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Dropout Sampling for Robust Object Detection in Open-Set Conditions

Dimity Miller, Lachlan Nicholson, Feras Dayoub, Niko Sünderhauf

Abstract— Dropout Variational Inference, or Dropout Sam-
pling, has been recently proposed as an approximation tech-
nique for Bayesian Deep Learning and evaluated for image
classification and regression tasks. This paper investigates the
utility of Dropout Sampling for object detection for the first
time. We demonstrate how label uncertainty can be extracted
from a state-of-the-art object detection system via Dropout
Sampling. We evaluate this approach on a large synthetic
dataset of 30,000 images, and a real-world dataset captured
by a mobile robot in a versatile campus environment. We show
that this uncertainty can be utilized to increase object detection
performance under the open-set conditions that are typically
encountered in robotic vision. A Dropout Sampling network
is shown to achieve a 12.3% increase in recall (for the same
precision score as a standard network) and a 15.1% increase in
precision (for the same recall score as the standard network).

I. INTRODUCTION

Visual object detection has made immense progress over

the past years thanks to advances in deep learning and con-

volutional networks [1]–[3]. Despite this progress, operating

in open-set conditions, where new objects that were not seen

during training are encountered [4], [5], remains one of the

biggest current challenges in visual object detection.

Robots that have to operate in ever-changing, uncontrolled

real-world environments commonly encounter open-set con-

ditions and have to cope with new object classes that were

not part of the training set of their vision system.

This scenario is very different to how current visual object

detection systems are evaluated. Typically one large dataset

is split into a training and testing subset that is used for

evaluation. As a result, both sets share the same characteris-

tics and contain the same object classes. This is commonly

referred to as operating under closed-set conditions, where all

objects seen during testing are also known during training. It

was shown in [6] that top performing object classification and

recognition systems suffer a major drop in performance when

tested using samples taken from outside their “universe”, i.e

tested on images taken from outside the particular dataset

used for training and testing.

Solving the open-set object detection problem is of

paramount importance for the successful deployment of

learning-based systems on board of mobile robots. A robot

that acts based on the output of an unreliable machine

learning system can potentially have serious repercussions.

One way to handle the open-set problem is to utilize the

uncertainty of the model predictions to reject predictions with
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Fig. 1. The Open-Set problem. Training of an object detection system
is performed on a closed set of known classes. In typical computer
vision benchmarks such as COCO [10] or ILSVRC [11] the test set is
identical to the training set, i.e. there are no new classes in the test
set. In stark contrast, robots operating in the real world in uncontrolled
environments commonly encounter many objects of previously unseen
classes. Icons in this image have been taken from the COCO dataset website
(http://cocodataset.org/#explore).

low confidence. An approach to this uncertainty estimation

has been developed by the use of a technique called Dropout

Sampling as an approximation to Bayesian inference over the

parameters of deep neural networks [7]. Consequently, this

technique has been used for uncertainty estimation in image

classification and regression tasks [8], [9] but has not yet

been utilized for object detection.

The objective of this paper is to extend the concept of

Dropout Sampling to object detection for the first time.

We achieve this by evaluating a Bayesian object detection

system on a large synthetic and a real-world dataset and

demonstrating that the estimated label uncertainty can be

utilized to increase object detection performance under open-

set conditions.

The remainder of the paper is structured as follows; Sec-

tion II discusses the related work with Section III presenting

our proposed approach to obtaining uncertainty estimation

for object detection. Section IV describes the evaluation

metrics and the datasets used. Section V describes the

experimental evaluation and the results. Finally, Section VI

draws conclusions and discusses future research.

II. RELATED WORK

A. Visual Object Detection

Visual object detection is the process of finding all in-

stances of known object classes in an image and accurately
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localizing it using a tight bounding box.

Current state-of-the-art visual object detection systems are

dominated by deep neural networks. The first breakthrough

was in 2014 by R-CNN [12] which used cropped and resized

regions from an input image using a regions proposals as

an input to a deep convolutional neural network classifier,

AlexNet [13], in order to localize all known objects. Later

and in order to improve the speed of the training and testing

stages of R-CNN, Faster R-CNN [3] integrated the process of

region proposal generation as a branch in the network itself.

Recently, Single shot multibox detector (SSD) [1] took the

idea further and unified the detection and proposal generation

into one branch in the network. This enabled the detector

to consider different image regions of different sizes and

resolutions.

Although theses networks are performing increasingly

well under closed-set conditions, they suffer performance

loss when evaluated using images from outside their corre-

sponding development datasets (i.e a similar setup to open-

set conditions) as shown in [6].

B. Open-set Object Detection

Open-set conditions is defined as the evaluation of a

system where novel classes are seen in testing that were not

present during training. As defined in [5], there exists three

categories of classes:

1) Known classes, i.e. the classes with distinctly labeled

positive training examples,

2) Known unknown classes, i.e. labeled negative exam-

ples, not necessarily grouped into meaningful cate-

gories,

3) Unknown unknown classes, i.e. classes unseen during

training.

Although some modern object detectors are trained to detect

“background” classes (known unknown classes) and distin-

guish them from known classes, it is not possible to train a

system to detect and discriminate against unknown unknown

classes.

The problem with deploying models trained under closed-

set assumptions into open-set environments is that the net-

work is forced to choose a class label from one of the known

classes, and in many cases, classifies the unknown object as

a known class with high confidence [14].

Current attempts at improving open-set performance of

machine learning systems have focused on formally account-

ing for unknown unknowns [4], [5], [15] by identifying and

rejecting classes not encountered during training based on an

estimate of the uncertainty in the network predictions.

C. Bayesian Deep Learning

One way to obtain an estimate of uncertainty is by using

Bayesian Neural Networks (BNNs) [16], [17]. Commonly,

variational inference has been used to obtain approximations

for BNNs as shown in [18]–[22]. However, the practical

applicability of these methods is hindered by increased

training difficulty and computational cost.

In 2015, Gal and Ghahramani [7] proposed Dropout Vari-

ational Inference as a tractable approximation to BNNs that

provides a measure of uncertainty for a models confidence

scores while remaining computationally feasible. This made

it possible for any deep neural network to become Bayesian

by simply enabling the dropout layers during testing, as

opposed to standard practice where dropout layers are only

used during training.

Recently, in [8] and [9], dropout sampling was used for

uncertainty estimates on regression and image classification

tasks in order to improve performance. In this paper, we

extend the use of this technique to visual object detection,

where multiple objects in a scene are localized and classified.

We then evaluate the effect of this technique on object

detection performance under open-set conditions typical to

robot vision tasks.

III. OBJECT DETECTION – A BAYESIAN PERSPECTIVE

We start by giving a short overview on how Dropout

Sampling is used to perform tractable variational inference

in classification and recognition tasks. We then present our

approach to extending this technique to object detection.

A. Dropout Sampling for Classification and Recognition

The idea behind Bayesian Neural Networks is to model the

network’s weights W as a distribution p(W|T) conditioned

on the training data T, instead of a deterministic variable.

By placing a prior over the weights, e.g. W ∼ N (0, I),
the network training can be interpreted as determining a

plausible set of weights W by evaluating the posterior

over the weights given the training data: p(W|T) [23].

Evaluating this posterior however is not tractable without

approximation techniques.

Kendall and Gal [23] showed that for recognition or

classification tasks, Dropout Variational Inference allows the

approximation of the class probability p(y|I,T) given an

image I and the training data T by performing multiple

forward passes through the network with Dropout enabled,

and averaging over the obtained Softmax scores si:

p(y|I,T) =

∫
p(y|I,W) · p(W|T)dW ≈

1

n

n∑

i=1

si (1)

This Dropout Sampling technique essentially samples n

model weights W̃i from the otherwise intractable posterior

p(W|T).
In the above example, p(y|I,T) is a probability vector

q over all class labels. The uncertainty of the network

in its classification is captured by the entropy H(q) =
−
∑

i qi ·log qi. This technique of estimating uncertainty with

Dropout Sampling has been successfully applied to various

classification and regression tasks [7]–[9], [23].

B. Object Detection with Dropout Sampling

In contrast to image classification or recognition that

reports a single label distribution for what is considered

the most prominent object in an image, object detection

is concerned with estimating a bounding box alongside a
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label distribution for multiple objects in a scene. We extend

the concept of Dropout Sampling as a means to perform

tractable variational inference from image recognition to

object detection.

To do this, we employ the same Dropout Sampling approx-

imation as proposed by [7] to sample from the distribution

of weights p(W|T). This time however, W are the learned

weights of a detection network, such as SSD [1].

SSD is based on the VGG-16 network architecture [24]

that consists of 13 convolutional layers and 3 fully connected

layers. This base network is trained with Dropout layers

inserted after the first and second fully connected layers.

Normally, these Dropout layers would not be active during

testing, but we keep them enabled to perform the Dropout

Sampling. Every forward pass through the network therefore

corresponds to performing inference with different network

W̃ approximately sampled from p(W|T).

C. Partitioning Detections into Observations

A single forward pass through a sampled object detec-

tion network with weights W̃ yields a set of individual

detections, each consisting of bounding box coordinates b

and a softmax score vector s. We denote these detections

as Di = {si,bi}. Multiple forward passes yield a larger

set D = {D1, . . . , Dn} of n such individual detections

Di. Notice that many of these detections Di will overlap

significantly as they correspond to objects that are detected

in every single forward pass. This is illustrated in Fig. 2.

Detections from the set D with high mutual intersection-

over-union scores (IoU) will be partitioned into observations

using a Union-Find data structure. We define an observation

Oi as a set of detections with high mutual bounding box

IoU:

Oi = ∪Di s.t. IoU(Dj , Dk) ≥ 0.95 ∀Dj , Dk ∈ Oi (2)

The threshold of 0.95 has been determined empirically.

Smaller thresholds (e.g. 0.8 in our experiments) tend to

group too many overlapping detections into one observation

in cluttered scenes, often falsely grouping detections on

different ground truth objects into one observation. The

selected threshold of 0.95 is conservative, resulting in several

observations per object. We found that this conservative

partitioning strategy is a better choice, as it is easier to fuse

observations at later stages in the processing pipeline through

data association techniques than it is to re-separate wrongly

combined detections.

D. Extracting Label Probabilities and Uncertainty

When performing dropout sampling with multiple forward

passes and partitioning of individual detections into observa-

tions as described above, we obtain a set of score vectors for

every observation. Following (1) we can now approximate

the vector of class probabilities qi by averaging all score

vectors sj in an observation Oi.

qi ≈ s̄i =
1

n

n∑

j=1

sj ∀Dj = {sj ,bj} ∈ Oi (3)

This gives us an approximation of the probability of the

class label yi for a detected object in image I given the

training data T, which follows a Categorical distribution

parameterized by qi and the number of classes k:

p(yi|I,T) ∼ Cat (k,qi) (4)

The entropy H(qi) = −
∑

j qij · log qij measures the label

uncertainty of the detector for a particular observation. If qi

is a uniform distribution, expressing maximum uncertainty,

the Entropy will be high. Conversely, if the detector is very

certain and puts most of its probability mass into a single

class, resulting in a very “peaky” distribution, the entropy

will be low.

E. Extracting Location Probability and Spatial Uncertainty

While the averaged Softmax scores approximate the label

distribution qi, we can approximate the distribution over the

bounding box coordinates for every observation in the same

way: by averaging over the bounding box vectors bj of all

detections Dj belonging to an observation Oi:

b̄i =
1

n

n∑

j=1

bj ∀Dj = {sj ,bj} ∈ Oi (5)

The uncertainty in these bounding box coordinates is cap-

tured by the covariance matrix over all bj . While we do

not use this expression of spatial uncertainty in this paper,

it can be of use for future applications such as utilizing

the bounding box detections as landmark parametrizations

in object-based SLAM [25].

F. Using Dropout Sampling to Improve Object Detection

Performance in Open-Set Conditions

The described dropout sampling technique for object de-

tection allows us to estimate the uncertainty of the detector in

the label classification for every observation Oi by assessing

the Entropy H(qi). In open-set conditions, we would expect

the label uncertainty to be higher for detections falsely

generated on open-set objects (i.e. unknown object classes

not contained in the training data). A threshold on the

Entropy H(qi) allows us to identify and reject detections

of such unknown objects.

While the same Entropy test could be applied to the

Entropy of a single Softmax score vector H(s) from the

vanilla, non-Bayesian object detector network, we would

expect that since qi is a better approximation to the true class

probability distribution than s, using H(qi) as a measure of

uncertainty is superior over H(s).

This allows us to formulate the central Hypothesis of

our paper: Dropout variational inference improves the object

detection performance under open-set conditions compared

to a non-Bayesian detection network. The following two

sections describe the experiments we conducted to verify or

falsify this hypothesis and present our findings.
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Fig. 2. (left) A single forward pass through SSD [1] yields 9 individual object detections Di. (center) 42 forward passes with Dropout Sampling result
a total of 393 detections Di. (right) These individual detections can be grouped according to their IoU score into 29 observations Oj .

IV. EVALUATION METRICS

We evaluate the object detection performance in open-set

conditions with three metrics: (1) open-set error, (2) precision

and (3) recall. Recall describes how well a detector identifies

known objects, open-set error describes how robust an object

detector is with respect to unknown objects and precision

describes how well a detector classifies known and unknown

objects. An ideal object detector would achieve a recall of

100% (it detects all known objects), precision of 100% (all

detections are classified correctly as the true known class or

as unknown), and an open-set error of 0 (no unknown objects

were detected and misclassified as a known class).

A. Precision and Recall

We define precision and recall by arranging all observa-

tions in a scene into true positives (TP) and false positives

(FP). Ground truth objects that are not detected are counted

as false negatives (FN).

Let Ω = {O1, . . .On} be the set of all object observations

in a scene after the partitioning step described in Section III-

C. We assess the label uncertainty by comparing the Entropy

H(qi) with a threshold θ and reject a detection if H(qi) > θ.

The rejected detections exhibit high label uncertainty and are

likely to correspond to observations of unknown objects.

For every observation Oi that passes this Entropy test, we

find the set of overlapping ground truth objects with an IoU
of at least 0.5. This is an established minimum requirement

for coupling a detection with a ground truth object [10]. If

the winning label for the observation matches any of the

matched objects, we count the observation as true positive,

otherwise as false positive.

Should there be no ground truth object with an IoU ≥ 0.5
and the winning class label is not 0 (unknown), we also count

Oi as a false positive. This case corresponds to observations

that passed the Entropy test, but were not generated by a

known object.

Every ground truth object of a class known to the detector

that was not associated with an observation (i.e. there is no

Oi with an IoU ≥ 0.5 with that object) gets counted as

a false negative, as the detector failed to detect the known

object.

Precision and recall are then defined as usual: precision =
|TP |

|TP |+|FP | , and recall = |TP |
|TP |+|FN | . Both can be combined

into the F-score F1 = 2 · precision·recall

precision+recall
.

B. Absolute Open-Set Error

We define absolute open-set error as the total number of

observations that pass the Entropy test, fall on unknown

objects (i.e. there are no overlapping ground truth objects

with an IoU ≥ 0.5 and a known true class label) and do not

have a winning class label of ’unknown’.

In the ideal case, all observations are of known objects,

i.e. objects from the training set. In this scenario the open-set

error is 0.

C. Datasets Used in the Evaluation

Our evaluation is based on two datasets: SceneNet RGB-

D [26], a huge dataset of rendered scenes, and the QUT

Campus dataset, a smaller real-world dataset captured by our

robot in a variety of indoor and outdoor environments on our

campus [27].

a) SceneNet RGB-D: The SceneNet RGB-D validation

set contains photo-realistic images of 1000 differing indoor

scenes [26]. These scenes contain 182 differing objects,

of which 100 are unknown classes for a network trained

on COCO. Instance images from the dataset contain pixel

segmentations of each object and can be used to obtain

ground truth locations and classifications. A bounding box

was generated for each object by extracting it’s minimum and

maximum x and y pixel locations in the instance image. The

instance ID for that object was then mapped to a WordNet

ID (wnid) via the dataset’s trajectories. A map was created

to convert each COCO class to all corresponding wnids in

the dataset. As COCO classes are more generic in nature,

several wnids were often mapped to a single COCO class, i.e.

’rocking chair’, ’swivel chair’ and ’arm chair’ were mapped

to the COCO class ’chair’.

b) QUT Campus Dataset: This dataset was collected

using a mobile robot across nine different and versatile

environments on our campus while recording stream of

images. The traversed environments are an office, a corridor,

the underground parking garage, a small supermarket, a

food court, a cafe, a general outdoor campus environment,

a lecture theater and the lobby of one of the universitys

main buildings. More details about the dataset can be found

in [27]. Detections were evaluated by manual visual inspec-

tion.
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TABLE I

PERFORMANCE COMPARISON ON SCENENET RGB-D AT MAXIMUM F1

SCORE [26]

Forward max. abs OSE Recall Precision
Passes F1 Score at max F1 point

vanilla SSD 0.220 18331 0.165 0.328
SSD with Entropy test 0.227 12638 0.160 0.392

Bayesian SSD 10 0.270 20991 0.214 0.364
20 0.292 24922 0.244 0.364
30 0.301 28431 0.261 0.355
42 0.309 32034 0.278 0.347

D. Evaluation Protocol and Compared Object Detectors

We base our evaluation on the SSD architecture [1] and

compare the performance of three variants:

• Vanilla SSD, i.e. the default configuration of SSD as

proposed in [1], without any Entropy thresholding

• SSD with Entropy thresholding, i.e. using the Entropy

of the Vanilla SSD Softmax scores H(s) to estimate

uncertainty and reject detections

• Bayesian SSD, i.e. SSD with Dropout Sampling and

using the Entropy of the averaged Softmax scores H(q)
to estimate uncertainty and reject detections

Two key parameters of Bayesian SSD are the number

of forward passes through the network and the minimum

number of detections required per observation. More forward

passes is expected to improve recall performance at the cost

of processing time. Bayesian SSD was tested for 10, 20,

30 and 42 forward passes through the network to verify this.

Given that Bayesian SSD relies on partitioning and averaging

across individual detections, it can be expected that obser-

vations containing more individual detections will provide

more robust uncertainty estimates. Minimum requirements

of 1, 3, 5 and 10 detections per observation were evaluated

for 42 forward passes.

We varied the Entropy threshold θ between 0.1 and 2.5

and calculated precision, recall, and open-set error for every

θ. Each network was fine-tuned on the COCO dataset. From

each scene of the SceneNet RGB-D validation dataset, we

tested 30 images, resulting in a total of 30000 test images.

A sample of 75 images were tested from the QUT Campus

dataset across 11 scenes with absolute true detections and

error recorded.

V. RESULTS AND INTERPRETATION

A. Summary

Our experiments confirmed the hypothesis formulated in

Section III-F: The Bayesian SSD detector utilizing Dropout

Sampling as an approximation to full Bayesian inference

improved the object detection performance in precision and

recall while reducing the open-set error in open-set condi-

tions.

We will explain our findings in detail in this section,

discussing the results on both datasets as well as the influence

of the hyper parameters for the number of forward passes and

the required minimum detections per observation.

TABLE II

PERFORMANCE COMPARISON ON SCENENET RGB-D AT VANILLA SSD

REFERENCE SCORES [26]

Forward F1 Score at abs OSE at
Passes reference OSE reference F1 Score

vanilla SSD (reference) 0.220 18,331

Bayesian SSD 10 0.269 8,225
20 0.284 8,313
30 0.286 9,003
42 0.285 9,256

B. SceneNet RGB-D

As shown in Table I and Figure 3, Bayesian SSD is able

to achieve greater precision and recall scores than the vanilla

SSD. At the same precision performance (32.8%) as the

vanilla SSD, Bayesian SSD demonstrates a 12.3% increase in

recall; similarly, for the same recall score (16.5%), Bayesian

SSD demonstrates a 15.1% increase in precision. While

the SSD with Entropy thresholding network has a higher

precision for some low recall levels, overall, Bayesian SSD

is also shown to outperform this approach. This suggests

that Bayesian SSD produces a more reliable uncertainty

estimate for object classification; as such, it is able to make

more informed decisions to reject incorrect classifications.

A network utilizing Bayesian SSD is also able to achieve a

considerably higher maximum recall. As expected, collecting

detections from multiple forward passes allows Bayesian

SSD to have a greater chance of detecting objects that may

be overlooked in a single forward pass.

The effect of Bayesian SSD on identification of open-set

error is further explored in Figure 4. These results show

that the Bayesian SSD allows for a reduction in open-

set error in comparison to vanilla SSD. As can be seen

in Table II, when choosing the performance of the vanilla

SSD as a reference point (indicated by the red cross in

Fig. 5) the Bayesian SSD allows a decrease the open-set

error (OSE) while retaining the F1 score. Alternatively the

F1 can be substantially improved while keeping the OSE

at the reference level. This further suggests that Bayesian

SSD provides a reliable uncertainty measure for identifying

incorrect detections of unknown classes, as well as incorrect

classifications of known objects.

C. Forward Passes

As can be seen in Figure 4, as few as 10 forward passes

is able to maintain the vanilla SSD reference F1 score

and reduce open-set error comparably to greater numbers

of passes. However, at least 20 forward passes are needed

to maximize F1 score for the vanilla SSD reference open-

set error. Beyond the reference OSE point, more forward

passes achieve slightly higher F1 scores, but at the cost

of a large increase in open-set error. As the open-set error

increases, recall of the system increases while precision

decreases. At very high open-set error levels, precision is

low enough to decrement the F1 score despite the high recall;

this causes the backward bending trend as shown in Figure 4.

Depending on the performance requirements of a detection
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system, fewer forward passes may be suitable, thus allowing

for reduced computation. One forward pass of an image

takes 0.05 seconds with the current model, which currently

involves passing an image through the entire network. In

future, computation could be reduced by only sampling over

the post-dropout layers (inclusive of the dropout layers)

component of the network, as all computation prior to this

point is not stochastic.

D. Minimum Detection

As shown in Figure 5, requiring at least 3 detections per

observation provides a marginally lower open-set error for

each F1 score. This effect is equivalent across all minimum

detection levels greater than 1. As a consequence of this

requirement, the maximum F1 score is also reduced. As

in the case of 10 minimum detections, this can result in

Bayesian SSD being outperformed by vanilla SSD. This

supports the theory that Bayesian SSD relies upon having

multiple detections per observation, but also suggests that

the magnitude is inconsequential. Therefore, in most circum-

stances, a low minimum detections requirement (if any) is

ideal.
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Fig. 5. F1 score versus open-set error for various minimum detection
requirements. Perfect performance is an F1 score of 1 and an Absolute
OSE of 0.

Fig. 6. True detections versus total error for QUT Campus dataset.

E. Real World Dataset

For the QUT Campus dataset, the Bayesian SSD is able

to reduce the total error per true detection. This can be seen

in Figure 6, where at the reference point for the vanilla SSD

with no entropy thresholding, Bayesian SSD has substantially

reduced the total error by a margin of 21 (consisting of

open-set error and incorrect classifications of known objects).

Additionally, for the same total error, Bayesian SSD achieves

a greater number of true detections by a margin of 363. While

this may be due to multiple detections per object, it can also

be inferred that this partially represents the superior recall

performance of Bayesian SSD.

Examples of each network’s performance on an image

from the dataset are shown in Figure 7. For this image, an

entropy threshold of 0.64 was applied. As can be seen, the

vanilla SSD makes correct detections of a person as well as

several open-set errors (an unknown object, a drink shelf,

is detected four times as a ’refrigerator’). When applying

entropy thresholding to the vanilla SSD, all true detections

are discarded while most of the open-set error is sustained.

In contrast, Bayesian SSD is able to utilize its uncertainty to

preserve a true detection of the person while eliminating all

open-set error.
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Fig. 7. True detections are shown in green and open-set errors are shown in red. Vanilla SSD (left) detecting two true detections of ’person’ and four
open-set errors of ’refrigerator’. Vanilla SSD with thresholding (center) detecting two open-set errors of ’refrigerator’. Bayesian SSD (right) detecting one
true detection of ’person’. Entropy thresholding at 0.64.

VI. CONCLUSIONS AND FUTURE WORK

We showed that Dropout Sampling is a practical way of

performing object detection with an approximated Bayesian

network. We verified the central hypothesis of our paper that

Dropout Sampling allows to extract better label uncertainty

information and thereby helps to improve the performance of

object detection in the open-set conditions that are ubiquitous

for mobile robots.

A promising direction for future work is to exploit the

spatial uncertainty contained in the covariance matrix over

the bounding box coordinates for a group of detections.

This information could be propagated through a object-based

SLAM system to gain a better estimate of the 6-DOF object

pose.
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