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Abstract In the past decade, numerous genes associated

with autism spectrum disorders (ASDs) have been identi-

fied. These genes encode key regulators of synaptogenesis,

synaptic function, and synaptic plasticity. Drosophila is a

prominent model system for ASD studies to define novel

genes linked to ASDs and decipher their molecular roles in

synaptogenesis, synaptic function, synaptic plasticity, and

neural circuit assembly and consolidation. Here, we review

Drosophila studies on ASD genes that regulate synapto-

genesis, synaptic function, and synaptic plasticity through

modulating chromatin remodeling, transcription, protein

synthesis and degradation, cytoskeleton dynamics, and

synaptic scaffolding.
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Introduction

Autism spectrum disorders (ASDs) are complex develop-

mental disabilities, whose prevalence is estimated to be 1

in 68 children under 8 years of age in the USA, and they

differ substantially between boys (1 in 42) and girls (1 in

189) [1]. The core diagnostic features are impaired social

interaction, and repetitive and restrictive behaviors [2]. In

addition, children with ASDs frequently present with a host

of associated behavioral issues, such as motor deficits

(hypotonia, apraxia, or motor delay), sleep abnormalities,

gastrointestinal disturbances, and epilepsy [3–7]. In the

past decade, numerous mutations in ASD-associated genes

have been identified and various mouse models of mono-

genic forms of ASDs have been generated and character-

ized [8]. So far, a variety of standard assessments for ASD-

related behavioral phenotypes have been established in

mouse models [9]. Meanwhile, ASD models in other

animals such as nonhuman primates and Drosophila are

necessary complements in ASD studies, and are valuable in

translating genetic findings and deciphering the shared

molecular pathways and phenotypes in ASDs [8, 10].

The fruit fly Drosophila melanogaster is a prominent

model system in neuroscience. As a model system, it has a

wide range of practical and genetic advantages, such as a

short generation time (*10 days at room temperature) and

a large number of offspring for rapid large-scale analysis

(females can lay up to 100 eggs per day). In addition,

Drosophila has some unique aspects for genetic studies,

including the lack of meiotic recombination in males and

the use of balancer chromosomes that carry visible genetic

markers to facilitate the maintenance of mutant lines [10].

Drosophila is also useful for defining gene interaction

networks and identifying novel regulatory connections. It

offers efficient and high-throughput genetic manipulation,

and greatly facilitates the discovery of single gene

functions, neurogenetic events, and advanced behaviors

[10, 11]. Despite the low anatomical conservation, the

biological processes are highly conserved between Droso-

phila and humans at the molecular, cellular, and synaptic

levels. About 75% of human disease genes have identifi-

able homologs in Drosophila, 44% of which are suffi-

ciently conserved for functional study [12, 13]. Here, we

review the studies in Drosophila that characterize the
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genetic and molecular pathology of ASDs. These studies

involve many ASD-associated genes that influence the

structure and the turnover of synapses at different levels,

including chromatin remodeling, transcription, protein

synthesis and degradation, actin cytoskeleton dynamics,

and synaptic transmission (Fig. 1).

Chromatin Remodeling and Transcription

Some important regulators of chromatin remodeling and

transcription are promising genetic factors for ASDs.

However, how changes in these genes affect neuronal

morphology and activity is unclear. Several studies in

Drosophila have revealed the underlying molecular mech-

anisms of chromatin remodeling and transcription regula-

tors in neural development and ASD-related behaviors

(Figs. 1, 2).

Mutations in POGZ have been reported in individuals

with ASDs, intellectual disability, and schizophrenia

[14–16]. POGZ encodes a heterochromatin protein 1 a-
binding protein and is hypothesized to function as a

transcriptional regulator in molecular networks crucial for

neuronal function [17]. Downregulation of row (Droso-

phila ortholog of POGZ) in neurons leads to deficits in

habituation, a form of non-associative learning that is

relevant to both intellectual disability and ASDs [18].

Euchromatin histone methyltransferase (EHMT) is another

ASD risk gene, which encodes a member of the evolu-

tionarily-conserved protein family methylates histone 3 at

lysine 9 [19–21]. In Drosophila, loss of Ehmt results in a

significant decrease of dendrite end number, higher-order

branching, and dendritic field complexity, as well as

learning and memory deficits [22].

Disrupted-in-schizophrenia-1 (DISC1) is associated with

a wide range of mental illnesses, including ASDs [23].

DISC1 interacts with and activates transcription factor 4

(ATF4)/CREB2 in the nucleus [24]. A fly model express-

ing human DISC1 has shown that accumulation of

exogenous human DISC1 in the nucleus disturbs sleep

homeostasis, implying a deficit in neuronal activity. This

function is modulated by interaction with ATF4/CREB2

and recruitment of a co-repressor, N-CoR, to the CRE-

mediated transcriptional machinery [25].

MicroRNA (miRNA) is another way to post-transcrip-

tionally regulate gene expression. The autism susceptibility

gene A2bp1 has been identified in Drosophila as an mRNA

target of miR-980 [26]. MiR-980 inhibition enhances

olfactory learning and memory stability, while its over-

expression in the mushroom bodies impairs 3-h memory.

Overexpression of its target A2bp1 in the mushroom bodies

enhances memory. These defects may be attributed to the

role of miR-980 in inhibiting excitability, as projection

neurons overexpressing miR-980 exhibit a strong trend for

a lower mean firing frequency with an injected current at

40–50 pA[26].

Protein Synthesis and Degradation

Neuronal activity and function are partially determined by

synaptic protein levels, which are strictly regulated by

protein synthesis and degradation. On the other hand, the

levels of synaptic proteins are also influenced by neuronal

activity [27]. Mutations of the genes involved in such

homeostatic regulation have been found in ASD patients

[28]. Numerous studies in Drosophila have illustrated that

dysfunction of ASD-related genes affects protein synthesis

and degradation, and subsequently results in deficits in

synaptogenesis and synaptic function, as well as synaptic

plasticity (Fig. 2).

The fragile X mental retardation 1 gene (FMR1) encodes

a pan-neuronal RNA-binding protein, FMR1, that associ-

ates with specific mRNAs to repress their translation

[29–33]. So far, [800 distinct mRNA targets of FMR1

have been found, and it has been implicated in many

aspects of brain development and function [34]. Fragile X

Syndrome (FXS), the leading monogenetic cause of autism,

is caused by transcriptional silencing of the FMR1 gene

due to a trinucleotide repeat expansion in its 5’-UTR

[35, 36]. Since the generation of the first Fmr1-knockout
Fig. 1 ASD-associated genes regulate synaptic function and neural

circuits through various cellular events.
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mouse model to study FXS, other animal models including

the fly FXS model have been further developed and

studied, providing more cellular and molecular clues to

explain this complex syndrome. There is only one FMR1

homolog, named dfmr1 in Drosophila, which encodes the

dFmr1 protein that shares high identity with mammalian

FMR1 in the functional domains [37]. The Drosophila

neuromuscular junction (NMJ) is a glutamatergic synapse

characterized by stereotypic innervation patterns of motor

neurons into well-defined target body-wall muscles, mak-

ing it easier to study synaptogenesis, synaptic transmission,

and plasticity [38]. Drosophila dfmr1 loss-of-function

mutants show synapse overelaboration (overgrowth, over-

branching, and excess synaptic boutons) in peripheral

NMJs [39] as well as in the mushroom body (MB) of the

central nervous system [40], accompanied by altered

neurotransmission. The hypermorph mutants of dfmr1

show opposite defects. A further rescue study indicated a

pre-synaptic requirement of dFMR1 for synapse structur-

ing, along with both a pre- and post-synaptic requirement

for functional neurotransmission [41]. Furthermore, dfmr1

loss-of-function mutants exhibit more dendritic branching

in dendritic arborization neurons and its role in dendrite

development is partially mediated by Rac1 as well as

microRNA-124a [42, 43]. In addition, deficits in axonal

targeting have been extensively reported in dfmr1mutants

[40, 44–47].

Loss of Fmr1 up-regulates the translation of its target

mRNAs [39, 42, 48, 49]. In the fly NMJ, Adar acts

downstream of Fmr1 for proper NMJ architecture [50]. The

other two dFmr1 targets, the synaptic heparan sulfate

proteoglycans glycosylphosphatidyl inositol-anchored

Dally-like protein (Dlp) and transmembrane Syndecan

(Sdc), play important roles in modulating synaptic structure

and function [51]. The expression of these two proteins is

markedly elevated in dfmr1-null NMJs [52]. Bone mor-

phogenetic protein type II receptor (BMPR2) is also

one of the targets of FMR1. The structural defects at the

NMJ in loss-of-function dfmr1 mutants can be rescued by

reducing Wit, the Drosophila ortholog of BMPR2 [53]. The

role of FMR1 in mRNA translation is regulated by

polyglutamine-binding protein 1 (PQBP1), whose muta-

tions cause Renpenning syndrome [54]. Drosophila Pqbp1

interacts with Fmr1 and facilitates target mRNA assembly

into ribosomes [54]. Two of the common mutations found

in Renpenning syndrome, PQBP1 c.459_462delAGAG and

c.463_464dupAG, encode a distinct C-terminal epitope

that preferentially binds non-phosphorylated FMRP and

promotes its ubiquitin-mediated degradation [55]. There-

fore, PQBP1 c.463_464dupAG transgenic flies show

remarkable defects of synaptic over-growth similar to

dfmr1 mutants, which can be rescued by exogenously-

expressed dFmr1 [55].

The mTOR pathway controls global mRNA translation

and has been shown to play roles in many fundamental

cellular processes including autophagy, transcription, and

cytoskeletal dynamics [56]. It is a key regulator of neuronal

differentiation [57, 58], and hyper-activation of this

pathway increases the risk of ASDs [59]. In Drosophila,

the gene unkempt (unk) has been identified as a novel

negative regulator of photoreceptor differentiation acting

downstream of mTORC1. Unk together with its binding

partner headcase (Hdc) negatively regulates the InR/mTOR

pathway and controls the timing of neurogenesis [60, 61].

Tuberous sclerosis complex (TSC) is an autosomal dom-

inant disorder that shows clinical features of epilepsy and

Fig. 2 Functions of ASD-asso-

ciated genes in different cellular

processes.
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autism. It is caused by mutations in the TSC1 or TSC2

genes. TSC protein regulates synaptic growth via the

TORC2-Akt pathway, and the mTOR pathway is upregu-

lated by TSC2 protein[59]. In the Drosophila NMJ, Tsc2

mutants show increased synaptic growth [62].

Duplications of the genomic region encompassing

UBE3A (15q11–q13) are the second most common

genetic lesions found in autism (3%–5% of cases) [63].

UBE3A is a maternally-expressed gene and its product,

the ubiquitin protein ligase E3A, is present in many

regions of the brain, with highest expression in the

hippocampus and cerebellum [64]. In Drosophila, loss of

Ube3a significantly increases the number of both total and

satellite boutons in conjunction with compromised endo-

cytosis in the NMJs [65]. Ube3a specifically ubiquitinates

the type I BMP receptor Tkv, and promotes its proteaso-

mal degradation. Therefore Ube3a has a critical role in

regulating NMJ development by repressing BMP signal-

ing [65]. Over-expression of Ube3a in Drosophila results

in a decreased number of active zones per bouton and

vesicle area, and 40%–50% of larvae intermittently fail to

evoke junction potentials at rapid stimulation rates (15

Hz) [66]. Both loss-of-function and over-expression of

Ube3a decrease dendritic branching, suggesting that the

proper level of Ube3a is critically important for normal

dendritic patterning [67]. Moreover, improper expression

of Ube3a appears to be detrimental to learning, thereby

recapitulating the learning deficits in autism [68]. Over-

expression of human Ube3a in Drosophila that mimics

the gene duplication in autism patients has been used to

screen UBE3A substrates [69]. A key regulator of

monoamine synthesis, the gene Punch or GCH1 encodes

the enzyme GTP cyclohydrolase I [70]. It is interesting

that the mRNA and protein levels of the Drosophila

vesicular monoamine transporter dVMAT are also ele-

vated in the absence of dFmr1 [71]. The altered

monoamine (dopamine/serotonin) synthesis pathway

found both in dUBE3A and dFMR1 mutants may provide

a potential explanation for the repetitive behaviors and

hyperactivity associated with autism and also explain why

some individuals with ASDs respond better to selective

serotonin reuptake inhibitors than others.

Highwire is another highly-conserved E3 ligase associated

with ASDs, and it functions presynaptically to negatively

regulate synaptic growth at the Drosophila NMJ [72].

Mutations ofwallenda, which encodes anMAP kinase kinase

kinase homologous to the vertebrate dual leucine zipper-

bearing kinases DLK and LZK, completely suppress the

synaptic overgrowth phenotype in highwire mutants [73]. In

addition, Rae1 has been identified as a Highwire cofactor to

prevent the autophagy-mediated degradation of Highwire

protein in post-mitotic neurons [74].

Cell Adhesion Molecules

ASDs also involve many proteins mediating neuronal con-

nectivity and synaptic transmission, such as the synaptic

adhesion molecules neurexin (NRX) and neuroligin (NLG) in

synaptogenesis, various neurotransmitters and proteins asso-

ciated with synaptic vesicle recycling in synaptic transmis-

sion, contactin-associated proteinlike 2 (CNTNAP2) in

neuronal conduction, and Ca2? channels in ion permeability

(Fig. 1). Given that the Drosophila genome is relatively less

redundant than the human genome, a single mutation in the

homolog of an ASD-related gene is more likely to avoid

compensatory effects and yield a measurable phenotype.

The well-known autism candidate genes NRX and NLG

are classical trans-synaptic partners that play critical roles

in synaptogenesis and synaptic transmission (Fig. 2). Loss

of Nlgs and Nrx results in reduced bouton numbers,

aberrant presynaptic and postsynaptic development at

NMJs, and impaired synaptic transmission [75–79]. It has

been found that Drosophila neuroligin 1 (dNlg1) and

dNlg3 act predominantly in pre-synaptic terminals, while

dNlg2 functions both pre- and post-synaptically [75–78].

Nrx and Nlgs also play critical roles in synaptic transmis-

sion. dNrx has been shown to functionally couple with

Ca2? channels to regulate synaptic transmission. And

dNlg4 modulates GABA transmission in large ventral

lateral neurons through recruiting GABAA receptors resis-

tance to dieldrin [80]. Interestingly, both dnrx mutants and

dnlg4 mutants exhibit reduced night-time sleep, even

though they function in different brain regions [80, 81].

In addition, impaired dNrx and dNlgs result in neuronal

plasticity defects [80, 82]. dNrx has been shown to interact

with N-ethylmaleimide-sensitive factor (NSF), an enzyme

that mediates disassembly of the soluble NSF attachment

protein receptor (SNARE) complex, and plays an important

role in synaptic vesicle release [83]. Besides, dNrx is

expressed beginning from an early neurodevelopmental

stage prior to synaptogenesis. dNrx plays an essential role

in columnar restriction during L4 axon branching in the

Drosophila visual system through clustering of one of the

classical axon guidance molecules, Ephrin, which implies a

novel role of dNrx in early neural development [84].

Neurexin IV (NrxIV) is an ortholog of the autism gene

CNTNAP2 [85]. NrxIV homozygous-null mutants display

reduced bouton numbers, while heterozygous-nulls do not

observably differ from the wild-type [86]. The polygenic

causes of ASDs have also been investigated in Drosophila

models using orthologs to human ASD genes with different

copy number variants (CNVs) [87]. Two ASD candidate

genes encoding adherens junction proteins, NOTCH1 and

p120ctn (orthologs of human NOTCH1 and catenin delta 2

(CTNND2)) that show gain or loss of CNVs, respectively,
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were tested pairwise and have shown synergistic effects on

NMJ bouton number [87]. These studies provide evidence

for synergistic interactions between CNV candidate gene

sets, supporting shared and distinct genetic etiologies of

ASDs.

Synaptic Receptors and Ion Channels

The Drosophila NMJ is an asymmetric glutamatergic

synapse formed between motor neurons and muscle cells.

Since it displays some advantageous features, including

structural accessibility, stereotypic features, and amenabil-

ity to genetic manipulations as well as electrophysiological

and microscopic analyses, it is considered to be a convenient

and useful model for elucidating the mechanisms underlying

synapse formation, synaptic transmission and plasticity, and

synaptic degeneration. Many mutants of genes encoding the

components in synaptic transmission are also associated

with ASDs, including synaptic receptors, components in

synaptic vesicle cycling, and ion channels (Figs. 1, 2).

Mutations in the Drosophila group II metabolic gluta-

mate receptor gene (DmGluRA) increase neuronal

excitability by preventing PI3 kinase activation and

consequently hyper-activating the transcription factor Foxo

[88]. Loss of dFmr1 also results in excessive activity of

metabotropic glutamate receptors (mGluRs) and learning

and memory deficits, which are related to the inhibition of

cAMP signaling reported in patients and animal models

[36]. These deficits can be rescued by pharmacological

inhibition of mGluRs, which provides further support for

the agonistic effects of dFmr1 and mGluR signaling [89].

Several genes involved in the dopamine (DA) network are

also associated with ASDs, including the plasma membrane

protein syntaxin 1 (STX1) [90] and the DA transporter (DAT)

[91]. A novel de novomissense mutation in the human DAT

(hDAT) gene results in a Thr-to-Met substitution at site 356

(hDAT-T356M). Expression of hDAT-T356M in DA neu-

rons with the Drosophila DAT-null allele leads to hyper-

locomotion, indicating that alterations in DA homeostasis

may confer risks for ASDs and related neuropsychiatric

conditions [91]. Another two missense variants, SLC6A3

R/W and STX1A R/Q [17, 92, 93], disrupt the reverse

transport of DA, resulting in DA dysfunction and associated

locomotor behavioral abnormalities [94].

Acetylcholine is the major excitatory neurotransmitter in

the central nervous system of insects [95]. The a7 subunit

of the nicotinic acetylcholine receptor is one of the most

prevalent receptors that are involved in neurological

pathologies including autism [96]. In Drosophila, Da7
protein is enriched at the dendrites of the giant fiber that

integrates sensory input, activates flight motor neurons, and

mediates synaptic transmission [97].

To date, three GABA receptor subunit classes have been

cloned in Drosophila. They are Rdl (resistant to dieldrin),

Grd (GABA and glycine-like receptor of Drosophila) and

Lcch3 (ligand-gated Cl– channel homolog 3) [98]. A

significant reduction has been found in all three subunits

and glutamic acid decarboxylase in dfmr1mutants [99, 100].

Normal synaptic vesicle recycling contributes to func-

tional neurotransmission. Synaptojanin (Synj) is a phos-

phoinositide phosphatase known to play an important role

in synaptic vesicle recycling [101]. Dyrk1A, also known as

Minibrain (Mnb), is a serine/threonine kinase implicated in

ASDs [15, 102]. The protein encoded by the Drosophila

Mnb gene has been shown to interact with the INI1

ortholog Snr1, which is a chromatin-remodeling factor

involved in the morphogenesis of dendritic arbors in

Drosophila sensory neurons [103, 104]. Phosphorylation of

Synj by Mnb kinase enhances Synj activity and is required

for reliable synaptic vesicle recycling [105]. Hence, it is

not surprising that Synj and Mnb mutations have been

linked to autism [15, 102].

The a2d gene family plays roles in Ca2? channel

trafficking and membrane stabilization-dependent synaptic

morphogenesis [106], and is associated with a wide range

of neurological diseases, including ASDs [17]. Presynap-

tic homeostatic potentiation is disturbed when a2d-3 is

lost, due to a failure to potentiate presynaptic Ca2? influx

and the Rab-3 interacting molecule-dependent readily-

releasable vesicle pool [107].

Scaffolding Proteins and the Actin Cytoskeleton

The correct positioning of cell-adhesion molecules, recep-

tors, and channels at the synapse requires the complex

assembly of scaffolding proteins and the actin cytoskele-

ton. Many mutations in these genes are also found in ASD

patients (Figs. 1, 2).

The SHANK family gene SHANK3 is considered to be one

of the most prevalent causes of ASDs [108, 109]. Prosap/

Shank family proteins have multi-domains including ankyrin

repeats, SH3, PDZ, proline-rich, and SAM domains, and are

the key organizers of the postsynaptic density (PSD) [110].

One possible molecular pathogenesis is an imbalance

between excitatory and inhibitory receptors linked with the

Nlgs-PSD-95-SHANK complex via PDZ binding. In mam-

mals, the Shank family binds Nlgs and functions to coordinate

pre/postsynaptic signaling through Neurexin-Neuroligin sig-

naling complexes [111, 112]. There are three Shank family

genes in mammals but only a single homolog of Shank in

Drosophila, which makes it easier to implement in vivo null-

mutant studies in Drosophila [113]. Both loss and over-

expression of Shank decrease synaptic bouton number and

maturity, and result in defects in the organization of the sub-
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synaptic reticulum, a complex system of folding the postsy-

naptic membrane at the NMJ. Furthermore, Shank regulates a

non-canonicalWnt signaling pathway in postsynaptic cells by

modulating the internalization of the Wnt receptor Fz2 [114].

These findings imply that Shank dosage is critical for synaptic

development and establish a novel connection between Shank

and synaptic Wnt signaling. The Neurobeachin (NBEA) gene

has been shown to be disrupted in patients with idiopathic

autism [115]. NBEA encodes a neuron-specific multi-domain

signal scaffold protein that is predominantly expressed in the

brain during development [116]. Loss of Rugose (rg), the

Drosophila homolog of human NBEA, results in abnormal

synaptic architecture and physiology [117].

Cytoskeleton dysregulation is one of the major problems

in Fmr1 mutant neurons. The microtubule (MT) network is

apparently altered in both loss- and gain-of-function dfmr1

mutants [48, 118]. The number and transport of mitochon-

dria in axons are also affected by dFmr1 [118]. Besides,

live imaging shows that dFmr1-associated mRNA granules

are less motile and show decreased directional movement

in cultured dfmr1 mutant neurons, demonstrating that

FMR1 indeed regulates the association between mRNA

cargos and microtubules [119]. Drosophila Fmr1 targets

like Futsch and Profilin regulate MT- or actin-dependent

synaptic growth and function [39, 49]. Drosophila Ank2 is

the closest homolog of human ANK2 and ANK3. It is

expressed specifically in the nervous system and associates

with the presynaptic membrane cytoskeleton, similar to the

human autism gene ANK3 [120]. Ank2 functions down-

stream of Spectrin in the anchorage of synaptic micro-

tubules. As a consequence, synaptic stability is severely

disrupted in Ank2 mutants, resulting in a reduction in

overall terminal size, withdrawal of synaptic boutons, and

disassembly of presynaptic active zones [120, 121].

Knock-down of Ank2 in mushroom bodies shows normal

learning but a significant reduction in short-term memory,

suggesting a specific role of Ank2 in cognition [122].

CNVs at 16p11.2 have recently been implicated in the

pathogenesis of ASDs [123], but the genes responsible for

the increased risk of ASDs are currently unknown.

A Kinesin-2-encoding gene klp68D closely related to

human KIF22 at the 16p11.2 locus has been identified by

genetic screening using the Drosophila NMJ system.

Disruption of klp68D induces ectopic targeting of motor

axons [124], suggesting that Kinesin proteins are important

for synaptic connectivity.

Others

Children born to older parents are at a higher risk for

disorders such as schizophrenia and autism. Studies in

Drosophila models have provided evidence for parental

age-related memory impairment [125]. Bisphenol A

(BPA), a widely-used chemical in plastic containers, has

been suggested to play a role in developmental disorders

including autism [126]. Flies exposed to BPA show many

autistic-like behaviors, which emphasizes the importance

of environment etiology for neurodevelopmental disorders

such as autism.

Conclusions and Perspective

In the past decade, ASDs have undergone considerable

diagnostic evolution. To discover the novel biomarkers and

molecular pathology underlying these disorders, several

animal models have made contributions. While fruit-flies

and humans have very different body plans, Drosophila has

been a prominent model system in neuroscience since the

1960s for the remarkable similarity at the biological

process level, such as a similar origin of the central

nervous system [127] and several similar neurobiological

processes including membrane excitability, neuronal sig-

naling, and classes of neurotransmitters [128]. Several

landmark studies have made discoveries ranging from

single genes and neurogenetic events to advanced behav-

iors. Neuroscientists have taken advantage of Drosophila

for its relatively simple nervous system, a powerful genetic

toolkit, high throughput, and low cost. One of the best

successes in Drosophila is the Fragile X story, reviewed

above. In this case, the fly model can phenocopy FXS

patients and FMR1-knockout mice, while pharmacological

tests have been used to develop a potential treatment.

Moreover, taking advantage of high-throughput screening,

several Fmr1 targets have been screened in Drosophila,

which help to explain the pathogenesis of FXS.

However, with the increasing thorough research on

ASDs and the use of primates in ASD studies, what can be

further contributed by research in Drosophila? Growing

evidence supports a causal role for combinatorial contri-

butions of multiple loci in ASD pathogenesis. Thus, it is

necessary to investigate the roles of multiple gene inter-

actions in ASD cases. As a good in vivo model with a

powerful genetic toolkit, accompanied by the development

of informatics-targeted screening, Drosophila will defi-

nitely show its power in identifying multiple candidate

interactions, revealing distinct molecular etiologies under-

lying ASDs.
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