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Abstract

Satellite retrievals of information about the Earth’s surface are widely used 
to monitor global terrestrial photosynthesis and primary production and to 
examine the ecological impacts of droughts. Methods for estimating 
photosynthesis from space commonly combine information on vegetation 
greenness, incoming radiation, temperature and atmospheric demand for 
water (vapour-pressure deficit), but do not account for the direct effects of 
low soil moisture. They instead rely on vapour-pressure deficit as a proxy for 
dryness, despite widespread evidence that soil moisture deficits have a 
direct impact on vegetation, independent of vapour-pressure deficit. Here, 
we use a globally distributed measurement network to assess the effect of 
soil moisture on photosynthesis, and identify a common bias in an ensemble 
of satellite-based estimates of photosynthesis that is governed by the 
magnitude of soil moisture effects on photosynthetic light-use efficiency. We 
develop methods to account for the influence of soil moisture and estimate 
that soil moisture effects reduce global annual photosynthesis by ~15%, 
increase interannual variability by more than 100% across 25% of the global 
vegetated land surface, and amplify the impacts of extreme events on 
primary production. These results demonstrate the importance of soil 
moisture effects for monitoring carbon-cycle variability and drought impacts 
on vegetation productivity from space.

Main

Accurate estimates of photosynthesis and vegetation primary production 
across large spatial scales are required for monitoring yields in agriculture 
and forestry and for understanding drivers of the terrestrial carbon (C) 
balance and changes in the C cycle. In particular, the severity of drought 
impacts in natural and managed ecosystems is of wide societal relevance. 
These impacts are largely determined by the sensitivity of ecosystem-scale 
apparent photosynthesis (gross primary production, GPP) and plant mortality
in response to dry conditions1. Remote sensing data-driven models (RS 



models) are widely used for estimating GPP2,3 and underlie research on the 
impacts of drought on global4 and continental primary production5, 
vegetation recovery from drought6 and the drivers of recent trends in the 
terrestrial C balance7,8, for example. RS models commonly rely on the light-
use efficiency (LUE) concept9, which states that, at timescales of weeks to 
months, GPP can be formulated as the product of the incident 
photosynthetically active radiation (PAR), the fraction of absorbed PAR 
(fAPAR) and the LUE9:

This formulation robustly captures the relationship between GPP and light 
through PAR. It also incorporates effects of changes in green vegetation 
cover through fAPAR, which reflects water and temperature-driven 
phenology and captures the lagged responses of plant mortality and 
ecosystem structural change induced by drought. Biome-level differences 
and responses of leaf-level physiology to ambient conditions are represented
by the LUE, which is commonly modelled using information on vegetation 
type and takes effects of changes in air or land-surface temperature and 
vapour-pressure deficit (VPD) into account.

Although low soil moisture is known to affect plant physiology10,11,12, RS 
models commonly assume that the information contained in fAPAR and VPD 
is sufficient to accurately estimate the responses of GPP to drought13. 
However, deficits in soil moisture and their effects on GPP are not necessarily
captured by fAPAR or VPD. VPD progressively decouples from soil moisture 
under very dry conditions14,15, and GPP can become decoupled from fAPAR 
during soil moisture droughts due to stomatal and biochemical responses 
and the resulting variations in LUE16. Recent research has emphasized that 
both drivers of dryness effects, VPD and soil moisture, should be accounted 
for to explain and simulate observed changes in ecosystem fluxes and 
LUE17,18,19,20,21.

Here, we use a set of state-of-the-art RS models that follow different 
approaches for simulating GPP and dryness effects. Common to all of them is
that soil moisture is not explicitly used as a model input nor accounted for as
a model variable. Model predictions are evaluated using data from a globally 
distributed network of ecosystem flux measurements. We show that all of 
the RS models assessed exhibit a similar bias under dry conditions and that 
this bias matches the timing and magnitude of the apparent soil moisture-
related reduction in LUE (termed fLUE). To quantify the soil moisture effect, 
separate from other drivers, we use an estimate of fLUE by ref. 20 that 
combines observations and a machine-learning algorithm. We demonstrate 
that the bias in the GPP estimates of the RS models can largely be resolved 
by empirical methods that are based on readily available global datasets and
simple soil water-balance models. We use these methods in combination 
with an RS model (P-model22) to assess the implications of including soil-



moisture stress for GPP across the globe, its interannual variability and the 
probability of large negative GPP extreme events.

Resolving the bias

We find a consistent pattern in the bias of GPP estimated from RS models 
that is due to the timing and magnitude of drought impacts on GPP (Fig. 1a). 
In all of the RS models assessed using data from 36 sites (see 
Supplementary Table 1 and Supplementary Fig. 1), the bias progressively 
increases during the course of droughts and closely tracks the apparent 
impacts of soil moisture on LUE, estimated by fLUE20. This is also reflected by
the systematic relationship between the bias and the magnitude of fLUE 
(Fig. 1b). We also investigated the relationships between the model bias and 
drought impacts for an extended set of sites (N = 71), relaxing the 
requirement that fLUE data is available, which is satisfied only for 36 sites. 
Instead of using fLUE data, we estimate the severity of drought impacts by 
the daily ratio of actual evapotranspiration to potential evapotranspiration 
(AET/PET) derived from the water and energy balance of the land surface23. 
The same pattern emerges (Supplementary Fig. 2) and confirms that these 
RS models systematically underestimate the impacts of drought on GPP.

This bias is common to all of the RS models assessed here (MODIS 
MOD17A2H3, VPM24, BESS25, P-model22). MODIS, VPM, and BESS tend to 
underestimate GPP under moderate soil-moisture stress and have a 
tendency towards a positive bias with increasing soil-moisture stress 
(Supplementary Fig. 3), which balances errors and reduces the overall bias in
estimates for mean GPP across all levels of soil dryness. We normalized 
simulated GPP to levels where impacts of soil moisture are small, distilling 
the common general pattern of an increasingly positive bias in simulated 
GPP as soil moisture progressively reduces LUE, shown in Fig. 1. The bias for 
each individual RS model is shown in Supplementary Fig. 4.



These findings imply that accurately estimating the degree to which soil 
moisture reduces LUE and GPP, in addition to the effects of greenness 
(fAPAR), VPD and other factors, could resolve the systematic bias and reduce
errors in GPP estimates across all levels of dryness. The power of this bias 
correction is illustrated by the near complete disappearance of the bias and 
a substantial reduction in the error of normalized GPP values, simulated by 
RS models, after correction by fLUE (blue boxes in Fig. 1b; the mean bias 
decreases from 1.65 to 0.031 gC m−2 d−1 and the root mean squared error 
decreases from 2.52 to 0.94 gC m−2 d−1 across the lower four fLUE bins).

Global implications

To assess the implications of the drought-related bias in RS estimates of GPP 
across the globe and its variability, we constructed a set of empirical soil 
moisture stress functions (termed β functions) based on the apparent soil 
moisture impacts on LUE derived from local measurements20. In combination 
with accessible data, which has coverage spanning the globe and the entire 
satellite era (here 1982–2016), these β functions thus provide a basis for 
upscaling in time and space. Plant-available soil moisture, used as input to 
the β functions, is estimated from the surface water and energy balance23, 
using daily precipitation and radiation data and a high-resolution soil 
dataset26. Three β functions (termed βa, βb and βc) are parameterized with 
different levels of sensitivity to low soil moisture and using information on 
vegetation type and mean aridity (see Methods). The range of 
the β functions generally covers the estimated range of soil moisture effects 
on LUE (Supplementary Fig. 5). Correcting simulated GPP from the RS models
using the intermediate β function (βb) reduces the mean bias from 1.65 to 
0.25 gC m−2 d−1 and the root mean squared error from 2.52 to 1.32 gC m−2 
d−1 during droughts—that is, across the lower four fLUE bins (green boxes in 
Fig. 1b).

Next, we conducted global simulations to investigate effects of soil moisture 
stress on GPP, its temporal trend, interannual variability and negative GPP 
extreme events. We use the P-model (see Methods), where fAPAR is 
prescribed by satellite observations27 and LUE is simulated on the basis of an
optimality principle that accounts for climate and CO2 effects on the balance 
between costs of assimilation and transpiration22. By quantifying the 
difference in variables from a simulation without β functions (termed s0) and 
three alternative simulations that include β functions (s1a, s1b and s1c using
functions βa, βb and βc, respectively), we isolate soil moisture effects from 
other environmental and anthropogenic drivers.

We find that soil moisture stress reduces global GPP on average by 15% (10–
19%, based on different simulations; see Fig. 2 and Supplementary Fig. 6). 
Local effects in semi-arid grasslands and savannahs are larger, reducing 
mean annual GPP by more than 50%. The correction made by applying 
the β functions in P-model simulations improves its performance for 
simulating spatial (that is, across-site) variations in mean annual GPP 



(Supplementary Figs. 7 and 8), and brings global totals closer to estimates 
by other RS models (Fig. 2b). We find no significant temporal trend in the soil
moisture-related relative reduction in global GPP over the last 30 years, but 
significant positive and negative trends in different regions (Fig. 2c,d). While 
the Sahel region, southern Africa and northern Australia have seen a trend 
towards relief from soil moisture stress, simulated GPP reductions have 
become increasingly strong in the Gran Chaco in South America, the Middle 
East and in the dry regions of Mexico and Southwestern United States.

Soil moisture effects on GPP variability across scales

Soil moisture limitation not only affects mean annual GPP, but also its 
interannual variability (IAV). The IAV in precipitation and hence soil moisture 
increases GPP IAV across all vegetated land (Fig. 3). Relative variability 
(quantified as the variance in annual GPP divided by its mean) increases by 
more than 100% (doubling) across 25% of the global vegetated land surface.
The mean amplification factor across all grid cells is 1.8 (80% increase), with 
the largest effects of soil moisture on relative and absolute (Supplementary 
Fig. 9) GPP variability occurring in regions of intermediate aridity 
(Supplementary Fig. 10).



Although the effects of soil moisture substantially increase GPP IAV locally, 
its effects on the IAV of total global GPP are found here to be minor. The 
mean amplification decreases from a factor of 1.8, derived from model 
simulations at a spatial resolution of 0.5° in longitude and latitude, to 1.3 
when annual GPP is aggregated to 180° and to 1.08 at the global level 
(Fig. 3a). This decrease is due to compensating contributions from different 
regions across the globe (Fig. 4). Positive contributions, where the effect of 
soil moisture on GPP is in phase with global GPP IAV, are compensated by 
negative contributions. The frequency distribution of these contributions is 
approximately symmetrical, hence they balance out at the global scale.



The impacts of climatic extremes on natural and managed ecosystems are 
strongly governed by GPP anomalies that simultaneously occur across large 
regions and that persist over extended periods of time1,28,29. Most of such 
large-scale GPP extreme events are associated with precipitation deficits29. 
Here we find that water limitation increases the magnitude of such GPP 
extreme events (Fig. 5). Although the shape of the size distribution of 
individual events is largely conserved (minor changes in the power-law 
exponent related to soil moisture effects), their distributions are generally 
shifted towards larger sizes. By also accounting for soil moisture effects, the 
probability of GPP extreme events of a given size increases by 16–66%, with 
the largest amplification in Australia. Our approach implies that anomalies 
and impacts are not larger by definition when soil moisture stress is 
accounted for. However, our results indicate that the effects of soil moisture 
amplify GPP variability and the magnitude of temporally and spatially 
clustered negative anomalies.

Discussion

Multiple studies have indicated that RS models tend to overestimate 
vegetation productivity under dry conditions30,31,32,33, but precise quantitative 
insights into this bias regarding its timing, magnitude, underlying causes and
implications for global GPP estimates have been lacking. We used an 
observation-based estimate of separate soil moisture effects (fLUE20) for 



comparison with the bias in the GPP estimates of RS models and to formulate
and calibrate β functions. The strong bias reduction achieved by 
including β functions in GPP estimates suggests that soil moisture effects on 
LUE, in addition to VPD and greenness changes, drive the progressive 
overestimation in GPP during droughts. The remaining bias may be reduced 
by accounting for additional factors that are known to affect the sensitivity of
vegetation productivity to dry soil conditions, such as groundwater 
access34,35, but are not included in the RS models investigated here, nor 
in β functions36.

RS models are typically calibrated to minimize errors compared to CO2 flux-
derived GPP estimates. While this yields relatively accurate annual mean GPP
estimates across sites22,37, it tends to underestimate GPP under moist 
conditions and overestimate it under dry conditions, as shown here. This also
indicates that the tendency of RS models to overestimate GPP under 
droughts does not necessarily imply a general overestimation of annual or 
global totals. However, the systematic relationship of their bias with soil 
moisture limits the potential to minimize overall errors. Furthermore, our 
results demonstrate that the systematic bias implies a substantial 
underestimation of the IAV of GPP and the impacts of extreme droughts on 
GPP. However, this does not have direct implications for estimates of the 
global land C balance, as GPP data are not commonly used for this purpose38.

To remediate the drought-related bias in GPP estimates, attempts have been
made to use remotely sensed surface reflectance data to estimate water 
availability39,40 or to directly measure physiological responses to water stress 
and the resulting changes in LUE. An index of surface water availability is 
implemented in VPM but does not resolve its bias under water-stressed 
conditions. Empirical relationships between LUE and atmospheric dryness 
(VPD), as implemented in MODIS, may partly account for soil moisture effects
but are limited by a lack of correlation between VPD and soil moisture that is 
particularly prevalent under very dry conditions14,15,20. BESS and the P-model 
implement standard process-based models to mechanistically simulate 
photosynthetic responses to VPD, but do not include information on soil 
moisture. Alternative indices of optical reflectance (the photochemical 
reflectance index, PRI41,42 or the near-infrared reflectance of terrestrial 
vegetation, NIRV

43) and solar-induced fluorescence44 add information about 
the effects of environmental stress on LUE, but their association with 
greenness changes poses a challenge to using them to estimate the 
independent effect of drought on photosynthesis45,46. Directly using soil 
moisture as an input to RS models has thus far been hampered by data 
availability with global coverage. New soil moisture data products that are 
based on microwave remote sensing47 may resolve this constraint but are 
generally representative only for upper soil layers (which limits their 
applicability to deep-rooted vegetation) and are subject to data gaps in 
regions with dense vegetation cover47. Recent efforts to estimate root-zone 



soil moisture48 combined with estimates of the global distribution of plant 
rooting depth49 may prove useful to address these limitations.

Using a global satellite data-driven GPP model, we have translated 
meteorological droughts (low precipitation) into soil moisture droughts and 
into more directly impact-relevant GPP drought events with extensive 
coverage in both space and time. Our results suggest that the influence of 
soil moisture substantially increases IAV in GPP and the size of GPP extreme 
events. However, our results suggest that even without accounting for the 
effect of increasing plant water-use efficiency50 on soil moisture, drought 
impacts have not become more severe over the past three decades, and that
there is no general global trend of increasing soil moisture limitation on GPP. 
This finding is in line with other studies51,52,53.

We further found a compensatory role of water limitation in different regions 
that leads to a reduced apparent soil moisture effect on IAV in global GPP. 
This reflects earlier work54,55 that found a declining importance of water 
availability on GPP and the land C balance when moving from local to global 
scales. However, we note that the model used for our analysis, as well as the
one used by ref. 54, accounts for only relatively shallow soil water storage, 
without accounting for the possible role of other types of water storage that 
may be relevant for vegetation productivity (groundwater, for example), 
control its interannual variability and may preserve a strong soil moisture 
effect on C cycle variability at the global scale56.

Our results highlight shortcomings in widely used4,6,7,8 RS-based GPP 
estimates and contrast findings of increasing drought stress over past 
decades6. We have demonstrated that soil moisture is an important forcing 
of global vegetation primary production and interannual carbon cycle 
variability that cannot be replaced by information on atmospheric dryness 
and should therefore be accounted for in satellite data-driven estimates.

Methods

Observational data

GPP predictions by the RS models were compared to daily GPP estimates 
(aggregated to 8 d intervals) from the FLUXNET 2015 Tier 1 dataset 
(downloaded on 13 November, 2016). We use GPP based on the night-time 
partitioning method59 (GPP_NT_VUT_REF). We filter negative daily GPP 
values, data for which more than 50% of the half-hourly data are gap-filled 
and for which the daytime and night-time partitioning methods 
(GPP_DT_VUT_REF and GPP_NT_VUT_REF, respectively) are inconsistent; that 
is, the upper and lower 2.5% quantiles of the difference between GPP values 
quantified by each method. The comparison is limited to data from 36 sites 
(see Supplementary Table 1 and Supplementary Fig. 1), where the effects of 
soil moisture is reliably identified20, and to periods with clearly identified soil 
moisture effects based on ref. 20.

RS models



We use four RS global GPP models that also provide site-scale outputs for 
comparison to observations from FLUXNET sites.

MODIS MOD17A2H3 (Version 6) is an empirical LUE model (see equation (1)), 
based on MODIS FPAR at 500 m resolution using 8 d periods. Biome-specific 
maximum LUE values are prescribed and multiplied by empirical stress 
functions to reduce GPP at high VPD and low temperature. Site-level data are
extracted for the single pixel of the flux tower location at each site, using 
Google Earth Engine60 and the gee_subset library61.

BESS25 is a process-based GPP model that uses remotely sensed data for the 
atmospheric state, land surface and air temperatures, leaf area index, 
spatially distributed CO2 concentrations and canopy information (height, 
clumping). BESS explicitly simulates canopy radiative transfer, the surface 
energy balance and photosynthesis62 using parameters for plant functional 
type-specific maximum carboxylation capacity (Vcmax). Original BESS outputs 
are given at a resolution of 1 km.

VPM24 is an empirical LUE model (equation (1)) that is similar to MODIS, but 
driven by the remotely sensed MODIS Enhanced Vegetation Index (EVI from 
MOD09A1 C6, 500 m, 8 d) and reanalysis climate data. It distinguishes 
between C3 and C4 vegetation, modifies LUE by an extra water-stress scalar 
estimated by the Land Surface Water Index63 and estimates absorption by 
chlorophyll specifically instead of absorption across a wider range of 
wavelengths (as implemented in MODIS and other RS models) by deriving 
fAPAR as a linear function of EVI. As in MODIS, VPM uses a temperature 
scalar to modify LUE, but does not use VPD data.

P-model22 is a LUE model (equation (1)) in which LUE is internally predicted, 
varying over time and across space, on the basis of changing environmental 
conditions (monthly mean air temperature, VPD, elevation and 
CO2 concentration) and on an optimality principle64 that predicts stomatal 
conductance and foliar photosynthetic traits (including Vcmax) based on the 
standard model for C3 plant photosynthesis65. The model thus does not rely 
on prescribed plant functional types or biome-specific parameters. For site-
scale evaluations, the P-model is driven by MODIS FPAR (MCD15A3H Version 
6, 500 m, 4 d) extracted using Google Earth Engine60 and the gee_subset 
library61 and meteorological data provided through the FLUXNET 2015 
dataset. We have calibrated the apparent quantum yield efficiency 
parameter of the P-model, which acts as a linear scalar of LUE in equation 
(1), to observed GPP at high levels of soil moisture from the FLUXNET 2015 
dataset. This yielded a value of 0.0579 (unitless, factor implicitly included in 
LUE).

Empirical soil moisture stress functions

We correct simulated GPP from different RS models (GPPmod) using a set of 
empirical soil moisture stress functions (β(θ)) as



We use data on the fLUE, estimated by ref. 20, to fit β functions (β(θ) ≈ fLUE),
based on two general patterns:

The functional form of β(θ) is general across all sites and can be 
approximated by a quadratic function that approaches 1 for soil moisture at 
a certain threshold θ* and held constant at 1 for soil moisture values above 
that. Here θ is the plant-available soil water, expressed as a fraction of field 
capacity. The general form is:

The sensitivity of β(θ) to extreme soil dryness (θ → 0) is correlated with the 
mean aridity at the site. The decrease in β(θ) associated with dryness is 
particularly strong at the driest sites (mostly deserts, grasslands and 
savannahs), whereas sites with intermediate aridity (mostly Mediterranean) 
have a smaller reduction in β(θ) when soil water becomes depleted. The 
sensitivity parameter q in equation (2) is defined by the 
maximum β reduction at low soil moisture β0 = β(θ = θ0), leading to q = (β0 − 
1)/(θ* − θ0) (see ref. 20). Note that q has a negative value. β0 is modelled as 
a linear function of the mean aridity, quantified by the mean annual ratio of 
AET/PET, termed α′:

Note that θ0 and θ* differ slightly between approaches, and that α′ relates 
to α in the Priestley–Taylor equation65 as α′ = α ⁄ 1.26.

We have tested several approaches to fit parameters p0 and p1 for empirical 
soil moisture stress functions β(θ). Final fitted functions based on different 
approaches bracket the fLUE values derived at our selected sites (group 1 in 
Supplementary Table 1, Supplementary Fig. 6). More information on the 
fitting procedure and parameter values are given in Supplementary Section 
5. Three parameterizations of β functions were used to estimate uncertainty 
in the sensitivity of β(θ): βa for low sensitivity, βb for intermediate sensitivity 
and distinguishing parameters between woody and herbaceous vegetation, 
and βc for high sensitivity.

Global P-model simulations

We developed a new P-model implementation to estimate GPP for global and
site-level simulations within the same modelling framework (model code 
SOFUN v1.1.0)66. Global simulations are performed here for years 1982–2016



and are driven by FPAR3g data27 for fAPAR; WATCH-WFDEI elevation and 
climate data67 for temperature, shortwave radiation, and specific humidity, 
converted to VPD (see the Supplementary Information); and measured 
globally uniform atmospheric CO2 concentrations. The β functions were 
applied to daily GPP, calculated on the basis of soil moisture simulated by 
the SPLASH model23, which is implemented within the global SOFUN 
modelling framework13. The soil moisture model is forced by WATCH-WFDEI 
precipitation as input and estimates PET based on the Priestley–Taylor 
equation. The soil water balance is determined on the basis of a spatially 
varying plant-available soil water holding capacity (Supplementary Fig. 12), 
derived from SoilGrids26 data for texture and soil depth (see 
also Supplementary Section 5.4). Four simulations were carried out: s0, 
without soil moisture effects; s1a, using βa; s1b, using βb; and s1c, using βc.

Mapping contributing regions

We adopted and modified the method proposed by ref. 56 and calculated an 
index f based on equation (1) of their paper to quantify the fractional 
contribution of each grid cell to the amplification of GPP IAV through soil 
moisture effects:

Here, xjt is the difference in the detrended annual GPP of grid cell j and 
year t that is caused by the effects of soil moisture, calculated as the 
difference in detrended annual GPP in simulations s1b and s0. Xt is the global
detrended annual GPP in simulation s1b.

Identification of GPP extreme events

GPP extreme events were identified following the method proposed by 
ref. 57 as contiguous domains in longitude–latitude–time space, where the 
monthly detrended GPP anomaly from its mean seasonal cycle is below the 
2% quantile of all anomaly values within the respective continent. The 
domains are determined based on simulation s1b using the R package 
neuroim68. The impacts of events were calculated for each simulation (s0 and
s1b) as the monthly detrended GPP anomaly relative to the mean seasonal 
cycle in the respective simulation, cumulated over the domain (grid cells and
months) of the respective event.

Code availability

Reproducible code is available via github 
(https://github.com/stineb/soilm_global) and published on Zenodo 
at https://doi.org/10.5281/zenodo.2543324.



Data availability

P-model outputs from site-scale and global simulations are available on 
Zenodo at: https://doi.org/10.5281/zenodo.1423484.
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