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Most animals possess taste receptors neurons detecting potentially noxious

compounds. In humans, the ligands which activate these neurons define a sensory

space called “bitter”. By extension, this term has been used in animals and insects

to define molecules which induce aversive responses. In this review, based on our

observations carried out in Drosophila, we examine how bitter compounds are detected

and if bitter-sensitive neurons respond only to molecules bitter to humans. Like most

animals, flies detect bitter chemicals through a specific population of taste neurons,

distinct from those responding to sugars or to other modalities. Activating bitter-sensitive

taste neurons induces aversive reactions and inhibits feeding. Bitter molecules also

contribute to the suppression of sugar-neuron responses and can lead to a complete

inhibition of the responses to sugar at the periphery. Since some bitter molecules

activate bitter-sensitive neurons and some inhibit sugar detection, bitter molecules are

represented by two sensory spaces which are only partially congruent. In addition to

molecules which impact feeding, we recently discovered that the activation of bitter-

sensitive neurons also induces grooming. Bitter-sensitive neurons of the wings and of the

legs can sense chemicals from the gram negative bacteria, Escherichia coli, thus adding

another biological function to these receptors. Bitter-sensitive neurons of the proboscis

also respond to the inhibitory pheromone, 7-tricosene. Activating these neurons by bitter

molecules in the context of sexual encounter inhibits courting and sexual reproduction,

while activating these neurons with 7-tricosene in a feeding context will inhibit feeding.

The picture that emerges from these observations is that the taste system is composed

of detectors which monitor different “categories” of ligands, which facilitate or inhibit

behaviors depending on the context (feeding, sexual reproduction, hygienic behavior),

thus considerably extending the initial definition of “bitter” tasting.
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INTRODUCTION

In humans, bitter taste is defined as a sensation associated with the perception of potentially toxic

molecules such as alkaloids, which induce innate aversive reactions (Ventura and Worobey,

2013). Innate aversions can be subsequently reversed, and bitter tasting foods can even

become appealing for example when post-ingestive effects are positive either physiologically

or socially (Calabrese, 2008). Molecular studies support the view that bitter taste is mediated

in vertebrates by specific receptor proteins Tas2Rs (Mueller et al., 2005; Meyerhof et al.,

2011; Barretto et al., 2015), which are expressed within a specific population of taste sensory cells.
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Activating these taste cells either by genuine ligands or through

optogenetics, triggers aversive reactions (Chen et al., 2011). By

extension, bitter sensation is inferred in other animals, even in

insects, since the activation of specific taste cells triggers aversive

reactions often associated with feeding and serves to protect

individuals from accidental ingestion of noxious molecules.

Toxic molecules are used in numerous species of all taxon

including plants, animals, insects and microorganisms as a

defense against their predators (Berenbaum, 1995; Skelhorn

and Rowe, 2009). Such molecules encompass a bewildering

array of chemical structures (Lunceford and Kubanek, 2015).

Many of them are toxic to the consumer, and a number of

them are deterrent or repellent (Kool, 2005). For consumers,

it makes sense to be able to detect protected preys and

to avoid feeding from sources contaminated with toxic or

noxious molecules. Animals which exploit resources with

low quantities of toxic molecules tend to lose their bitter

receptors (Li and Zhang, 2014) as in whales (Feng et al.,

2014) or vampire bats (Hong and Zhao, 2014). Specialist

animals tend to have low numbers of bitter receptors while

generalist animals tend to have more of them (McBride, 2007;

McBride and Arguello, 2007). There are exceptions to this

general hypothesis: for example, the silkworm Bombyx mori

is an absolute specialist as it feeds and develops exclusively

on leaves of the mulberry tree but its repertoire of taste

receptors shows an expansion of bitter receptors (Wanner

and Robertson, 2008). Inversely, the honeybee Apis mellifera

which is a generalist, has a low number of gustatory receptors

(Robertson and Wanner, 2006). These contradictions may

resolve if one wants to consider not the chemistry of the

molecules, but their biological role. For B. mori, it is possible

that the expansion of gustatory receptors allow them to recognize

secondary compounds associated with their specific host plant.

For A. mellifera, it is possible that their food resource has a

composition that limits the risks of being exposed to noxious

molecules.

These observations suggest nevertheless that all organisms

have evolved a taste modality that allows them to detect and to

avoid molecules which represents a potential danger. This taste

modality is defined both by an ensemble of taste receptor genes

that define a ‘‘bitter’’ space, and by populations of receptor cells

expressing members of this family of receptors. In this paper,

we want to review recent evidence drawn mostly from our own

experience in Drosophila that cells sensitive to bitter compounds

react to classes of molecules important in different behavioral

contexts, and stress that bitter molecules also have an impact

on the detection of other molecules detected through other taste

modalities.

CONTACT CHEMORECEPTION IN
DROSOPHILA ADULTS

Taste detection in Drosophila adults involves external and

internal contact chemoreceptive sensilla which are distributed

all over the body, especially in the oral region (proboscis

and hypo- and epipharyngeal organs of the anterior digestive

tract), on the legs, and on the front margins of the wings

(Stocker, 1994; Shanbhag et al., 2001; Isono and Morita, 2010).

Contact chemoreceptive sensilla have a pore at their tip, while

olfactory sensilla have tiny pores all over the shaft (Altner and

Prillinger, 1980; Stocker, 1994). Most of these taste sensilla

house four gustatory neurons and a mechanosensitive neuron

(Shanbhag et al., 2001). Some proboscis taste sensilla house

only two taste neurons (Hiroi et al., 2004), while taste pegs

which are located in rows between and on the lateral sides of

the six pseudotracheal rows of the proboscis, house only one

(Shanbhag et al., 2001). The cellular organization of these sensory

units with bipolar sensory cells and three types of accessory

cells, is very similar to that of olfactory sensilla found on

the antenna and the maxillary palps. However, while olfactory

receptors neurons converge into glomeruli in the antennal

lobe, taste receptor neurons project into neuropiles associated

with each body segment and appendage (de Bruyne and Warr,

2006; Kwon et al., 2014), thus combining a chemotopic and a

somatotopic map (Wang et al., 2004), whereas in other insects,

either a clear somatotopic map exists as in Schistocerca gregaria

(Newland et al., 2000) and Periplaneta americana (Nishino et al.,

2005), or not as in Phormia regina (Edgecomb and Murdock,

1992).

Since the initial discovery of a family of putative gustatory

receptor proteins (Clyne et al., 1999), continuous progresses

have been made in elucidating molecular elements which enable

gustatory receptor neurons (GRNs) to detect external chemicals.

In Drosophila melanogaster, this family includes 60 genes which

encode for 68 receptor proteins (Clyne et al., 2000; Dunipace

et al., 2001; Scott et al., 2001; Robertson et al., 2003). These

receptors are expressed in GRNs but also in other tissues such

as the digestive tract, reproductive organs and epidermal cells on

the abdomen (Park and Kwon, 2011a,b), into the brain (Gr43a

and Gr64a; Miyamoto et al., 2012; Miyamoto and Amrein, 2014;

Fujii et al., 2015), into the antenna either as receptors to CO2 into

specific sensilla (Gr21a and Gr63a; Jones et al., 2007; Yao and

Carlson, 2010) or into olfactory neurons (Gr5a,Gr64b andGr64f ;

Fujii et al., 2015) or even intomultidendritic epithelial cells on the

abdomen (Gr66a; Dunipace et al., 2001; Shimono et al., 2009).

While GRs are generally thought to be involved in the detection

of chemicals, they have been also shown to be involved in the

detection of temperature (Ni et al., 2013).

GRNs express also a number of other genes which

directly affect their sensitivity and selectivity. First of all,

membrane-bound ionotropic receptors have been shown to

affect pheromone and salt detection (Benton et al., 2009; Zhang

et al., 2013a; Koh et al., 2014; Stewart et al., 2015). Transient

receptor channels like TRPA1 and pain are involved in the

detection of aversive molecules (Al-Anzi et al., 2006; Kim et al.,

2010; Kwon et al., 2010), and pickpocket channels modulate

pheromone and salt detection (Liu et al., 2003, 2012; Lin et al.,

2005; Cameron et al., 2010; Chen et al., 2010; Lu et al., 2012;

Pikielny, 2012; Starostina et al., 2012; Thistle et al., 2012; Toda

et al., 2012; Alves et al., 2014). Taste sensitivity and selectivity is

also modulated by proteins found in the sensillum lymph around

the neurons such as odorant binding proteins (Galindo and

Smith, 2001; Shanbhag et al., 2001; Koganezawa and Shimada,

2002; Park et al., 2006; Jeong et al., 2013), chemosensory
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proteins like CheB (Xu et al., 2002; Park et al., 2006; Ben-

Shahar et al., 2007, 2010; Starostina et al., 2009) and various

enzymes such as sugar-hydrolyzing proteins (Bhavsar et al.,

1983).

This impressive array of genes is by no means complete

but the picture that emerges seems clearer when it comes to

mapping their expression to specific populations of neurons.

Earlier electrophysiological studies in Drosophila promoted

the view that GRNs would fall in four functional categories,

respectively sensitive to sugars, salt, bitter molecules and water

(Fujishiro et al., 1984; Singh, 1997; Meunier et al., 2003). Many

exceptions to this scheme were found in various insects, such

as water-cells responding to sugars (Wieczorek and Köppl,

1978; Wieczorek, 1980), or salt cells responding to sugar or

lactose (Schnuch and Hansen, 1990, 1992). The situation is even

more confusing in phytophagous insects where establishing a

terminology distinguishing prototypic cell types across species

seems quite difficult (Chapman, 2003). This lead Bernays and

Chapman (2001) to consider only two functional types of cells,

called phago-stimulant and phago-deterrent.

In flies at least two groups of sensory cells can be distinguished

on the basis of the receptors they express (Figure 1): sugar-

sensitive cells which co-express several gustatory genes such as

Gr5a, Gr64a-f and Gr61a (Dahanukar et al., 2001, 2007; Scott

et al., 2001; Thorne et al., 2004; Jiao et al., 2007; Slone et al., 2007;

Weiss et al., 2011; Fujii et al., 2015), and bitter-sensitive cells

which co-express several other gustatory genes such as Gr66a,

Gr33a andGr93a (Dunipace et al., 2001; Scott et al., 2001; Thorne

et al., 2004; Moon et al., 2006; Weiss et al., 2011; Ling et al.,

2014). Within these two categories, subtypes have been described

both on the proboscis (Weiss et al., 2011) and on the legs (Ling

et al., 2014), suggesting that flies may possess finer discrimination

capabilities than currently thought (but see Masek and Scott,

2010).

It must be stressed that most of these observations rely upon

the use of reporter genes using Gal4 or LexA enhancer trap

systems (Brand and Perrimon, 1993; Lai and Lee, 2006; Miyazaki

and Ito, 2010) as the level of expression of these genes is relatively

low. This means that these data should be considered with

caution. For example, the expression of Gr64a within sugar-

sensitive GRNs has been recently challenged (Fujii et al., 2015)

although previous studies had positively identified this gene

as being expressed and involved in sugar perception in these

GRNs (Dahanukar et al., 2007; Jiao et al., 2007, 2008). It is

possible that these apparent discrepancies are not only due to

limitations of the enhancer-trap approach, but also to differences

of expression levels of these genes, depending on the genetic

background or on the rearing conditions (Nishimura et al.,

2012).

The current view is that several GR proteins are needed to

make one functional receptor unit (Jiao et al., 2008; Lee et al.,

2009, 2010). To be fully functional, a bitter receptor may need

FIGURE 1 | Gr genes expressed in proboscis taste sensilla (after Weiss et al., 2011). (A) Cellular composition of the different type of sensilla located on the

external side of the proboscis. L-type sensilla house four neurons, one of which is sensitive to sugars (S). S-type sensilla house four neurons, including one

sugar-sensitive neuron (S) and one sensitive to bitter (B); I-type sensilla house only two taste neurons (B and S). Each of these sensilla also include one

mechanoreceptor neuron not represented here. (B) Table showing a map of the expression of the gustatory genes within the different types of sensilla and

bitter-sensitive (bitter row) and sugar-sensitive (sweet row) neurons. This map was obtained by establishing GAL4 lines with the promoter of each of these gustatory

genes to map the neurons which express these gustatory genes.
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the co-expression of Gr32a, Gr33a, Gr66a (Moon et al., 2009;

Lee et al., 2010) as well as of Gr89a and Gr39a which may

represent ‘‘core-bitter Grs’’ (Weiss et al., 2011). Besides these

core receptors, additional receptors may have a more specific

role in the detection of particular chemicals such as GR59c

for berberine, lobeline and denatonium (Weiss et al., 2011)

and GR47a for strychnine (Lee et al., 2015). Sugar receptors

may have a different set of core receptors (Dahanukar et al.,

2001, 2007; Chyb et al., 2003; Jiao et al., 2007; Slone et al.,

2007; Wisotsky et al., 2011; Ling et al., 2014; Yavuz et al.,

2014; Fujii et al., 2015). This might explain why expressing

individual bitter GRs into sugar-sensitive GRNs (and reversely)

has failed so far (Lee et al., 2009;Montell, 2009; Isono andMorita,

2010).

The distinction between sugar- and bitter-sensitive taste cells

is maintained in the way these cells project into the brain,

in two non-overlapping areas at least in the suboesophageal

ganglion (Wang et al., 2004; Marella et al., 2006; Miyazaki

and Ito, 2010; Kwon et al., 2014; Harris et al., 2015).

Activating one class of these receptors using ectopically expressed

reporters triggers either appetitive or aversive behaviors

(Wang et al., 2004; Marella et al., 2006; Hiroi et al., 2008; Harris

et al., 2015).

The picture that emerges from these observations, however

incomplete it might be, is that taste encoding in flies rests

upon global categories or modalities such as appetitive or

aversive (Thorne et al., 2004; Amrein and Thorne, 2005; Harris

et al., 2015), in a way strikingly similar to what molecular

studies have shown in vertebrates (Scott, 2005; Chandrashekar

et al., 2006; Yarmolinsky et al., 2009; Chen et al., 2011;

Liman et al., 2014; Barretto et al., 2015). The hypothesis that

categories of receptors deal with different types of molecules

inducing appetitive or aversive behaviors, does not match

the view that emerged when recording from taste nerves in

vertebrates, where no corresponding functional segregation

could be made between fibers (Contreras and Lundy, 2000; Chen

and Di Lorenzo, 2008; Frank et al., 2008). This latter encoding

was called across fiber coding (Erickson, 2000, 2008a,b) as

opposed to labeled lines coding. Actually, a similar inconsistency

between peripheral recordings and the labeled line theory has

been recently demonstrated in an insect, using multicellular

recordings to monitor nerve activity and central responses in the

suboesophageal ganglion of taste sensilla from the proboscis of

Manduca sexta adults (Reiter et al., 2015). These opposed views

(labeled lines vs across-fiber encoding) are difficult to reconcile

(Scott and Giza, 2000; Smith et al., 2000; de Brito Sanchez and

Giurfa, 2011) as each theory is missing elements for a complete

proof (Fox, 2008).

DIRECT DETECTION OF AVERSIVE
MOLECULES

Specific Taste Cells are Activated by Bitter
Molecules
Adult flies respond to a number of alkaloids and aversive

molecules by reducing their feeding intake. This can be observed

using a number of different behavioral tests: by monitoring

the proportion of flies that have fed upon diets containing

colored dyes (Tanimura et al., 1982; Meunier et al., 2003), by

measuring the quantity of liquid ingested by flies (Ja et al., 2007;

Sellier et al., 2011) or by monitoring the proboscis extension

upon stimulation of the legs or proboscis (Meunier et al., 2003;

Masek and Scott, 2010). For example, quinine which is bitter

to humans and to many animals including insects, inhibits

feeding in a dose-dependent way starting at 10−4 M when

mixed with 35 mM fructose in agar (Meunier et al., 2003).

Behavioral inhibition of the proboscis extension reflex occurs

even when berberine (another alkaloid) is presented on one leg

while the other leg is stimulated with sugar (Meunier et al.,

2003).

Electrophysiological recordings indicated that this behavioral

inhibition is correlated with the activation of specific cells,

present in some sensilla of the legs (Meunier et al., 2003)

and on the proboscis (Figure 2; Hiroi et al., 2004; Sellier,

2010; Sellier et al., 2011). Further observations coupled with

selective expression of various reporter genes demonstrate

that flies indeed have one class of cells responding to

bitter compounds in a dose-dependent way. These cells co-

express several gustatory receptors (up to 28; Weiss et al.,

2011; Figure 1). These cells may also co-express receptors

belonging to other classes, such as TRPA1 (Kim et al., 2010)

or painless which confers them the capability to respond to

aversive compounds such as wasabi (Al-Anzi et al., 2006),

or even to respond to noxious temperature (Ni et al.,

2013).

This population of cells which all express Gr66a on the

proboscis, can be activated artificially, by expressing receptors

responding to new stimuli such as capsaicin using the human

vanilloid receptor VR1 (Marella et al., 2006), to light using the

channel rhodopsin CHR2 (Zhang et al., 2007; Honda et al.,

2014; French et al., 2015), or even to an odor, butyl acetate,

using an olfactory receptor Or22a and Orco (Hiroi et al., 2008).

These observations support the view that taste cells expressing

gustatory receptors such as Gr66a, Gr32a and Gr33a detect

a variety of bitter stimuli (Marella et al., 2006; Harris et al.,

2015) and induce aversive behavioral responses such as feeding

inhibition.

Bitter-Sensitive Taste Cells are Activated
by Sex-Aversive Molecules
While contact chemoreceptors located all over the body are

generally considered to function as detectors of sugars, bitter

compounds, water and even salt, the detection of sexual

pheromones is thought to be orchestrated by a group of

specialized contact chemoreceptive sensilla. The distribution of

these specialized sensilla is sexually dimorphic, whereby males

have more taste sensilla on their legs (Nayak and Singh, 1983).

During courtship, males go into several consecutive phases,

one of which involves tapping on the abdomen of the females

with their front legs (Spieth, 1974; Greenspan and Ferveur,

2000; Yamamoto and Koganezawa, 2013). Cobalt stainings

showed that neurons from leg taste sensilla project differently

Frontiers in Integrative Neuroscience | www.frontiersin.org 4 November 2015 | Volume 9 | Article 58

http://www.frontiersin.org/Integrative_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Integrative_Neuroscience/archive


French et al. Bitter Taste(s) in Drosophila

FIGURE 2 | Bitter-sensitive neurons are activated by bitter substances (from Hiroi et al., 2004). (A) Sample recordings from I-type sensilla stimulated with

strychnine at increasing concentrations (0.1 mM, 1 mM, 10 mM), showing that one cell is activated by strychnine. (B) Dose response curves showing the response

of this cell to increasing concentrations of strychnine (empty circle), berberine (empty diamond), quinine (black square) and caffeine (empty circle and dotted line).

in males than in females (Possidente and Murphey, 1989). This

situation is confirmed by the fact that pheromone detection

by contact involves numerous molecular elements apparently

not related to bitter-tasting such as CheB proteins (Xu et al.,

2002; Park et al., 2006), ppk23, ppk25 and ppk29 DEG/Na

channels (Lu et al., 2012; Pikielny, 2012; Thistle et al., 2012;

Toda et al., 2012; Vijayan et al., 2014), gustatory receptors

like Gr39a, Gr32a and Gr68a (Miyamoto and Amrein, 2008;

Moon et al., 2009; Koganezawa et al., 2010; Wang et al., 2011;

Watanabe et al., 2011), and ionotropic receptors (Koh et al.,

2014).

However, very few studies have considered the wiring of these

pheromone-sensitive cells, even though male-to-male detection

is affected when ‘‘bitter’’ gustatory receptors such as Gr32a and

Gr38a are inactivated (Miyamoto and Amrein, 2008; Moon et al.,

2009). The involvement of Gr32a and Gr38a in pheromone

detection is thought to be an indication that these Grs are

obligatory co-receptors (Miyamoto and Amrein, 2008; Moon

et al., 2009), in the same way as Orco (formerly known as

Or83b) is an obligatory co-receptor in olfaction (Larsson et al.,

2004). However, there is an even simpler explanation of the

mixed roles of these Grs in the detection of pheromones and

of bitter compounds, which is that aversive pheromones and

bitter compounds may activate the same cells. We demonstrated

on taste sensilla of the proboscis, that the same neuron

responds both to caffeine and to 7-tricosene (7-T), which is

a male inhibitory sexual pheromone (Figure 3). We further

demonstrated that 7-T inhibits feeding while caffeine, berberine

or quinine inhibit courtship (Lacaille et al., 2007). The simplest

explanation of these observations is that the same neurons

are used to detect different classes of signal, and that the

central nervous system has limited capabilities to discriminate

them. In other words, inhibitory pheromones taste ‘‘bitter’’ to

flies.

Given the number of receptors expressed in this class of

gustatory cells, i.e., up to 28 Grs, TRP channels and IRs, it

is likely that we have not yet found all the ligands to which

bitter-sensitive cells respond. While most substances tested so

far belong either to chemicals which are bitter to humans

such as plant-derived compounds and artificial molecules like

denatonium, or which play a role in intraspecific communication

such as 7-T, it is tempting to speculate that bitter-sensitive

taste neurons of flies also detect chemicals from their enemies,

(predators, parasitoid insects or entomopathogens), or from

their competitors such as bacteria or fungi. For example,

grooming reactions can be induced in flies both by quinine

and by extracts from the gram negative bacteria, Escherichia

coli (Yanagawa et al., 2014), that belong to an entirely

different category of chemicals than alkaloids and bitter

molecules.

INDIRECT DETECTION

While ‘‘bitter’’ molecules are detected by a specific class of

gustatory cells, they might also interfere with the detection

of molecules belonging to other modalities. Together with the

activation of bitter-sensitive cells, sugar-sensing inhibition is

considered as one of the major mechanisms by which plant

secondary compounds exert antifeedant actions upon herbivores

(Schoonhoven, 1982; Mitchell and Sutcliffe, 1984; Schoonhoven

et al., 1992; Chapman, 2003). These inhibitions represent a

‘‘latent spectrum’’ as coined by Schoonhoven et al. (1992). Rather

than being a curiosity or some kind of chemical artefact, we

believe this mechanism represents an integral part of gustatory

coding of bitter molecules in insects. Sugar-sensing inhibition

by quinine for example has been observed very early in

insects (Morita and Yamashita, 1959). In Drosophila, sugar-

sensing inhibition (Siddiqi and Rodrigues, 1980), was described

before bitter-sensitive cells were identified (Meunier et al.,

2003).

Peripheral sugar-sensing inhibition seems a

general phenomenon, as it occurs also in vertebrates
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FIGURE 3 | Bitter-sensitive cells respond also to inhibitory sexual pheromones. (A) Diagram showing the two electrodes configuration used to record

extracellular activities from taste sensilla of Drosophila. In all cases, a glass capillary containing the stimulus is used to cap the tip of a gustatory sensillum. If the

stimulus is water-soluble, the stimulus electrode can contain an electrolyte and can be used to record electrical signals from the neurons within the sensilla. If the

stimulus is lipophilic, the stimulus electrode which contains paraffin oil with the ligand, is no longer conductive and we use another electrode, for example a fine

tapered tungsten rod, inserted at the base of a sensillum. (B) Sample recordings obtained from an I-type sensillum on the proboscis of Drosophila using a tungsten

recording electrode, and stimulating either with sucrose (suc), caffeine (caff), 7-tricosene (7-T) or a mixture of 7-tricosene and caffeine (reproduced from Lacaille et al.,

2007).

(Akaike and Sato, 1976; Ogawa et al., 1997; Frank et al.,

2005) and in other organisms such as leeches (Li et al., 2001).

In vertebrates, sugar-sensing inhibition by quinine has been

attributed to the direct inhibition of TRPM5 (Talavera et al.,

2008), but also to interactions with G proteins (Naim et al.,

1994), to K+ channels inhibition (Burgess et al., 1981) or even

to the rapid entry into the cells inducing non-specific inhibition

in taste cells (Peri et al., 2000). Thus far, no unitary mechanism

explaining sugar-sensing inhibition by molecules such as quinine

has been found. Bitter molecules may be detected either directly

through a sensory receptor (not yet found), by interfering with

the detection of sugar molecules via interaction with sugar

receptors, or indirectly by interfering with or blocking various

transduction elements.

In Drosophila, sugar-sensing inhibition by bitter molecules

can be demonstrated under at least two experimental situations.

First, exposure to bitter chemicals may alter the detection of

other tastants. For example, pre-exposing leg taste sensilla to 5

mM quinine during 10 s completely shuts down the response to

sugar, and it takes 40 min to get a full recovery (Meunier et al.,

2003). This inhibition might be due to a direct toxicity exerted

upon nerve cells such as with vinblastine, colchicine (Matsumoto

and Farley, 1978) or papain (Tanimura and Shimada, 1981), or

it might be due to quinine molecules lingering in the sensillum

lymph. Actually, as quinine is not prevalent in the environment

of flies, they might miss proper degradation enzymes to clear

the sensillum lymph. Secondly, bitter molecules may directly

interfere with sugar detection (Sellier et al., 2011; French

et al., 2015), either directly or indirectly, via an OBP (Jeong

et al., 2013). Sugar-sensing inhibition differs between bitter

chemicals (Figure 4; French et al., 2015), and between sugars

(Schoonhoven, 1982; Schoonhoven and Liner, 1994; Martin

and Shields, 2012). Given the enormous range in the chemical

structures of ‘‘bitter’’ chemicals, it is likely that a variety of modes

of action will be found.

In addition to peripheral sensory inhibition involving a direct

interaction of bitter molecules with sugar sensitive cells, bitter

chemicals may interfere with gustatory perception through other

pathways. One mechanism could be through lateral interactions

between sensory cells, for example through ephaptic inhibition

as demonstrated for olfactory cells (Su et al., 2012). Such

mechanism was not found in the taste sensilla tested so far

(French et al., 2015), but non-synaptic interactions are definitely

relevant for gustation. Another mechanism involves higher-

order circuits, such as presynaptic inhibition of sugar sensing

neurons by bitter-sensitive neurons through GABA receptors

(Chu et al., 2014). Given the importance of the gustatory

system in triggering or preventing feeding, we certainly expect

modulations to occur at the level of the sensory neurons as

well as in the central circuitry decoding this information. Recent

observations made it clear that satiety has a strong effect on

how odors are decoded (Ko et al., 2015), and how appetitive

or bitter tastants trigger feeding reactions (Inagaki et al., 2014).

Likewise, mating alters strongly female food preferences to

proteins (Ribeiro and Dickson, 2010) and possibly to bitter

chemicals as well.

FUTURE PROSPECTS

All the data reported so far are compatible with the idea that

bitter taste represents a well-defined taste modality which is

different from sweet taste, at least when it comes to feeding.
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FIGURE 4 | Inhibition of the response to sugars by bitter chemicals (Sellier, 2010). (A) Adding increasing concentrations of quinine to 35 mM fructose inhibits

the firing activity recorded from L-type sensilla of the proboscis of Drosophila. (B) At the same molar concentration (1 mM), bitter chemicals differ in their power to

inhibit the response to 0.1 M sucrose. Each point represents the average of 5–10 responses. Bars display SEM.

Bitter-sensitive cells are defined at a molecular level by the

expression of a population of taste receptors, and activating

these cells inhibits feeding. The behavioral inhibition is context-

dependent, in that activating the same cells (on the proboscis)

can either deter feeding or interfere with sex activities. This

description is compatible with the view that insects may not

be able to discriminate between different ‘‘bitter’’ molecules

(Masek and Scott, 2010). Accordingly, the currently available

data about how these neurons project in the central nervous

system clearly indicate that bitter-sensitive neurons project to

areas of the brain that are distinct from those where sugar-

sensitive neurons project (Wang et al., 2004; Marella et al., 2006;

Harris et al., 2015), maintaining the segregation observed at the

periphery.

This might not be the last word of it, as sub-classes

exist within the bitter modality (Weiss et al., 2011), and

as taste neurons may encode bitter chemicals with different

temporal codes (Glendinning et al., 2002, 2006) or even spatio-

temporal codes (Reiter et al., 2015). However, even if one

finds experimental evidence of rich encoding capabilities, so

far, we are lacking clear behavioral evidences that flies can

discriminate bitter molecules or bitter ‘‘categories’’, independent

of their concentration. Indications of such differences may

come from looking more closely at different behaviors. For

example, flies may prefer to lay eggs into food laced with

bitter molecules (Yang et al., 2008; Schwartz et al., 2012;

Dweck et al., 2013) instead of plain sugar (Yang et al., 2015),

or into a medium rich in alcohol, especially if females were

previously confronted with parasitoid wasps (Kacsoh et al.,

2013, 2015). They might also change their natural preferences

following larval exposure (Jaenike, 1982, 1983; Abed-Vieillard

et al., 2014) or following the experience of others through

social communication (Battesti et al., 2015). If not all ‘‘bitter’’

molecules are inducing aversive reactions in all behavioral

contexts, this leaves open the possibility to test whether females

can discriminate between different bitter molecules (but see

Masek and Scott, 2010).

If the category ‘‘bitter’’ in flies regroup different shades or

categories of bitterness, it seems to be pretty clear that the link

between the noxiousness of molecules and their bitter taste is

not a direct one. This lack of direct link has been clearly stated

by Glendinning (1994, 2002, 2008), and has been experimentally

tested in several phytophagous insects (Cottee et al., 1988; Usher

et al., 1989; Bernays, 1990, 1991; Lee and Bernays, 1990; Bernays

and Cornelius, 1992). This discrepancy between the intuitive

role of bitterness to help avoiding intoxication and the lack of

direct link between toxicity and bitterness should resolve if one

considers aversive taste as a ‘‘correlation’’ established throughout

evolution between a stimulus detected in the environment and

a danger (or reduced fitness). One of the best examples for this

comes from glucose-averse cockroaches (Silverman and Bieman,

1993) which avoid insecticide-treated diets, apparently through

a mutation that allow resistant cockroaches to detect glucose

(which is always associated with the insecticide) as a ‘‘bitter’’

molecule (Wada-Katsumata et al., 2013). Obviously, glucose is

not toxic (Silverman, 1995; Silverman and Selbach, 1998), but it

has become a signal for a toxic molecule in the environment.

Finally, it is striking to compare how information is

analyzed in contact chemoreception and olfaction. Both systems

are devoted to the detection of molecules in the external

environment, using sensory receptors which are structured in

a very similar way, with bipolar sensory cells enwrapped into

accessory cells, sending dendrites into the sensillum lymph and

their axon to the brain. However, the molecular logic and the

wiring of the two systems are completely different. While the

hedonic value of tastants seems to be determined already at

the periphery with cells co-expressing a mosaic of receptors

tuned to ligands pertaining to one or the other category, this

distinction is less clear in olfaction (Knaden et al., 2012),

as olfactory neurons express a very reduced set of receptors

(Larsson et al., 2004; Goldman et al., 2005). This different

structure probably imposes constraints on the functioning of

the system, on its discriminative power, speed of decision and

sensitivity threshold (Figure 5) as well as on its plasticity.
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FIGURE 5 | Fundamental differences between olfaction and contact chemoreception in insects. Although taste and olfactory sensilla have similar cellular

compositions, the wiring of the neurons to the central nervous system and the number of different receptors expressed in each neuron is very different. These

differences certainly impact the discriminative power and the speed at which information is processed.

Olfaction applies a relatively fixed array of filters on the external

world, and decoding this grid of filters is done through a network

of interconnected neurons at the level of the antennal lobes

and then in the lateral horn and the mushroom bodies. This

arrangement leaves room for plasticity in how information is

decoded, taking into account experience and both internal and

external environmental conditions. The gustatory system on the

other hand appears more rigid with a bitter and a sweet modality

defined by groups of gustatory receptors expressed in different

categories of cells. Such a system does not seem to leave much

space to plasticity as regards the hedonic value of molecules,

except by modulating their impact by amplifying or decreasing

their detection at the level of the central nervous system where

a number of synaptic and neurohormonal regulations seem to

occur, or directly at the level of the GRNs, which could modulate

the level of expression of their different receptors (Zhang et al.,

2013b).
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