1

E(yi, ŷi) + λ

L∑

i=1

(
||Wi||

2
2 + ||bi||

2
2

)
.

(1)

With dropout, we sample binary variables for every input

point and for every network unit in each layer (apart from

the last one). Each binary variable takes value 1 with prob-

ability pi for layer i. A unit is dropped (i.e. its value is set

to zero) for a given input if its corresponding binary vari-

able takes value 0. We use the same values in the backward

pass propagating the derivatives to the parameters.

In comparison to the non-probabilistic NN, the deep Gaus-

sian process is a powerful tool in statistics that allows us to

model distributions over functions. Assume we are given a

covariance function of the form

K(x,y) =

∫
p(w)p(b)σ(wTx+ b)σ(wTy + b)dwdb

with some element-wise non-linearity σ(·) and distribu-

tions p(w), p(b). In sections 3 and 4 in the appendix we

show that a deep Gaussian process with L layers and co-

variance function K(x,y) can be approximated by placing

a variational distribution over each component of a spec-

tral decomposition of the GPs’ covariance functions. This

spectral decomposition maps each layer of the deep GP to

a layer of explicitly represented hidden units, as will be

briefly explained next.

Let Wi be a (now random) matrix of dimensions Ki ×
Ki−1 for each layer i, and write ω = {Wi}

L
i=1. A priori,

we let each row of Wi distribute according to the p(w)
above. In addition, assume vectors mi of dimensions Ki

for each GP layer. The predictive probability of the deep

GP model (integrated w.r.t. the finite rank covariance func-

tion parameters ω) given some precision parameter τ > 0
can be parametrised as

p(y|x,X,Y) =

∫
p(y|x,ω)p(ω|X,Y)dω (2)

p(y|x,ω) = N
(
y; ŷ(x,ω), τ−1ID

)

ŷ
(
x,ω = {W1, ...,WL}

)

=

√
1

KL

WLσ

(
...

√
1

K1
W2σ

(
W1x+m1

)
...

)

The posterior distribution p(ω|X,Y) in eq. (2) is in-

tractable. We use q(ω), a distribution over matrices whose

columns are randomly set to zero, to approximate the in-

tractable posterior. We define q(ω) as:

Wi = Mi · diag([zi,j]
Ki

j=1)

zi,j ∼ Bernoulli(pi) for i = 1, ..., L, j = 1, ...,Ki−1

given some probabilities pi and matrices Mi as variational

parameters. The binary variable zi,j = 0 corresponds then

to unit j in layer i − 1 being dropped out as an input to

layer i. The variational distribution q(ω) is highly multi-

modal, inducing strong joint correlations over the rows of

the matrices Wi (which correspond to the frequencies in

the sparse spectrum GP approximation).

We minimise the KL divergence between the approximate

posterior q(ω) above and the posterior of the full deep GP,

p(ω|X,Y). This KL is our minimisation objective

−

∫
q(ω) log p(Y|X,ω)dω + KL(q(ω)||p(ω)). (3)

We rewrite the first term as a sum

−
N∑

n=1

∫
q(ω) log p(yn|xn,ω)dω

and approximate each term in the sum by Monte Carlo in-

tegration with a single sample ω̂n ∼ q(ω) to get an unbi-

ased estimate − log p(yn|xn, ω̂n). We further approximate

the second term in eq. (3) and obtain
∑L

i=1

(
pil

2

2 ||Mi||
2
2 +

l2

2 ||mi||
2
2

)
with prior length-scale l (see section 4.2 in the

appendix). Given model precision τ we scale the result by

the constant 1/τN to obtain the objective:

LGP-MC ∝
1

N

N∑

n=1

− log p(yn|xn, ω̂n)

τ
(4)

+

L∑

i=1

(
pil

2

2τN
||Mi||

2
2 +

l2

2τN
||mi||

2
2

)
.

Setting

E(yn, ŷ(xn, ω̂n)) = − log p(yn|xn, ω̂n)/τ

we recover eq. (1) for an appropriate setting of the pre-

cision hyper-parameter τ and length-scale l. The sampled

ω̂n result in realisations from the Bernoulli distribution zni,j
equivalent to the binary variables in the dropout case2.

4. Obtaining Model Uncertainty

We next derive results extending on the above showing that

model uncertainty can be obtained from dropout NN mod-

els.

Following section 2.3 in the appendix, our approximate

2In the appendix (section 4.1) we extend this derivation to
classification. E(·) is defined as softmax loss and τ is set to 1.

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

predictive distribution is given by

q(y∗|x∗) =

∫
p(y∗|x∗,ω)q(ω)dω (5)

where ω = {Wi}
L
i=1 is our set of random variables for a

model with L layers.

We will perform moment-matching and estimate the first

two moments of the predictive distribution empirically.

More specifically, we sample T sets of vectors of realisa-

tions from the Bernoulli distribution {zt1, ..., z
t
L}

T
t=1 with

z
t
i = [zti,j]

Ki

j=1, giving {Wt
1, ...,W

t
L}

T
t=1. We estimate

Eq(y∗|x∗)(y
∗) ≈

1

T

T∑

t=1

ŷ∗(x∗,Wt
1, ...,W

t
L) (6)

following proposition C in the appendix. We refer to this

Monte Carlo estimate as MC dropout. In practice this

is equivalent to performing T stochastic forward passes

through the network and averaging the results.

This result has been presented in the literature before as

model averaging. We have given a new derivation for this

result which allows us to derive mathematically grounded

uncertainty estimates as well. Srivastava et al. (2014, sec-

tion 7.5) have reasoned empirically that MC dropout can

be approximated by averaging the weights of the network

(multiplying each Wi by pi at test time, referred to as stan-

dard dropout).

We estimate the second raw moment in the same way:

Eq(y∗|x∗)

(
(y∗)T (y∗)

)
≈ τ−1ID

+
1

T

T∑

t=1

ŷ∗(x∗,Wt
1, ...,W

t
L)

T ŷ∗(x∗,Wt
1, ...,W

t
L)

following proposition D in the appendix. To obtain the

model’s predictive variance we have:

Varq(y∗|x∗)

(
y∗

)
≈ τ−1ID

+
1

T

T∑

t=1

ŷ∗(x∗,Wt
1, ...,W

t
L)

T ŷ∗(x∗,Wt
1, ...,W

t
L)

− Eq(y∗|x∗)(y
∗)TEq(y∗|x∗)(y

∗)

which equals the sample variance of T stochastic forward

passes through the NN plus the inverse model precision.

Note that y∗ is a row vector thus the sum is over the outer-

products. Given the weight-decay λ (and our prior length-

scale l) we can find the model precision from the identity

τ =
pl2

2Nλ
. (7)

We can estimate our predictive log-likelihood by Monte

Carlo integration of eq. (2). This is an estimate of how

well the model fits the mean and uncertainty (see section

4.4 in the appendix). For regression this is given by:

log p(y∗|x∗,X,Y) ≈ logsumexp

(
−

1

2
τ ||y − ŷt||

2

)

− log T −
1

2
log 2π −

1

2
log τ−1

(8)

with a log-sum-exp of T terms and ŷt stochastic forward

passes through the network.

Our predictive distribution q(y∗|x∗) is expected to be

highly multi-modal, and the above approximations only

give a glimpse into its properties. This is because the ap-

proximating variational distribution placed on each weight

matrix column is bi-modal, and as a result the joint dis-

tribution over each layer’s weights is multi-modal (section

3.2 in the appendix).

Note that the dropout NN model itself is not changed.

To estimate the predictive mean and predictive uncertainty

we simply collect the results of stochastic forward passes

through the model. As a result, this information can be

used with existing NN models trained with dropout. Fur-

thermore, the forward passes can be done concurrently, re-

sulting in constant running time identical to that of standard

dropout.

5. Experiments

We next perform an extensive assessment of the properties

of the uncertainty estimates obtained from dropout NNs

and convnets on the tasks of regression and classification.

We compare the uncertainty obtained from different model

architectures and non-linearities, both on tasks of extrap-

olation, and show that model uncertainty is important for

classification tasks using MNIST (LeCun & Cortes, 1998)

as an example. We then show that using dropout’s uncer-

tainty we can obtain a considerable improvement in predic-

tive log-likelihood and RMSE compared to existing state-

of-the-art methods. We finish with an example use of the

model’s uncertainty in a Bayesian pipeline. We give a

quantitative assessment of the model’s performance in the

setting of reinforcement learning on a task similar to that

used in deep reinforcement learning (Mnih et al., 2015).

Using the results from the previous section, we begin by

qualitatively evaluating the dropout NN uncertainty on two

regression tasks. We use two regression datasets and model

scalar functions which are easy to visualise. These are tasks

one would often come across in real-world data analysis.

We use a subset of the atmospheric CO2 concentrations

dataset derived from in situ air samples collected at Mauna

Loa Observatory, Hawaii (Keeling et al., 2004) (referred to

as CO2) to evaluate model extrapolation. In the appendix

(section D.1) we give further results on a second dataset,

the reconstructed solar irradiance dataset (Lean, 2004), to

assess model interpolation. The datasets are fairly small,

with each dataset consisting of about 200 data points. We

centred and normalised both datasets.

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

(a) Standard dropout with weight averaging (b) Gaussian process with SE covariance function

(c) MC dropout with ReLU non-linearities (d) MC dropout with TanH non-linearities

Figure 2. Predictive mean and uncertainties on the Mauna Loa CO2 concentrations dataset, for various models. In red is the

observed function (left of the dashed blue line); in blue is the predictive mean plus/minus two standard deviations (8 for fig. 2d).

Different shades of blue represent half a standard deviation. Marked with a dashed red line is a point far away from the data: standard

dropout confidently predicts an insensible value for the point; the other models predict insensible values as well but with the additional

information that the models are uncertain about their predictions.

5.1. Model Uncertainty in Regression Tasks

We trained several models on the CO2 dataset. We use NNs

with either 4 or 5 hidden layers and 1024 hidden units. We

use either ReLU non-linearities or TanH non-linearities in

each network, and use dropout probabilities of either 0.1 or

0.2. Exact experiment set-up is given in section E.1 in the

appendix.

Extrapolation results are shown in figure 2. The model is

trained on the training data (left of the dashed blue line),

and tested on the entire dataset. Fig. 2a shows the re-

sults for standard dropout (i.e. with weight averaging and

without assessing model uncertainty) for the 5 layer ReLU

model. Fig. 2b shows the results obtained from a Gaussian

process with a squared exponential covariance function for

comparison. Fig. 2c shows the results of the same network

as in fig. 2a, but with MC dropout used to evaluate the pre-

dictive mean and uncertainty for the training and test sets.

Lastly, fig. 2d shows the same using the TanH network with

5 layers (plotted with 8 times the standard deviation for vi-

sualisation purposes). The shades of blue represent model

uncertainty: each colour gradient represents half a standard

deviation (in total, predictive mean plus/minus 2 standard

deviations are shown, representing 95% confidence). Not

plotted are the models with 4 layers as these converge to

the same results.

Extrapolating the observed data, none of the models can

capture the periodicity (although with a suitable covariance

function the GP will capture it well). The standard dropout

NN model (fig. 2a) predicts value 0 for point x∗ (marked

with a dashed red line) with high confidence, even though

it is clearly not a sensible prediction. The GP model repre-

sents this by increasing its predictive uncertainty – in effect

declaring that the predictive value might be 0 but the model

is uncertain. This behaviour is captured in MC dropout as

well. Even though the models in figures 2 have an incorrect

predictive mean, the increased standard deviation expresses

the models’ uncertainty about the point.

Note that the uncertainty is increasing far from the data

for the ReLU model, whereas for the TanH model it stays

bounded.

This is not surprising, as dropout’s uncertainty draws its

properties from the GP in which different covariance func-

tions correspond to different uncertainty estimates. ReLU

and TanH approximate different GP covariance functions

(section 3.1 in the appendix) and TanH saturates whereas

ReLU does not. For the TanH model we assessed the uncer-

tainty using both dropout probability 0.1 and dropout prob-

ability 0.2. Models initialised with dropout probability 0.1
initially exhibit smaller uncertainty than the ones initialised

with dropout probability 0.2, but towards the end of the op-

timisation when the model has converged the uncertainty is

almost indistinguishable. It seems that the moments of the

dropout models converge to the moments of the approxi-

mated GP model – its mean and uncertainty. It is worth

mentioning that we attempted to fit the data with models

with a smaller number of layers unsuccessfully.

The number of forward iterations used to estimate the un-

certainty (T) was 1000 for drawing purposes. A much

smaller numbers can be used to get a reasonable estima-

tion to the predictive mean and uncertainty (see fig. 3 for

Figure 3. Predictive mean and uncertainties on the Mauna Loa

CO2 concentrations dataset for the MC dropout model with ReLU

non-linearities, approximated with 10 samples.

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

(a) Softmax input scatter (b) Softmax output scatter

Figure 4. A scatter of 100 forward passes of the softmax input and output for dropout LeNet. On the X axis is a rotated image of

the digit 1. The input is classified as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed in colour).

example with T = 10).

5.2. Model Uncertainty in Classification Tasks

To assess model classification confidence in a realistic ex-

ample we test a convolutional neural network trained on

the full MNIST dataset (LeCun & Cortes, 1998). We

trained the LeNet convolutional neural network model (Le-

Cun et al., 1998) with dropout applied before the last fully

connected inner-product layer (the usual way dropout is

used in convnets). We used dropout probability of 0.5. We

trained the model for 106 iterations with the same learning

rate policy as before with γ = 0.0001 and p = 0.75. We

used Caffe (Jia et al., 2014) reference implementation for

this experiment.

We evaluated the trained model on a continuously rotated

image of the digit 1 (shown on the X axis of fig. 4). We

scatter 100 stochastic forward passes of the softmax input

(the output from the last fully connected layer, fig. 4a), as

well as of the softmax output for each of the top classes

(fig. 4b). For the 12 images, the model predicts classes [1

1 1 1 1 5 5 7 7 7 7 7].

The plots show the softmax input value and softmax output

value for the 3 digits with the largest values for each corre-

sponding input. When the softmax input for a class is larger

than that of all other classes (class 1 for the first 5 images,

class 5 for the next 2 images, and class 7 for the rest in

fig 4a), the model predicts the corresponding class. Look-

ing at the softmax input values, if the uncertainty envelope

of a class is far from that of other classes’ (for example

the left most image) then the input is classified with high

confidence. On the other hand, if the uncertainty envelope

intersects that of other classes (such as in the case of the

middle input image), then even though the softmax output

can be arbitrarily high (as far as 1 if the mean is far from

the means of the other classes), the softmax output uncer-

tainty can be as large as the entire space. This signifies the

model’s uncertainty in its softmax output value – i.e. in the

prediction. In this scenario it would not be reasonable to

use probit to return class 5 for the middle image when its

uncertainty is so high. One would expect the model to ask

an external annotator for a label for this input. Model un-

certainty in such cases can be quantified by looking at the

entropy or variation ratios of the model prediction.

5.3. Predictive Performance

Predictive log-likelihood captures how well a model fits the

data, with larger values indicating better model fit. Un-

certainty quality can be determined from this quantity as

well (see section 4.4 in the appendix). We replicate the

experiment set-up in Hernández-Lobato & Adams (2015)

and compare the RMSE and predictive log-likelihood of

dropout (referred to as “Dropout” in the experiments)

to that of Probabilistic Back-propagation (referred to as

“PBP”, (Hernández-Lobato & Adams, 2015)) and to a pop-

ular variational inference technique in Bayesian NNs (re-

ferred to as “VI”, (Graves, 2011)). The aim of this exper-

iment is to compare the uncertainty quality obtained from

a naive application of dropout in NNs to that of specialised

methods developed to capture uncertainty.

Following our Bayesian interpretation of dropout (eq. (4))

we need to define a prior length-scale, and find an opti-

mal model precision parameter τ which will allow us to

evaluate the predictive log-likelihood (eq. (8)). Similarly

to (Hernández-Lobato & Adams, 2015) we use Bayesian

optimisation (BO, (Snoek et al., 2012; Snoek & authors,

2015)) over validation log-likelihood to find optimal τ , and

set the prior length-scale to 10−2 for most datasets based on

the range of the data. Note that this is a standard dropout

NN, where the prior length-scale l and model precision τ
are simply used to define the model’s weight decay through

eq. (7). We used dropout with probabilities 0.05 and 0.005
since the network size is very small (with 50 units follow-

ing (Hernández-Lobato & Adams, 2015)) and the datasets

are fairly small as well. The BO runs used 40 iterations

following the original setup, but after finding the optimal

parameter values we used 10x more iterations, as dropout

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors
Dataset VI PBP Dropout VI PBP Dropout
Boston Housing 4.32 ±0.29 3.01 ±0.18 2.97 ±0.85 -2.90 ±0.07 -2.57 ±0.09 -2.46 ±0.25
Concrete Strength 7.19 ±0.12 5.67 ±0.09 5.23 ±0.53 -3.39 ±0.02 -3.16 ±0.02 -3.04 ±0.09
Energy Efficiency 2.65 ±0.08 1.80 ±0.05 1.66 ±0.19 -2.39 ±0.03 -2.04 ±0.02 -1.99 ±0.09
Kin8nm 0.10 ±0.00 0.10 ±0.00 0.10 ±0.00 0.90 ±0.01 0.90 ±0.01 0.95 ±0.03
Naval Propulsion 0.01 ±0.00 0.01 ±0.00 0.01 ±0.00 3.73 ±0.12 3.73 ±0.01 3.80 ±0.05
Power Plant 4.33 ±0.04 4.12 ±0.03 4.02 ±0.18 -2.89 ±0.01 -2.84 ±0.01 -2.80 ±0.05
Protein Structure 4.84 ±0.03 4.73 ±0.01 4.36 ±0.04 -2.99 ±0.01 -2.97 ±0.00 -2.89 ±0.01
Wine Quality Red 0.65 ±0.01 0.64 ±0.01 0.62 ±0.04 -0.98 ±0.01 -0.97 ±0.01 -0.93 ±0.06
Yacht Hydrodynamics 6.89 ±0.67 1.02 ±0.05 1.11 ±0.38 -3.43 ±0.16 -1.63 ±0.02 -1.55 ±0.12
Year Prediction MSD 9.034 ±NA 8.879 ±NA 8.849 ±NA -3.622 ±NA -3.603 ±NA -3.588 ±NA

Table 1. Average test performance in RMSE and predictive log likelihood for a popular variational inference method (VI, Graves

(2011)), Probabilistic back-propagation (PBP, Hernández-Lobato & Adams (2015)), and dropout uncertainty (Dropout).

takes longer to converge. Even though the model doesn’t

converge within 40 iterations, it gives BO a good indication

of whether a parameter is good or not. Finally, we used

mini-batches of size 32 and the Adam optimiser (Kingma

& Ba, 2014). Further details about the various datasets are

given in (Hernández-Lobato & Adams, 2015).

The results are shown in table 1. Dropout significantly out-

performs all other models both in terms of RMSE as well

as test log-likelihood on all datasets apart from Yacht, for

which PBP obtains better RMSE. All experiments were av-

eraged on 20 random splits of the data (apart from Protein

for which only 5 splits were used and Year for which one

split was used). Some of the dropout results have a rather

large standard deviation because of single outliers: the me-

dian for most datasets gives much better performance than

the mean. For example, on the Boston Housing dataset

dropout achieves median RMSE of 2.68 with an IQR in-

terval of [2.45, 3.35] and predictive log-likelihood median

of -2.34 with IQR [-2.54, -2.29]. In the Concrete Strength

dataset dropout achieves median RMSE of 5.15.

To implement the model we used Keras (Chollet, 2015),

an open source deep learning package based on Theano

(Bergstra et al., 2010). In (Hernández-Lobato & Adams,

2015) BO for VI seems to require a considerable amount

of additional time compared to PBP. However our model’s

running time (including BO) is comparable to PBP’s

Theano implementation. On Naval Propulsion for exam-

ple our model takes 276 seconds on average per split (start-

to-finish, divided by the number of splits). With the opti-

mal parameters BO found, model training took 95 seconds.

This is in comparison to PBP’s 220 seconds. For Kin8nm

our model requires 188 seconds on average including BO,

65 seconds without, compared to PBP’s 156 seconds.

Dropout’s RMSE in table 1 is given by averaging stochas-

tic forward passes through the network following eq. (6)

(MC dropout). We observed an improvement using this es-

timate compared to the standard dropout weight averaging,

and also compared to much smaller dropout probabilities

(near zero). For the Boston Housing dataset for example,

repeating the same experiment with dropout probability 0

results in RMSE of 3.07 and predictive log-likelihood of

-2.59. This demonstrates that dropout significantly affects

the predictive log-likelihood and RMSE, even though the

dropout probability is fairly small.

We used dropout following the same way the method would

be used in current research – without adapting model struc-

ture. This is to demonstrate the results that could be

obtained from existing models when evaluated with MC

dropout. Experimenting with different network architec-

tures we expect the method to give even better uncertainty

estimates.

5.4. Model Uncertainty in Reinforcement Learning

In reinforcement learning an agent receives various rewards

from different states, and its aim is to maximise its expected

reward over time. The agent tries to learn to avoid transi-

tioning into states with low rewards, and to pick actions that

lead to better states instead. Uncertainty is of great impor-

tance in this task – with uncertainty information an agent

can decide when to exploit rewards it knows of, and when

to explore its environment.

Recent advances in RL have made use of NNs to estimate

agents’ Q-value functions (referred to as Q-networks), a

function that estimates the quality of different actions an

agent can take at different states. This has led to impres-

sive results on Atari game simulations, where agents su-

perseded human performance on a variety of games (Mnih

et al., 2015). Epsilon greedy search was used in this set-

ting, where the agent selects the best action following its

current Q-function estimation with some probability, and

explores otherwise. With our uncertainty estimates given

by a dropout Q-network we can use techniques such as

Thompson sampling (Thompson, 1933) to converge faster

than epsilon greedy while avoiding over-fitting.

We use code by (Karpathy & authors, 2014–2015) that

replicated the results by (Mnih et al., 2015) with a sim-

pler 2D setting. We simulate an agent in a 2D world with

9 eyes pointing in different angles ahead (depicted in fig.

5). Each eye can sense a single pixel intensity of 3 colours.

The agent navigates by using one of 5 actions controlling

two motors at its base. An action turns the motors at dif-

ferent angles and different speeds. The environment con-

sists of red circles which give the agent a positive reward

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

for reaching, and green circles which result in a negative

reward. The agent is further rewarded for not looking at

(white) walls, and for walking in a straight line.

We trained the original model, and an additional model

with dropout with probability 0.1 applied before the every

weight layer. Note that both agents use the same network

structure in this experiment for comparison purposes. In

a real world scenario using dropout we would use a larger

model (as the original model was intentially selected to be

small to avoid over-fitting). To make use of the dropout Q-

network’s uncertainty estimates, we use Thompson sam-

pling instead of epsilon greedy. In effect this means that

we perform a single stochastic forward pass through the

network every time we need to take an action. In replay,

we perform a single stochastic forward pass and then back-

propagate with the sampled Bernoulli random variables.

Exact experiment set-up is given in section E.2 in the ap-

pendix.

In fig. 6 we show a log plot of the average reward obtained

by both the original implementation (in green) and our ap-

proach (in blue), as a function of the number of batches.

Not plotted is the burn-in intervals of 25 batches (random

moves). Thompson sampling gets reward larger than 1
within 25 batches from burn-in. Epsilon greedy takes 175

batches to achieve the same performance. It is interesting

to note that our approach seems to stop improving after

1K batches. This is because we are still sampling random

moves, whereas epsilon greedy only exploits at this stage.

6. Conclusions and Future Research

We have built a probabilistic interpretation of dropout

which allowed us to obtain model uncertainty out of exist-

ing deep learning models. We have studied the properties

of this uncertainty in detail, and demonstrated possible ap-

plications, interleaving Bayesian models and deep learning

models together. This extends on initial research studying

dropout from the Bayesian perspective (Wang & Manning,

2013; Maeda, 2014).

Bernoulli dropout is only one example of a regularisation

technique corresponding to an approximate variational dis-

tribution which results in uncertainty estimates. Other vari-

ants of dropout follow our interpretation as well and cor-

respond to alternative approximating distributions. These

would result in different uncertainty estimates, trading-off

uncertainty quality with computational complexity. We ex-

plore these in follow-up work.

Furthermore, each GP covariance function has a one-to-

one correspondence with the combination of both NN non-

linearities and weight regularisation. This suggests tech-

niques to select appropriate NN structure and regularisa-

tion based on our a priori assumptions about the data. For

example, if one expects the function to be smooth and

the uncertainty to increase far from the data, cosine non-

linearities and L2 regularisation might be appropriate. The

study of non-linearity–regularisation combinations and the

corresponding predictive mean and variance are subject of

current research.

ACKNOWLEDGEMENTS

The authors would like to thank Dr Yutian Chen, Mr

Christof Angermueller, Mr Roger Frigola, Mr Rowan

McAllister, Dr Gabriel Synnaeve, Mr Mark van der Wilk,

Mr Yan Wu, and many other reviewers for their helpful

comments. Yarin Gal is supported by the Google European

Fellowship in Machine Learning.

Figure 5. Depiction of the reinforcement learning problem used in

the experiments. The agent is in the lower left part of the maze,

facing north-west.

Figure 6. Log plot of average reward obtained by both epsilon

greedy (in green) and our approach (in blue), as a function of the

number of batches.

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

References

Anjos, O, Iglesias, C, Peres, F, Martı́nez, J, Garcı́a, Á,

and Taboada, J. Neural networks applied to discrimi-

nate botanical origin of honeys. Food chemistry, 175:

128–136, 2015.

Baldi, P, Sadowski, P, and Whiteson, D. Searching for ex-

otic particles in high-energy physics with deep learning.

Nature communications, 5, 2014.

Barber, D and Bishop, C M. Ensemble learning in Bayesian

neural networks. NATO ASI SERIES F COMPUTER

AND SYSTEMS SCIENCES, 168:215–238, 1998.

Bergmann, S, Stelzer, S, and Strassburger, S. On the use of

artificial neural networks in simulation-based manufac-

turing control. Journal of Simulation, 8(1):76–90, 2014.

Bergstra, James, Breuleux, Olivier, Bastien, Frédéric,

Lamblin, Pascal, Pascanu, Razvan, Desjardins, Guil-

laume, Turian, Joseph, Warde-Farley, David, and Ben-

gio, Yoshua. Theano: a CPU and GPU math expression

compiler. In Proceedings of the Python for Scientific

Computing Conference (SciPy), June 2010. Oral Pre-

sentation.

Blei, D M, Jordan, M I, and Paisley, J W. Variational

Bayesian inference with stochastic search. In ICML,

2012.

Blundell, C, Cornebise, J, Kavukcuoglu, K, and Wierstra,

D. Weight uncertainty in neural networks. ICML, 2015.

Chen, W, Wilson, J T, Tyree, S, Weinberger, K Q, and

Chen, Y. Compressing neural networks with the hash-

ing trick. In ICML-15, 2015.

Chollet, François. Keras. https://github.com/

fchollet/keras, 2015.

Damianou, A and Lawrence, N. Deep Gaussian processes.

In AISTATS, 2013.

Ghahramani, Z. Probabilistic machine learning and artifi-

cial intelligence. Nature, 521(7553), 2015.

Graves, A. Practical variational inference for neural net-

works. In NIPS, 2011.

Hernández-Lobato, J M and Adams, R P. Probabilistic

backpropagation for scalable learning of bayesian neu-

ral networks. In ICML-15, 2015.

Herzog, S and Ostwald, D. Experimental biology: Some-

times Bayesian statistics are better. Nature, 494, 2013.

Hinton, G E and Van Camp, D. Keeping the neural net-

works simple by minimizing the description length of the

weights. In Proceedings of the sixth annual conference

on Computational learning theory, 1993.

Hoffman, M D, Blei, D M, Wang, C, and Paisley, J.

Stochastic variational inference. The Journal of Machine

Learning Research, 14(1):1303–1347, 2013.

Jia, Y, Shelhamer, E, Donahue, J, Karayev, S, Long, J, Gir-

shick, R, Guadarrama, S, and Darrell, T. Caffe: Convo-

lutional architecture for fast feature embedding. arXiv

preprint arXiv:1408.5093, 2014.

Karpathy, A and authors. A Javascript implementa-

tion of neural networks. https://github.com/

karpathy/convnetjs, 2014–2015.

Keeling, C D, Whorf, T P, and the Carbon Dioxide Re-

search Group. Atmospheric CO2 concentrations (ppmv)

derived from in situ air samples collected at Mauna Loa

Observatory, Hawaii, 2004.

Kingma, D P and Welling, M. Auto-encoding variational

Bayes. arXiv preprint arXiv:1312.6114, 2013.

Kingma, Diederik and Ba, Jimmy. Adam: A

method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Krzywinski, M and Altman, N. Points of significance:

Importance of being uncertain. Nature methods, 10(9),

2013.

Lean, J. Solar irradiance reconstruction. NOAA/NGDC

Paleoclimatology Program, USA, 2004.

LeCun, Y and Cortes, C. The mnist database of handwrit-

ten digits, 1998.

LeCun, Y, Bottou, L, Bengio, Y, and Haffner, P. Gradient-

based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11):2278–2324, 1998.

Linda, O, Vollmer, T, and Manic, M. Neural network based

intrusion detection system for critical infrastructures. In

Neural Networks, 2009. IJCNN 2009. International Joint

Conference on. IEEE, 2009.

MacKay, D J C. A practical Bayesian framework for back-

propagation networks. Neural computation, 4(3), 1992.

Maeda, S. A Bayesian encourages dropout. arXiv preprint

arXiv:1412.7003, 2014.

Mnih, V, Kavukcuoglu, K, Silver, D, Rusu, A A, Veness, J,

et al. Human-level control through deep reinforcement

learning. Nature, 518(7540):529–533, 2015.

Neal, R M. Bayesian learning for neural networks. PhD

thesis, University of Toronto, 1995.

Nuzzo, Regina. Statistical errors. Nature, 506(13):150–

152, 2014.

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/karpathy/convnetjs
https://github.com/karpathy/convnetjs

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Rasmussen, C E and Williams, C K I. Gaussian Processes

for Machine Learning (Adaptive Computation and Ma-

chine Learning). The MIT Press, 2006.

Rezende, D J, Mohamed, S, and Wierstra, D. Stochastic

backpropagation and approximate inference in deep gen-

erative models. In ICML, 2014.

Snoek, Jasper and authors. Spearmint. https://

github.com/JasperSnoek/spearmint, 2015.

Snoek, Jasper, Larochelle, Hugo, and Adams, Ryan P.

Practical Bayesian optimization of machine learning al-

gorithms. In Advances in neural information processing

systems, pp. 2951–2959, 2012.

Srivastava, N, Hinton, G, Krizhevsky, A, Sutskever, I, and

Salakhutdinov, R. Dropout: A simple way to prevent

neural networks from overfitting. The Journal of Ma-

chine Learning Research, 15(1), 2014.

Szepesvári, C. Algorithms for reinforcement learning. Syn-

thesis Lectures on Artificial Intelligence and Machine

Learning, 4(1), 2010.

Thompson, W R. On the likelihood that one unknown prob-

ability exceeds another in view of the evidence of two

samples. Biometrika, 1933.

Titsias, M and Lázaro-Gredilla, M. Doubly stochastic vari-

ational Bayes for non-conjugate inference. In ICML,

2014.

Trafimow, D and Marks, M. Editorial. Basic and Applied

Social Psychology, 37(1), 2015.

Wan, L, Zeiler, M, Zhang, S, LeCun, Y, and Fergus, R.

Regularization of neural networks using dropconnect. In

ICML-13, 2013.

Wang, S and Manning, C. Fast dropout training. ICML,

2013.

Williams, C K I. Computing with infinite networks. NIPS,

1997.

https://github.com/JasperSnoek/spearmint
https://github.com/JasperSnoek/spearmint

