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Summary:  

Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day1. 

Synchronized circadian clocks improve fitness2 and are crucial for human physical as well as 

mental wellbeing3. Visual and non-visual photoreceptors are responsible for synchronizing 

circadian clocks to light4,5, but clock-resetting is also achieved by alternating warmer (‘day’) and 

colder (‘night’) temperatures with 2°-4°C difference only6-8. This temperature sensitivity is even 

more remarkable considering that the period of circadian clocks (~24 h) is largely independent 

of the surrounding ambient temperature1,8. Here we show that the Drosophila Ionotropic 

Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature 

cycles. We found that this channel is expressed within sensory neurons of internal stretch 

receptors in the fly body, which have previously been implicated in temperature 

synchronization of the circadian clock9. IR25a is required for temperature-synchronized clock 

protein oscillations in specific subsets of central clock neurons, defining the neural substrates 

for temperature sensitivity within the circadian clock circuit. Extracellular leg nerve recordings 

reveal temperature-and IR25a-dependent sensory responses and misexpression of IR25a 

confers temperature-dependent firing of action potentials in heterologous neurons. We 

propose that IR25a is part of a temperature input pathway to the circadian clock that is 

responsible detecting small temperature differences. This pathway is operating in the absence 

of the known temperate-preference regulating ‘hot’ and ‘cold’ sensors in the fly antenna10,11, 

and hence revealing the existence of novel periphery-to-brain temperature signalling routes 

involving IR25a function in peripheral sensory organs. 
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Main Text:  

In Drosophila, daily activity rhythms are controlled by a network of ~150 clock neurons 

expressing the clock genes period (per) and timeless (tim), which encode repressor proteins that 

negatively feedback on their own promoters resulting in 24 h oscillations of clock molecules. 

Temperature cycles (TC) synchronize molecular clocks present in external body parts and the 

PNS in a tissue autonomous manner9,12, while synchronization of clock neurons in the brain 

largely depends on temperature input from peripheral temperature receptors located in the 

chordotonal organs (ChO) and on the gene nocte, which is also expressed in ChO9,12,13. 

To identify novel proteins involved in temperature entrainment we expressed tagged NOCTE 

versions in flies followed by purification of interacting partners and their identification by mass-

spectrometric analysis (see Methods and14). nocte mutants show defects in ChO morphology, 

pointing to a structural role of NOCTE in ChO cilia9. Consequently, the majority of the identified 

proteins (10/16) likely regulate function and dynamics of the ChO neuron cilia (Extended Data 

Tab. 1). Since we were mainly interested in identifying potential temperature receptors, we 

focused on other NOCTE-interacting proteins, particularly on Ionotropic Receptor 25a (IR25a) 

(Extended Data Tab. 1). We verified the interaction by co-immunoprecipitation after 

overexpressing IR25a and NOCTE in all clock cells using tim-gal4 (Extended Data Fig. 1a). IR25a 

is a member of a divergent subfamily of ionotropic glutamate receptors, which function in 

chemosensory detection rather than synaptic transmission, consistent with IR25a expression in 

many different populations of sensory neurons in the antenna and labellum15-17. The function of 

IR25a has only been analysed in olfactory neurons of the third antennal segment, where it acts 

as a co-receptor with different odour-sensing IRs15. 
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To investigate if IR25a is co-expressed with nocte in ChO we first analysed IR25a expression in 

femur and antennal ChO using an IR25a-gal4 line, previously shown to at least partially reflect 

the IR25a expression pattern in the third antennal segment15 (Extended Data Fig. 2a). IR25a-

gal4 driven mCD8-GFP prominently labelled subsets of ChO neurons in the femur, which 

showed substantial overlap with nompC-QF driven QUAS-Tomato signals (Fig. 1 a-c). nompC-QF 

is expressed in larval ChO18 as well as in the adult femur ChO (Fig. 1d, e) Comparison of IR25a-

driven mCD8-GFP and nuclear Ds-Red signals with those of other ChO neuron drivers (F-gal4 

and nocte-gal4 9), suggests that IR25a is transcribed in a small subset of femur ChO neurons 

and Johnston’s Organ (JO) neurons (Fig. 1c, Extended Data Fig. 1b-g). We also detect 

endogenous IR25a mRNA in the femur and leg (Extended Data Fig. 2b, e). To determine if 

IR25a-gal4 ChO signals reflect endogenous IR25a expression, we performed IR25a antibody 

staining on femur ChO (Fig. 1f, g). Double labelling with a neuronal marker revealed IR25a 

signals within ChO neuron cell bodies and ciliated dendrites, similar as in coeloconic neurons of 

the antenna16. This subcellular distribution of IR25a was confirmed after co-expression of an 

mCherry-IR25a fusion protein with the dendritic cap marker NOMPA-GFP (Fig. 1h), which 

showed expression along the ChO cilia, clearly distinct from the dentritic cap. Together, these 

results show that IR25a is expressed in subsets of antennal and femur ChO neurons and the 

IR25a-gal4 driver reflects this pattern. 

Since nocte1 mutants do not synchronize to 16°C : 25°C TC in constant light (LL)9,12 (Extended 

Data Fig. 3a) we analysed IR25a-/- mutants16 under these conditions. Unlike nocte1, the IR25a-/- 

flies synchronized well to this regime and we obtained similar results at warmer TC (Extended 

Data Fig. 3a). To test the possibility that IR25a is specifically required for synchronization to 
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small temperature intervals7,13, we subjected IR25-/- flies to a series of TC with an amplitude of 

2°C only. Surprisingly, and in contrast to wild type, IR25a-/- mutants did not synchronize to any 

of the shallow TC in LL or constant darkness (DD) (Fig. 2a-e, Extended Data Fig. 3b, 4c). While in 

LL wild type and IR25a rescue flies showed a clear activity peak in the 2nd part of the warm 

period before and after the 6 h shift of the TC, IR25a-/- mutants were constantly active 

throughout the TC, apart from a short period of reduced activity at the beginning of the warm 

phase of TC1 (Fig. 2a, Extended Data Fig. 3b). In DD, control flies slowly advanced (or delayed) 

their evening activity peak during phase-advanced (or delayed) TC (Fig. 2b, Extended Data Fig. 

4c). The phase of this activity peak was maintained in the subsequent free running conditions 

(DD, const. 25°C) indicating stable re-entrainment of the circadian clock (Fig. 2b, Extended Data 

Fig. 4). In contrast, IR25a mutants did not shift their evening peak during the TC; instead it 

remained at its original phase throughout the experiment (Fig. 2b; see also Extended Data Fig. 

4c and Fig. 2d for phase quantification). 

To quantify entrainment in LL, we determined the ‘Entrainment Index’ (EI) for each genotype 

and condition, whereas for most DD experiments we calculated the phase difference of the 

main activity peak upon release into constant conditions between IR25a mutants and controls 

(see Methods). In all 2°C-amplitude TC tested the EI of IR25a-/- flies was significantly lower (LL) 

and phase calculation indicated no, or a significantly reduced phase shift compared to controls 

(Fig. 2c-e). The same non-synchronization phenotype was observed in IR25a-/Df(IR25a) flies, 

and temperature synchronization was fully restored in IR25a-/- flies expressing a genomic 

rescue construct (rescue) (Fig. 2a-d, Extended Data Fig. 3b). IR25a-/- mutants synchronize to 

light and have normal free-running and temperature compensated periods (Fig. 2b, Extended 
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Data Fig. 4d, Extended Data Tab. 2). Combined, the results suggest that rather than mediating 

synchronization to a specific temperature range, IR25a enables the circadian clock to sense 

subtle temperature changes across the entire physiological range. Indeed increasing the TC 

amplitude to 4°C restored temperature entrainment in IR25a-/- flies (Extended Data Fig. 4a, b). 

Although temperature receptors are located in fly antennae and arista, they are not required 

for temperature-synchronized behaviour9,11,19. We therefore tested if temperature entrainment 

of IR25a-/- flies can be rescued in the complete or segment-specific absence of antenna. 

Although IR25a is expressed in the outer segments of the antennae (Extended Data Fig. 1c, 

2a)16, we found that antennal IR25a function is not required for temperature entrainment 

(Extended Data Fig. 5). 

To reveal the importance of IR25a expression within ChO neurons, we performed gal4 

mediated IR25a knock-down using RNAi. Pan-neuronal elav-gal4 knock down decreased IR25a 

mRNA >75%, or >90%, using one or two different RNAi lines combined, respectively (Extended 

Data Fig. 2d). This reduction was sufficient to interfere with behavioural synchronization to TC 

(Extended Data Fig. 6c). Spatial restriction of IR25a-RNAi using IR25a-gal4 also resulted in a lack 

of synchronization to TC (Extended Data Fig. 6a, c) confirming that IR25a is important for 

temperature entrainment. Next, we used various drivers with known activity in all or subsets of 

ChO neurons (Fig. 1, Extended Data Fig. 1), resulting in a lack of entrainment to temperature 

cycles (Extended Data Fig. 2e, 6b, c). In contrast, IR25a knock-down in multidentritic, TRPA1, or 

clock neurons did not impair temperature entrainment (Extended Data Fig. 6c). These findings 

are consistent with the absence of IR25a expression in clock neurons and the brain (Extended 
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Data Fig 2e-g). Together, these results show that IR25a expression within ChO neurons is 

required for temperature entrainment to 25°C : 27° TC in LL. 

To identify the neural substrates underlying the lack of behavioural synchronization, we 

investigated clock protein levels in IR25a-/-, wild type, and IR25a-/- rescue flies exposed to 

shallow TC in LL. While TIM expression was robustly rhythmic and synchronized in all clock 

neuronal groups in controls, TIM levels in the Dorsal Neuron 1 (DN1) and DN2 clock neurons of 

IR25a-/- flies were barely detectable (Fig. 3a, Extended Data Figure 7a, b). Moreover, in the 

small and large ventral Lateral Neurons (s-LNv and l-LNv), TIM expression exhibited an 

additional peak during the warm phase (Fig. 3a, Extended Data Figure 7a, b). TIM oscillations in 

the DN3 showed an earlier decline compared to controls and were normal in the dorsal Lateral 

Neurons (LNd). In TC and DD TIM levels in DN1 were also blunted, but oscillations in the DN2 

and DN3 were similar to controls. In contrast to LL TIM was not oscillating in the s-LNv and l-LNv 

and at constantly low levels (Fig 3b), consistent with the behavioural results obtained under 

these conditions (Fig 2b, d). The alterations of TIM expression are temperature specific, as we 

observed normal oscillations in LD cycles at 25°C (Extended Data Fig. 7c). An increase of the TC 

amplitude to 4°C also restored normal TIM expression in IR25a-/- flies, in agreement with the 

behavioural rescue (Extended Data Figs. 7d, 4a, b). In summary, in low amplitude TC IR25a is 

required for normally synchronized TIM oscillations in DN1-3 and LNv in LL and in DN1 and LNv 

clock neurons in DD. 

To test if the clock neurons affected by the lack of IR25a are indeed involved in regulating 

behavioural synchronization to shallow TC, we blocked synaptic transmission by expression of 

tetanus-toxin (TNT). Indeed, expression of active TNT in the DN1 and DN2 blocked 
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synchronization to shallow TC in LL, whereas in DD only DN1 blockage interfered with 

temperature entrainment (Fig. 3c, d)20. Consistent with the differential effect on TIM 

oscillations in LL and DD (Fig. 3a, b) these results strongly suggest that IR25a is required for the 

synchronized output of the DN1 (LL and DD) and DN2 (LL) to control temperature-entrained 

behaviour. 

Next, we tested if ChO may directly sense temperature in an IR25a-dependent manner. We 

recorded leg nerve activity in restrained preparations and identified ChO units in the compound 

signal (Fig. 4a). As expected, in both wild type and IR25a-/- flies spontaneous leg movement 

changed as a function of temperature along with motor and sensory activity. In addition, 

presumed ChO activity of wild type flies also increased during periods without movement (see 

3rd insert in Fig. 4b). This temperature-induced, but movement-independent ChO activity 

unrelated to movement was absent in IR25a-/- flies showing that temperature is sensed in the 

legs in an IR25a-dependent manner (Fig. 4c). In order to test if IR25a may contribute to direct 

sensing of temperature changes and because it is not expressed in clock neurons (Extended 

Data Fig. 2f), we decided to ectopically express this channel in the physiologically well-

characterized l-LNv clock neuronsref. Isolated brains were exposed to a temperature ramp and 

spike frequency of individual l-LNv was recorded continuously. Control l-LNv did not show a 

significant temperature-dependent change in neural activity (Fig. 4d). This was in contrast to 

the linear and reversible temperature-dependent increase in action potential firing frequency 

(Q10 >4, Fig. 4i, p<0.01, Fig 4e) seen with IR25a expression. Other cellular parameters like 

membrane potential (Fig. 4f, p=0.25), input resistance (Fig. 4g, p=0.78), and spontaneous firing 

rate (Fig. 4h, p=0.29) showed no difference. Increasing the temperature by only 2-3°C also lead 
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to a reversible increase in firing frequency of 1.03±0.20 Hz (Fig. 4j). As a positive control, the 

temperature sensitive Drosophila TRPA1 channel21 was expressed in the l-LNv. As expected, 

firing rate of TRPA1 expressing neurons drastically increased linearly with temperature, as did 

other cellular parameters (Extended Data Fig. 8). To test for IR25a specificity, we ectopically 

expressed another ionotropic receptor, IR8a. Here neurons showed a generally increased firing 

rate, independent of changes in temperature (Extended Data Figure 8a, b, f). Therefore ectopic 

expression of IR25a results in significant temperature dependent changes of neuronal firing, 

not observed in naïve l-LNv. 

IRs evolved the capacity to respond to a variety of external stimuli like odours and tastants, and 

our data suggest the functions of this family extend also to temperature sensing as described 

for the gustatory receptor family member Gr28b22. IR25a is the most conserved IR23, and 

although it functions as co-receptor in the olfactory system15, our data suggest that IR25a 

contributes to temperature sensing within ChO. We cannot rule that IR25a has a similar role in 

other sensory neurons of the PNS or the brain, but we show that IR25a expressing sensory 

neurons in the leg are capable of sensing temperature and mediating temperature 

entrainment. IR25a responds to small temperature changes and we predict that the fly 

continuously integrates temperature signals received from multiple ChO across the whole body 

for synchronization of the clock. This potential reliance on weakly responding temperature 

receptors may also explain why the Drosophila circadian clock is quasi inert to brief 

temperature pulses24, which may help to maintain synchronized clock function in natural 

conditions of rapid and large temperature fluctuations with fast responding hot and cold 

sensors mediating temperature preference behaviour10,11,19,21. Similar to the complex light 
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entrainment pathways, our results suggest that multiple thermosensors and mechanisms 

contribute to temperature entrainment of the clock9,12,13, with IR25a specifically required for 

sensing small, but regular temperature changes. 
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Fig. 1. IR25a is expressed in ChO neurons. a, Overview of the femur ChO adapted from13. b, d, 

Double labelling of the femur ChO by IR25a-gal4 (b) and F-gal4 (d) driven mCD8-GFP and 

nompC-QF driven QUAS-Tomato. c, e, higher magnification of circled areas in (b). f, IR25a 

immunolabeling of femoral ChO cryosections of IR25a-gal4/UAS-mCD8-GFP flies. From left to 

right, GFP, anti-IR25a, 22C10, and merged images are shown. g, anti-IR25a and 22C10 labelling 

of femur ChO sections of IR25a-/- flies. h, Subcellular distribution of an mCherry-IR25a fusion 

protein co-labelled with the dendritic cap marker nompA-GFP in the femur ChO. Scale bar = 

20μm 

 

Fig. 2. IR25a is required for temperature synchronization to low-amplitude temperature cycles. 

a, Upper part shows double plotted average actograms depicting the daily activity levels and 

environmental conditions during the entire experiment. White areas: LL and 25°C; orange 

areas: LL and 27°C. Histograms show daily average activity levels during the initial LL treatment 

and the last 3 days of each TC. Light orange: 25°C, dark orange: 27°C, white bars: activity levels 

in LL. Error bars indicate SEM, numbers in the upper right corner ‘n’, x-axis: Zeitgeber time (h) 

and y-axis total activity (beam crossings/30 min). b, As in (a) but flies were initially kept in LD 

25°C, before being exposed to a 7 h phase advanced TC in DD (dark histogram bars) and free-

running conditions (DD and 25°C). Actogram shading as in (a) but grey areas indicate darkness. 

Green and red arrows indicate the position (phase) of the main activity peak during the final 

free run for control and mutant flies, respectively. c-e, Quantification of entrainment in LL and 

DD. c, e, EI values (mean ± s.e.m.) during (c) 25°C : 27°C TC in LL (delay as in (a)), and as 

indicated in (e) (all delay, except 25°C : 27°C: advance) (see Extended Data Fig. 3b for actograms 
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and daily average plots. In (c) per01 and nocte1 flies were used as negative controls. ***p<0.001, 

**p<0.01, n.s.: not significant, One way ANOVA followed by Bonferroni correction (d) Phase 

difference during DD and constant temperature after TC between IR25a-/- (n > 10 for each TC) 

and y w control (n > 9) and IR25a-/- rescue flies (n > 11). ****p<0.0001, ***p<0.001, **p<0.01; 

F-statistic (Watson-Williams-Stevens test). 

 

Fig.3. IR25a is required for clock protein oscillations in central clock neurons a, b, TIM levels in 

clock neurons during LL (a) and DD (b) 25°C : 27°C TC at the indicated time points (ZT). At least 8 

brain hemispheres per time point were analysed for each genotype. Error bars indicate s.e.m. 

See Extended Data Fig 7a, b for neuronal images and rescue experiments, and Extended Data 

Fig. 7c, d for normal TIM oscillations during LD 25°C and high amplitude TC in LL in IR25a-/- 

brains. c, Progeny of UAS-IMP-TNT and UAS-TNT females crossed to Clk4.1M-gal4 (DN1>, upper 

panel) or Clk9M-gal4;Pdf-gal80 (DN2>, lower panel) males, were exposed to 2, 6h-delayed TC 

(12h 25°C: 12h 27°C in LL). Left: actograms, shading as in Fig 2a. Right: EI calculations, numbers 

in bars indicate n. ** p<0.01; One way ANOVA followed by Bonferroni correction. d, Same 

genotypes as in (c) were exposed to an 8h-delayed 25°C: 12h 27°C TC in DD. Left: actograms 

plotted as in Fig 2b, Right: phase difference of activity peaks during final constant conditions 

between controls (DN1/DN2 > UAS-IMP-TNT, n=9/12, respectively) and the indicated genotypes 

(DN1/DN2 > TNTE, n=16/10). ****p<0.0001, n.s. not significant, F-statistic (Watson-Williams-

Stevens test). 
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Fig.4. IR25a is required for temperature-induced leg nerve responses and confers temperature 

sensitivity to l-LNv. a, Schematic of the setup b, Recording of a control fly leg nerve including 

motor and sensory axons. The first extended insert shows a discharge of presumed ChO sensory 

units in response to manual extension of the tibia (green bars). Heating the preparation from 

20°C to 30°C (middle, red trace) lead to both spontaneous leg movement and concurrent motor 

and sensory activity (2nd insert) but also to increased sensory firing in the absence of leg or 

motor activity (3rd insert), which was reversible (4th insert). c, Same recording protocol as in (b) 

in an IR25a-/- fly shows similar responses to tibia extension and temperature-dependent leg 

movement, but no sensory activity in response to elevated temperature. d, Whole cell current 

clamp recordings of control and Pdf > IR25a brains exposed to the indicated temperature ramp. 

e, Quantification of the temperature response from multiple recordings (mean, s.e.m.). (f) Vm, 

membrane potential; (g) Rin, input resistance; (h) F, spontaneous firing rate at 18°C. (i), Q10, 

temperature coefficient. Error bars indicate s.e.m., number in bars = n, ** p<0.01; t-test. j, 

IR25a expressing l-LNv respond to small (2-3°C) temperature changes. 
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