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Abstract

To obtain uncertainty estimates with real-world

Bayesian deep learning models, practical infer-

ence approximations are needed. Dropout varia-

tional inference (VI) for example has been used

for machine vision and medical applications,

but VI can severely underestimates model un-

certainty. Alpha-divergences are alternative di-

vergences to VI’s KL objective, which are able

to avoid VI’s uncertainty underestimation. But

these are hard to use in practice: existing tech-

niques can only use Gaussian approximating dis-

tributions, and require existing models to be

changed radically, thus are of limited use for

practitioners. We propose a re-parametrisation

of the alpha-divergence objectives, deriving a

simple inference technique which, together with

dropout, can be easily implemented with exist-

ing models by simply changing the loss of the

model. We demonstrate improved uncertainty es-

timates and accuracy compared to VI in dropout

networks. We study our model’s epistemic un-

certainty far away from the data using adversarial

images, showing that these can be distinguished

from non-adversarial images by examining our

model’s uncertainty.

1. Introduction

Deep learning models have been used to obtain state-of-

the-art results on many tasks (Krizhevsky et al., 2012;

Szegedy et al., 2014; Sutskever et al., 2014; Sundermeyer

et al., 2012; Mikolov et al., 2010; Kalchbrenner & Blun-

som, 2013), and in many pipelines these models have re-

placed the more traditional Bayesian probabilistic models

(Sennrich et al., 2016). But unlike deep learning models,

Bayesian probabilistic models can capture parameter un-

certainty and its induced effects over predictions, capturing

the models’ ignorance about the world, and able to convey

their increased uncertainty on out-of-data examples. This

1University of Cambridge, UK 2The Alan Turing Institute,
UK. Correspondence to: Yingzhen Li <yl494@cam.ac.uk>.

Proceedings of the 34 th International Conference on Machine
Learning, Sydney, Australia, PMLR 70, 2017. Copyright 2017
by the author(s).

information can be used, for example, to identify when a vi-

sion model is given an adversarial image (studied below),

or to tackle many problems in AI safety (Amodei et al.,

2016). With model uncertainty at hand, applications as far-

reaching as safety in self-driving cars can be explored, us-

ing models which can propagate their uncertainty up the

decision making pipeline (Gal, 2016). With deterministic

deep learning models this invaluable uncertainty informa-

tion is often lost.

Bayesian deep learning – an approach to combining

Bayesian probability theory together with deep learning –

allows us to use state-of-the-art models and at the same

time obtain model uncertainty (Gal, 2016; Gal & Ghahra-

mani, 2016a). Originating in the 90s (Neal, 1995; MacKay,

1992; Denker & LeCun, 1991), Bayesian neural networks

(BNNs) in particular have started gaining in popularity

again (Graves, 2011; Blundell et al., 2015; Hernandez-

Lobato & Adams, 2015). BNNs are standard neural net-

works (NNs) with prior probability distributions placed

over their weights. Given observed data, inference is

then performed to find what are the more likely and less

likely weights to explain the data. But as easy it is to

formulate BNNs, is as difficult to perform inference in

them. Many approximations have been proposed over the

years (Denker & LeCun, 1991; Neal, 1995; Graves, 2011;

Blundell et al., 2015; Hernandez-Lobato & Adams, 2015;

Hernández-Lobato et al., 2016), some more practical and

some less practical. A practical approximation for infer-

ence in Bayesian neural networks should be able to scale

well to large data and complex models (such as convo-

lutional neural networks (CNNs) (Rumelhart et al., 1985;

LeCun et al., 1989)). Much more importantly perhaps, it

would be impractical to change existing model architec-

tures that have been well studied, and it is often impractical

to work with complex and cumbersome techniques which

are difficult to explain to non-experts. Many existing ap-

proaches to obtain model confidence often do not scale to

complex models or large amounts of data, and require us to

develop new models for existing tasks for which we already

have well performing tools (Gal, 2016).

One possible solution for practical inference in BNNs is

variational inference (VI) (Jordan et al., 1999), a ubiquitous

technique for approximate inference. Dropout variational

distributions in particular (a mixture of two Gaussians with
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small standard deviations, and with one component fixed at

zero) can be used to obtain a practical inference technique

(Gal & Ghahramani, 2016b). These have been used for ma-

chine vision and medical applications (Kendall & Cipolla,

2016; Kendall et al., 2015; Angermueller & Stegle, 2015;

Yang et al., 2016). Dropout variational inference can be

implemented by adding dropout layers (Hinton et al., 2012;

Srivastava et al., 2014) before every weight layer in the NN

model. Inference is then carried out by Monte Carlo (MC)

integration over the variational distribution, in practice im-

plemented by simulating stochastic forward passes through

the model at test time (referred to as MC dropout). Al-

though dropout VI is a practical technique for approximate

inference, it also has some major limitations. Dropout VI

can severely underestimate model uncertainty (Gal, 2016,

Section 3.3.2) – a property many VI methods share (Turner

& Sahani, 2011). This can lead to devastating results in ap-

plications that must rely on good uncertainty estimates such

as AI safety applications.

Alternative objectives to VI’s objective are there-

fore needed. Black-box α-divergence minimisation

(Hernández-Lobato et al., 2016; Li & Turner, 2016; Minka,

2005) is a class of approximate inference methods extend-

ing on VI, approximating EP’s energy function (Minka,

2001) as well as the Hellinger distance (Hellinger, 1909).

These were proposed as a solution to some of the diffi-

culties encountered with VI. However, the main difficulty

with α-divergences is that the divergences are hard to use in

practice. Existing inference techniques only use Gaussian

approximating distributions, with the density over the ap-

proximation having to be evaluated explicitly many times.

The objective offers a limited intuitive interpretation which

is difficult to explain to non-experts, and of limited use

for engineers (Gal, 2016, Section 2.2.2). Perhaps more

importantly, current α-divergence inference techniques re-

quire existing models and code-bases to be changed rad-

ically to perform inference in the Bayesian counterpart to

these models. To implement a complex CNN structure with

the inference and code of (Hernández-Lobato et al., 2016),

for example, one would be required to re-implement many

already-implemented software tools.

In this paper we propose a re-parametrisation of the in-

duced α-divergence objectives, and by relying on some

mild assumptions (justified below), derive a simple ap-

proximate inference technique which can easily be im-

plemented with existing models. Further, we rely on the

dropout approximate variational distribution and demon-

strate how inference can be done in a practical way – re-

quiring us to only change the loss of the NN, L(θ), and

to perform multiple stochastic forward passes at training

time. Precisely, given l(·, ·) some standard NN loss such

as cross entropy or the Euclidean loss, and {f ω̂k(xn)}
K
k=1

a set of K stochastic dropout network outputs on input xn

with randomly masked weights ω̂k, our proposed objective

is:

L(θ) = −
1

α

∑

n

log-sum-exp
[
−αl(yn, f

ω̂k(xn))
]
+ L2(θ)

with α a real number, θ the set of network weights to

be optimised, and an L2 regulariser over θ. By selecting

α = 1 this objective directly optimises the per-point pre-

dictive log-likelihood, while picking α → 0 would focus

on increasing the training accuracy, recovering VI.

Specific choices of α will result in improved uncertainty es-

timates (and accuracy) compared to VI in dropout BNNs,

without slowing convergence time. We demonstrate this

through a myriad of applications, including an assessment

of fully connected NNs in regression and classification, and

an assessment of Bayesian CNNs. Finally, we study the

uncertainty estimates resulting from our approximate in-

ference technique. We show that our models’ uncertainty

increases on adversarial images generated from the MNIST

dataset, suggesting that these lie outside of the training data

distribution. This in practice allows us to tell-apart such

adversarial images from non-adversarial images by exam-

ining epistemic model uncertainty.

2. Background

We review background in Bayesian neural networks and

approximate variational inference. In the next section we

discuss α-divergences.

2.1. Bayesian Neural Networks

Given training inputs X = {x1, . . . ,xN} and their cor-

responding outputs Y = {y1, . . . ,yN}, in parametric

Bayesian regression we would like to infer a distribution

over parameters ω of a function y = fω(x) that could have

generated the outputs. Following the Bayesian approach, to

find parameters that could have generated our data, we put

some prior distribution over the space of parameters p0(ω).
This distribution captures our prior belief as to which pa-

rameters are likely to have generated our outputs before

observing any data. We further need to define a probabil-

ity distribution over the outputs given the inputs p(y|x, ω).
For classification tasks we assume a softmax likelihood,

p
(
y|x, ω

)
= Softmax (fω(x))

or a Gaussian likelihood for regression. Given a dataset

X,Y, we then look for the posterior distribution over the

space of parameters: p(ω|X,Y). This distribution captures

how likely the function parameters are, given our observed

data. With it we can predict an output for a new input point

x∗ by integrating

p(y∗|x∗,X,Y) =

∫
p(y∗|x∗, ω)p(ω|X,Y)dω. (1)
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One way to define a distribution over a parametric set of

functions is to place a prior distribution over a neural net-

work’s weights ω = {Wi}
L
i=1

, resulting in a Bayesian NN

(MacKay, 1992; Neal, 1995). Given weight matrices Wi

and bias vectors bi for layer i, we often place standard ma-

trix Gaussian prior distributions over the weight matrices,

p0(Wi) = N (Wi;0, I) and often assume a point estimate

for the bias vectors for simplicity.

2.2. Approximate Variational Inference in Bayesian

Neural Networks

In approximate inference, we are interested in finding the

distribution of weight matrices (parametrising our func-

tions) that have generated our data. This is the posterior

over the weights given our observables X,Y: p(ω|X,Y),
which is not tractable in general. Existing approaches to

approximate this posterior are through variational infer-

ence (as was done in Hinton & Van Camp (1993); Barber

& Bishop (1998); Graves (2011); Blundell et al. (2015)).

We need to define an approximating variational distribution

qθ(ω) (parametrised by variational parameters θ), and then

minimise w.r.t. θ the KL divergence (Kullback & Leibler,

1951; Kullback, 1959) between the approximating distri-

bution and the full posterior:

KL
(
qθ(ω)||p(ω|X,Y)

)

∝ −

∫
qθ(ω) log p(Y|X, ω)dω + KL(qθ(ω)||p0(ω))

= −
N∑

i=1

∫
qθ(ω) log p(yi|f

ω(xi))dω + KL(qθ(ω)||p0(ω)),

where A ∝ B is slightly abused here to denote equality up

to an additive constant (w.r.t. variational parameters θ).

2.3. Dropout Approximate Inference

Given a (deterministic) neural network, stochastic regular-

isation techniques in the model (such as dropout (Hinton

et al., 2012; Srivastava et al., 2014)) can be interpreted

as variational Bayesian approximations in a Bayesian NN

with the same network structure (Gal & Ghahramani,

2016b). This is because applying a stochastic regularisa-

tion technique is equivalent to multiplying the NN weight

matrices Mi by some random noise ǫi (with a new noise

realisation for each data point). The resulting stochastic

weight matrices Wi = ǫiMi can be seen as draws from the

approximate posterior over the BNN weights, replacing the

deterministic NN’s weight matrices Mi. Our set of varia-

tional parameters is then the set of matrices θ = {Mi}
L
i=1

.

For example, dropout can be seen as an approximation to

Bayesian NN inference with dropout approximating distri-

butions, where the rows of the matrices Wi distribute ac-

cording to a mixture of two Gaussians with small variances

and the mean of one of the Gaussians fixed at zero. The un-

certainty in the weights induces prediction uncertainty by

marginalising over the approximate posterior using Monte

Carlo integration:

p(y = c|x,X,Y) =

∫
p(y = c|x, ω)p(ω|X,Y)dω

≈

∫
p(y = c|x, ω)qθ(ω)dω

≈
1

K

K∑

k=1

p(y = c|x, ω̂k)

with ω̂k ∼ qθ(ω), where qθ(ω) is the Dropout distribu-

tion (Gal, 2016). Given its popularity, we concentrate on

the dropout stochastic regularisation technique throughout

the rest of the paper, although any other stochastic regulari-

sation technique could be used instead (such as multiplica-

tive Gaussian noise (Srivastava et al., 2014) or dropConnect

(Wan et al., 2013)).

Dropout VI is an example of practical approximate infer-

ence, but it also underestimates model uncertainty (Gal,

2016, Section 3.3.2). This is because minimising the KL di-

vergence between q(ω) and p(ω|X,Y) penalises q(ω) for

placing probability mass where p(ω|X,Y) has no mass,

but does not penalise q(ω) for not placing probability mass

at locations where p(ω|X,Y) does have mass. We next

discuss α-divergences as an alternative to the VI objective.

3. Black-box α-divergence minimisation

In this section we provide a brief review of the black box al-

pha (BB-α, Hernández-Lobato et al. (2016)) method upon

which the main derivation in this paper is based. Consider

approximating the following distribution:

p(ω) =
1

Z
p0(ω)

∏

n

fn(ω).

In Bayesian neural networks context, these factors fn(ω)
represent the likelihood terms p(yn|xn, ω), Z = p(Y|X),
and the approximation target p(ω) is the exact posterior

p(ω|X,Y). Popular methods of approximate inference in-

clude variational inference (VI) (Jordan et al., 1999) and

expectation propagation (EP) (Minka, 2001), where these

two algorithms are special cases of power EP (Minka,

2004) that minimises Amari’s α-divergence (Amari, 1985)

Dα[p||q] in a local way:

Dα[p||q] =
1

α(1− α)

(
1−

∫
p(ω)αq(ω)1−αdω

)
.

We provide details of α-divergences and local approxima-

tion methods in the appendix, and in the rest of the paper

we consider three special cases in this rich family:
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1. Exclusive KL divergence:

D0[p||q] = KL[q||p] = Eq

[
log

q(ω)

p(ω)

]
;

2. Hellinger distance:

D0.5[p||q] = 4Hel2[q||p] = 2

∫ (√
p(ω)−

√
q(ω)

)2
dω;

3. Inclusive KL divergence:

D1[p||q] = KL[p||q] = Ep

[
log

p(ω)

q(ω)

]
.

Since α = 0 is used in VI and α = 1.0 is used in EP, in

later sections we will also refer to these alpha settings as

the VI value, Hellinger value, and EP value, respectively.

Power-EP, though providing a generic variational frame-

work, does not scale with big data. It maintains approx-

imating factors attached to every likelihood term fn(ω),
resulting in space complexity O(N) for the posterior ap-

proximation which is clearly undesirable. The recently pro-

posed stochastic EP (Li et al., 2015) and BB-α (Hernández-

Lobato et al., 2016) inference methods reduce this memory

overhead to O(1) by sharing these approximating factors.

Moreover, optimisation in BB-α is done by descending the

so called BB-α energy function, where Monte Carlo (MC)

methods and automatic differentiation are also deployed to

allow fast prototyping.

BB-α has been successfully applied to Bayesian neural

networks for regression, classification (Hernández-Lobato

et al., 2016) and model-based reinforcement learning (De-

peweg et al., 2016). They all found that using α 6= 0 often

returns better approximations than the VI case. The rea-

sons for the worse results of VI are two fold. From the

perspective of inference, due to the zero-forcing behaviour

of exclusive KL discussed before, VI often fits to a local

mode of the exact posterior and is over-confident in pre-

diction. On hyper-parameter learning point of view, as the

variational lower-bound is used as a (biased) approximation

to the maximum likelihood objective, the learned model

could be biased towards over-simplified cases (Turner &

Sahani, 2011). These problems could potentially be ad-

dressed by using α-divergences. For example, inclusive

KL encourages the coverage of the support set (referred

as mass-covering), and when used in local divergence min-

imisation (Minka, 2005), it can fit an approximation to a

mode of p(ω) with better estimates of uncertainty. More-

over the BB-α energy provides a better approximation to

the marginal likelihood as well, meaning that the learned

model will be less biased and thus fitting the data distribu-

tion better (Li & Turner, 2016). Hellinger distance seems

to provide a good balance between zero-forcing and mass-

covering, and empirically it has been found to achieve the

best performance.

Given the success of α-divergence methods, it is a natural

idea to extend these algorithms to other classes of approx-

imations such as dropout. However this task is non-trivial.

First, the original formulation of BB-α energy is an ad hoc

adaptation of power-EP energy (see appendix), which ap-

plies to exponential family q distributions only. Second,

the energy function offers a limited intuitive interpretation

to non-experts, thus of limited use for practitioners. Third

and most importantly, a naive implementation of BB-α us-

ing dropout would bring in a prohibitive computational bur-

den. To see this, we first review the BB-α energy function

in the general case (Li & Turner, 2016) given α 6= 0:

Lα(q) = −
1

α

∑

n

logEq

[(
fn(ω)p0(ω)

1

N

q(ω)
1

N

)α]
. (2)

One could verify that this is the same energy function as

presented in (Hernández-Lobato et al., 2016) by consider-

ing q an exponential family distribution. In practice (2)

might be intractable, hence an MC approximation is intro-

duced:

LMC
α (q) = −

1

α

∑

n

log
1

K

∑

k

[(
fn(ω̂k)p0(ω̂k)

1

N

q(ω̂k)
1

N

)α]

(3)

with ω̂k ∼ q(ω). This is a biased approximation as the

expectation in (2) is computed before taking the logarithm.

But empirically Hernández-Lobato et al. (2016) showed

that the bias introduced by the MC approximation is of-

ten dominated by the variance of the samples, meaning that

the effect of the bias is negligible. When α → 0 it returns

the variational free energy (the VI objective)

L0(q) = LVFE(q) = KL[q||p0]−
∑

n

Eq [log fn(ω)] , (4)

and the corresponding MC approximation LMC
VFE becomes

an unbiased estimator of LVFE. Also LMC
α → LMC

VFE as the

number of samples K → 1.

The original paper (Hernández-Lobato et al., 2016) pro-

posed a naive implementation which directly evaluates the

MC estimation (3) with samples ω̂k ∼ q(ω). However

as discussed before, dropout implicitly samples different

masked weight matrices ω̂ ∼ q for different data points.

This indicates that the naive approach, when applied to

dropout approximation, would gather all these samples for

all M datapoints in a mini-batch (i.e. MK sets of neural

network weight matrices in total), which brings prohibitive

cost if the network is wide and deep. Interestingly, the min-

imisation of the variational free energy (α = 0) with the

dropout approximation can be computed very efficiently.

The main reason for this success is due to the additive struc-

ture of the variational free energy: no evaluation of q den-

sity is required if the “regulariser” KL[q||p0] can be com-

puted/approximated efficiently. In the following section we
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propose an improved version of BB-α energy to allow ap-

plications with dropout and other flexible approximation

structures.

4. A New Reparameterisation of BB-α Energy

We propose a reparamterisation of the BB-α energy to re-

duce the computational overhead. First we denote q̃(ω) as

a free-form “cavity distribution” (see appendix), and write

the approximate posterior q as

q(ω) =
1

Zq

q̃(ω)

(
q̃(ω)

p0(ω)

) α

N−α

, (5)

where we assume Zq < +∞ is the normalising constant

to ensure q a valid distribution. When α/N → 0, the un-

normalised density in (5) converges to q̃(ω) for every ω,

and Zq → 1 by the assumption of Zq < +∞ (Van Er-

ven & Harremoës, 2014). Hence q → q̃ when α/N → 0,

and this happens for example when we choose α → 0, or

N → +∞ as well as when α grows sub-linearly to N .

Now we rewrite the BB-alpha energy in terms of q̃:

Lα(q) = −
1

α

∑

n

log

∫ (
1

Zq

q̃(ω)

(
q̃(ω)

p0(ω)

) α

N−α

)1−
α

N

p0(ω)
α

N fn(ω)
αdω

= −
1

α

∑

n

(∫
q̃(ω)fn(ω)

α −
(
1−

α

N

)
logZq

)

=
N

α

(
1−

α

N

)
log

∫
q̃(ω)

(
q̃(ω)

p0(ω)

) α

N−α

dω

−
1

α

∑

n

logEq̃ [fn(ω)
α]

= Rβ [q̃||p0]−
1

α

∑

n

logEq̃ [fn(ω)
α] , β =

N

N − α
,

where Rβ [q̃||p0] represents the Rényi divergence (Rényi

(1961), see appendix) of order β. Furthermore, provided

Rβ [q̃||p0] < +∞ (which holds when assuming Zq <
+∞), we have Rβ [q̃||p0] → KL[q̃||p0] = KL[q||p0] as
α
N

→ 0. This means that for a constant α that scales sub-

linearly with N , in large data settings we can further ap-

proximate the BB-α energy as

Lα(q) ≈ L̃α(q) = KL[q||p0]−
1

α

∑

n

logEq [fn(ω)
α] .

Note that here we also use the fact that now q ≈ q̃. Crit-

ically, the proposed reparameterisation is continuous in α,

and by taking α → 0 the variational free-energy (4) is re-

covered.

Given a loss function l(·, ·), e.g. l2 loss in regression or

cross entropy in classification, we can define the (un-

normalised) likelihood term fn(ω) ∝ p(yn|xn, ω) ∝

exp[−l(yn, f
ω(xn))], e.g. see (LeCun et al., 2006)1.

Swapping fn(ω) for this last expression, and approximat-

ing the expectation over q using Monte Carlo sampling, we

obtain our proposed minimisation objective:

L̃MC
α (q) = KL[q||p0] + const (6)

−
1

α

∑

n

log-sum-exp[−αl(yn, f
ω̂k(xn))]

with log-sum-exp being the log-sum-exp operator over K
samples from the approximate posterior ω̂k ∼ q(ω). This

objective function also approximates the marginal likeli-

hood. Therefore, compared to the original formulation (2),

the improved version (6) is considerably simpler (both to

implement and to understand), has a similar form to stan-

dard objective functions used in deep learning research, yet

remains an approximate Bayesian inference algorithm.

To gain some intuitive understanding of this objective, we

observe what it reduces to for different α and K settings.

By selecting α = 1 the per-point predictive log-likelihood

logEq[p(yn|xn, ω)] is directly optimised. On the other

hand, picking the VI value (α → 0) would focus on in-

creasing the training accuracy Eq[log p(yn|xn, ω)]. The

Hellinger value could be used to achieve a balance between

reducing training error and improving predictive likeli-

hood, which has been found to be desirable (Hernández-

Lobato et al., 2016; Depeweg et al., 2016). Lastly, for

K = 1 the log-sum-exp disappears, the α’s cancel out, and

the original (stochastic) VI objective is recovered.

In summary, our proposal modifies the loss function by

multiplying it by α and then performing log-sum-exp with

a sum over multiple stochastic forward passes sampled

from the BNN approximate posterior. The remaining KL-

divergence term (between q and the prior p) can often be

approximated. It can be viewed as a regulariser added to

the objective function, and reduces to L2-norm regulariser

for certain popular q choices (Gal, 2016).

4.1. Dropout BB-α

We now provide a concrete example where the approximate

distribution is defined by dropout. With dropout VI, MC

samples are used to approximate the expectation w.r.t. q,

which in practice is implemented as performing stochastic

forward passes through the dropout network – i.e. given an

input x, the input is fed through the network and a new

dropout mask is sampled and applied at each dropout layer.

This gives a stochastic output – a sample from the dropout

network on the input x. A similar approximation is used

in our case as well, where to implement the MC sampling

in eq. (6) we perform multiple stochastic forward passes

1fn(ω) does not need to be a normalised density of yn unless
one would like to optimise the associated hyper parameters.
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through the network.

Recall the neural network fω(x) is parameterised by the

variable ω. In classification, cross entropy is often used as

the loss function l(y, fω(x)) = −yT logpω(x), where the

label yn is a one-hot binary vector, and the network output

pω(xn) = Softmax(fω(xn)) encodes the probability vec-

tor of class assignments. Applying the re-formulated BB-α
energy (6) with a Bayesian equivalent of the network, we

arrive at the objective function

L̃MC
α (q) =

∑

i

pi||Mi||
2

2
−

1

α

∑

n

yT
n log

1

K

∑

k

(pω̂k(xn))
α

=
1

α

∑

n

l

(
yn,

1

K

∑

k

pω̂k(xn)
α

)
+
∑

i

L2(Mi)

with {pω̂k(xn)}
K
k=1

being K stochastic network outputs

on input xn, pi equals to one minus the dropout rate of

the ith layer, and the L2 regularization terms coming from

an approximation to the KL-divergence (Gal, 2016). I.e.

we raise network probability outputs to the power α and

average them as an input to the standard cross entropy loss.

Taking α 6= 1 can be viewed as training the neural network

with an adjusted “power” loss, regularized by an L2 norm.

Implementing this induced loss with Keras (Chollet, 2015)

is as simple as a few lines of Python. A code snippet is

given in Figure 1, with more details in the appendix.

In regression problems, the loss function is defined as

l(y, fω(x)) = τ
2
||y− fω(x)||2

2
and the likelihood term can

be interpreted as y ∼ N (y; fω(x), τ−1I). Plugging this

into the energy function returns the following objective

L̃MC
α (q) = −

1

α

∑

n

log-sum-exp
[
−
ατ

2
||yn − f ω̂k(xn)||

2

2

]

+
ND

2
log τ +

∑

i

pi||Mi||
2

2
, (7)

with {f ω̂k(xn)}
K
k=1

being K stochastic forward passes on

input xn. Again, this is reminiscent of the l2 objective in

standard deep learning, and can be implemented by sim-

ply passing the input through the dropout network multiple

times, collecting the stochastic outputs, and feeding the set

of outputs through our new BB-alpha loss function.

5. Experiments

We test the reparameterised BB-α on Bayesian NNs with

the dropout approximation. We assess the proposed in-

ference in regression and classification tasks on standard

benchmarking datasets, comparing different values of α.

This last experiment leads us to propose a technique that

could be used to identify adversarial image attacks. In the

appendix we further provide a study of run time trade-off.

def softmax_cross_ent_with_mc_logits(alpha):

def loss(y_true, mc_logits):

# mc_logits: MC samples of shape MxKxD

mc_log_softmax = mc_logits \

- K.max(mc_logits, axis=2, keepdims=True)

mc_log_softmax = mc_log_softmax - \

logsumexp(mc_log_softmax, 2)

mc_ll = K.sum(y_true*mc_log_softmax,-1)

return -1./alpha * (logsumexp(alpha * \

mc_ll, 1) + K.log(1.0 / K_mc))

return loss

Figure 1. Code snippet for our induced classification loss.

5.1. Regression

The first experiment considers Bayesian neural network re-

gression with approximate posterior induced by dropout.

We use benchmark UCI datasets2 that have been tested

in related literature. The model is a single-layer neu-

ral network with 50 ReLU units for all datasets except

for Protein and Year, which use 100 units. We consider

α ∈ {0.0, 0.5, 1.0} in order to examine the effect of mass-

covering/zero-forcing behaviour in dropout. MC approxi-

mation with K = 10 samples is also deployed to compute

the energy function. Other initialisation settings are largely

taken from (Li & Turner, 2016).

We summarise the test negative log-likelihood (LL) and

RMSE with standard error (across different random splits,

the lower the better) for selected datasets in Figure 2 and 3,

respectively. The full results are provided in the appendix.

Although optimal α may vary for different datasets, using

non-VI values has significantly improved the test-LL per-

formances, while remaining comparable in test error met-

ric. In particular, α = 0.5 produced overall good results

for both test LL and RMSE, which is consistent with pre-

vious findings. We also compare with a BNN with a Gaus-

sian approximation (VI-G) (Li & Turner, 2016), a BNN

with HMC, and a sparse Gaussian process model with 50

inducing points (Bui et al., 2016). In test-LL metric our

best dropout model out-performs the Gaussian approxima-

tion method on almost all datasets, and for some datasets

is on par with HMC which is the current gold standard

for Bayesian neural works, and with the GP model that is

known to be superior in regression.

5.2. Classification

We further experiment with a classification task, comparing

the accuracy of the various α values on the MNIST bench-

mark (LeCun & Cortes, 1998). We assessed a fully connect

NN with 2 hidden layers and 100 units in each layer. We

used dropout probability 0.5 and α ∈ {0, 0.5, 1}. Again,

we use K = 10 samples at training time for all α values,

2http://archive.ics.uci.edu/ml/datasets.

html

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html


Dropout Inference in Bayesian Neural Networks with Alpha-divergences

Figure 2. Negative test-LL results for Bayesian NN regression. Figure 3. Test RMSE results for Bayesian NN regression.

and Ktest = 100 samples at test time. We use weight decay

10−6, which is equivalent to prior lengthscale l2 = 0.1 (Gal

& Ghahramani, 2016b). We repeat each experiment three

times and plot mean and standard error. Test RMSE as well

as test log likelihood are given in Figure 4. As can be seen,

Hellinger value α = 0.5 gives best test RMSE, with test

log likelihood matching that of the EP value α = 1. The

VI value α = 0 under-performs according to both metrics.

We next assess a convolutional neural network model

(CNN). For this experiment we use the standard CNN ex-

ample given in (Chollet, 2015) with 32 convolution filters,

100 hidden units at the top layer, and dropout probability

0.5 before each fully-connected layer. Other settings are as

before. Average test accuracy and test log likelihood are

given in Figure 5. In this case, VI value α = 0 seems to

supersede the EP value α = 1, and performs similarly to

the Hellinger value α = 0.5 according to both metrics.

5.3. Detecting Adversarial Examples

The third set of experiments considers adversarial attacks

on dropout-trained Bayesian neural networks. We test the

hypothesis that certain techniques for generating adversar-

ial examples will give images that lie outside of the image

(a) NN test accuracy (b) NN test log likelihood

Figure 4. MNIST test accuracy and test log likelihood for a fully

connected NN in a classification task.

manifold, i.e. far from the data distribution (note though

that there exist techniques that will guarantee the images

staying near the data manifold, by minimising the perturba-

tion used to construct the adversarial example). By assess-

ing the BNN uncertainty, we should see increased uncer-

tainty for adversarial images if they indeed lie outside of the

training data distribution. The tested models are fully con-

nected networks with 3 hidden layers of 1000 units trained

using dropout rate 0.5 and different alpha values. These

models are also compared to a benchmark MLP with the

same architecture but trained by maximum likelihood. The

adversarial examples are generated on MNIST test data that

is normalised to be in the range [0, 1]. For the dropout

trained networks we perform MC dropout at test time with

Ktest = 10 MC samples.

The first attack in consideration is the Fast Gradient Sign

(FGS) method (Goodfellow et al., 2014). This is an un-

targeted attack, which attempts to reduces the maximum

value of the predicted class label probability

xadv = x− η · sgn(∇x max
y

log p(y|x)).

We use the single gradient step FGS implemented in Clev-

erhans (Papernot et al., 2016) with the stepsize η varied

(a) CNN test accuracy (b) CNN test log likelihood

Figure 5. MNIST test accuracy and test log likelihood for a con-

volutional neural network in a classification task.
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Figure 6. Un-targeted attack: classification accuracy results as a

function of perturbation stepsize. The adversarial examples are

shown for (from top to bottom) MLP and BNN trained with

dropout and α = 0.0, 0.5, 1.0.

Figure 7. Targeted attack: classification accuracy results (on both

original and target class) as a function of the number of iterative

gradient steps. Note the log scale x-axis in the left panel.

between 0.0 and 0.5. The left panel in Figure 6 demon-

strates the classification accuracy on adversarial examples,

which shows that the dropout networks, especially the one

trained with α = 1.0, are significantly more robust to ad-

versarial attacks compared to the deterministic NN. For

example, for η = 0.1 the adversarial samples still visu-

ally close to the original class, and the BNN trained with

α = 0.0 achieves an accuracy level almost 3 times higher

than the MLP and around 20% higher than the VI-trained

version. More interestingly, the test data examples and ad-

versarial images can be told-apart by investigating the un-

certainty representation of the dropout models. In the right

panel of Figure 6 we depict the predictive entropy com-

puted on the neural network output probability vector, and

show example corresponding adversarial images below the

axis for each corresponding stepsize. Clearly the determin-

istic NN model produces over-confident predictions on ad-

versarial samples, e.g. it predicts the wrong label very con-

fidently even when the input is still visually close to digit

“7” (η = 0.2). While dropout models, though producing

wrong labels, are very uncertain about their predictions.

This uncertainty keeps increasing as we move away from

the data manifold. Hence the dropout networks are much

more immunised from noise-corrupted inputs, as they can

be detected using uncertainty estimates in this example.

The second attack we consider is a targeted version of FGS

(Goodfellow et al., 2014; Carlini & Wagner, 2016), which

maximises the predictive probability of a selected class in-

stead. As an example, we fix class 0 as the target and apply

the iterative gradient-base attack to all non-zero digits in

test data. At step t, the adversarial output is computed as

xt
adv = xt−1

adv + η · sgn(∇x log p(ytarget|x
t−1

adv )),

where the stepsize η is fixed at 0.01 in this case. Results are

presented in the left panel of Figure 7, and again dropout

trained models are more robust to this attack compared with

the MLP. Similarly these adversarial examples could be de-

tected by the Bayesian neural networks’ uncertainty, by ex-

amining the predictive entropy. By visually inspecting the

generated adversarial examples in the right panel of Fig-

ure 7, it is clear that the MLP overconfidently classifies a

digit 7 to class 0. On the other hand, the dropout models

are still fairly uncertain about their predictions even after

40 gradient steps. More interestingly, running this iterative

attack on dropout models produces a smooth interpolation

between different digits, and when the model is confident

on predicting the target class, the corresponding adversarial

images are visually close to digit zero.

These initial results suggest that assessing the epistemic

uncertainty of classification models can be used as a vi-

able technique to identify adversarial examples. We would

note though that we used this experiment to demonstrate

our techniques’ uncertainty estimates, and much more re-

search is needed to solve the difficulties faced with adver-

sarial inputs.

6. Conclusions

We presented a practical extension of the BB-alpha objec-

tive which allows us to use the technique with dropout ap-

proximating distributions. The technique often supersedes

existing approximate inference techniques (even sparse

Gaussian processes), and is easy to implement. A code

snippet for our induced loss is given in the appendix.
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