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Abstract

A new version of the fuzzy logic model, called the co-active neuro fuzzy inference system

(CANFIS), is introduced for predicting standardized precipitation index (SPI). Multiple scales

of drought information at six meteorological stations located in Uttarakhand State, India, are

used. Different lead times of SPI were computed for prediction, including 1, 3, 6, 9, 12, and

24 months, with inputs abstracted by autocorrelation function (ACF) and partial-ACF

(PACF) analysis at 5% significance level. The proposed CANFIS model was validated

against two models: classical artificial intelligence model (e.g., multilayer perceptron neural

network (MLPNN)) and regression model (e.g., multiple linear regression (MLR)). Several

performance evaluation metrices (root mean square error, Nash-Sutcliffe efficiency, coeffi-

cient of correlation, andWillmott index), and graphical visualizations (scatter plot and Taylor

diagram) were computed for the evaluation of model performance. Results indicated that

the CANFIS model predicted the SPI better than the other models and prediction results

were different for different meteorological stations. The proposed model can build a reliable

expert intelligent system for predicting meteorological drought at multi-time scales and deci-

sion making for remedial schemes to cope with meteorological drought at the study stations

and can help to maintain sustainable water resources management.

1. Introduction

Drought is among the natural hazards and a recurrent climatic feature observed in most cli-

matic regions in the world. Factors determining the impact of drought include its severity,

areal extent, frequency and duration [1]. Drought, as one of the environmental disasters, has
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received much attention in various fields, including environment, ecology, hydrology, meteo-

rology, geology, and agriculture. Drought accounts for almost half of all the natural disasters

since 1967 and has affected almost 2.8 billion people in the world. About 1.3 million deaths out

of the estimated 3.5 million disaster-related deaths are either directly or indirectly related to

droughts [2]. Accurate drought prediction is dependent on the right selection of the input vari-

ables and determines the type of drought to be predicted [3,4]. The analysis of meteorological

drought (MD) requires accurate precipitation data while hydrologic drought can only be ana-

lyzed with accurate lake level, streamflow, and reservoir. Regarding groundwater drought, its

analysis is dependent on the level of groundwater while agricultural drought analysis is depen-

dent on accurate crop yield, soil moisture, and a combination of elements such as precipita-

tion, soil moisture, and temperature data. Accurate forecasting of drought is therefore

essential for multiple water resources planning, optimal operation of the irrigation system,

drought preparedness, and mitigation.

Over recent decades, machine learning (ML) and autoregressive integrated moving average

(ARIMA; time-series) models have been utilized in prediction of MD using metrics such as

standardized precipitation-evapotranspiration index (SPEI), standardized precipitation index

(SPI), and effective drought index (EDI). Rezaeian-Zadeh and Tabari [5] used multi-scale SPI

values to develop an MLPNNmodel for forecast meteorological drought in Iran. They found

that the MLPNNmodel forecasted drought at SPI-12 and SPI-24 more accurately. Shirmo-

hammadi et al. [6] predicted meteorological drought in Iran using several versions of artificial

intelligence (AI) models, including standalone ANFIS and ANNmodels and their comple-

mentary versions by integrating with wavelet transformation (WT) with time-series data pro-

cessing. They showed the potential of complementary approaches over the standalone models.

Belayneh et al. [7] developed ARIMA, ANN, support vector regression (SVR), WT-ANN, and

WT-SVR models for predicting drought in Awash river basin of Ethiopia using 12 and 24 SPI

scales. Results showed that the complementary models performed superior to other models for

both drought scales.

Danandeh Mehr et al. [8] predicted long-lead-time drought using linear genetic program-

ming (LGP), WT-LGP, andWT fuzzy-logic based on synoptic climate variables over Texas.

Results of analysis demonstrated that the LGP model poorly performed to represent the sto-

chasticity of the 3-month SPI. However, the WA-LGP effectively predicted drought for 3-, 6-,

and 12-month lead times. Deo & Şahin [9] predicted drought in eastern Australia using

extreme learning machine (ELM) and ANNmodels based on EDI. The prediction was per-

formed using monthly precipitation data from 1957 to 2011. The results of the analysis illus-

trated that the ELMmodel performed superior to the ANNmodel. Deo and Şahin [10] studied

the feasibility of using ANN for meteorological drought prediction in eastern Australia based

on SPI and SPEI. The outcome of the study found the ANNmodel capable of predicting the

SPEI and SPI over the considered area. Nguyen et al. [11] focused on the prediction of drought

at short-term and long term basis in Cai river basin, Vietnam using the ANFIS model; the pre-

diction was based on SPI & SPEI. From the result, SPI and SPEI were found useful in predict-

ing short- and long-term drought, respectively. Rafiei-Sardooi et al. [12] applied neuro-fuzzy

(NF) and ARIMAmodels to predict meteorological drought in Iran, using 3- and 12-month

SPI. Results indicated that the NF model acceptably predicted SPI-2 and SPI-12 scales.

Currently, the fuzzy logic-based model has been applied to diverse fields of engineering sci-

ences for multiple risk assessments [13–16]. Khalil et al. [14] applied cascaded fuzzy logic-layer

of protection analysis (CFL-LOPA) model for risk management in the natural gas industry,

and they found the superior performance of CFL-LOPA model for maintaining the safety

integrity level. Yan et al. [15] proposed the set pair analysis-layer of protection (SPA-LOPA)

model to assess the severity of gas leakage in the biomass gasification (BG) system. Results
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expose the better performance of the SPA-LOPA model in the evaluation for independent pro-

tection layers of the BG system.

Recently, a number of studies have used ML models for predicting meteorological droughts

using various drought indices. Mokhtarzad et al. [17] evaluated the possibility of using ANN,

ANFIS, & SVMmodels for prediction of meteorological drought at Bojnourd, Tehran based

on SPI. They confirmed the capability of the SVMmodel over other models. Nguyen et al. [18]

assessed the ANFIS model for meteorological drought prediction using SPI and SPEI in

Khanhhoa Province Vietnam. Results showed SPI & SPEI suitable for the prediction task in

the study region using the ANFIS model. Zhang et al. [19] forecasted drought using the

ARIMA, ANN, WA-ANN, and SVR models using 3- and 6-month SPI values in the Haihe

River basin, China. The forecasted results of SPI-3 and SPI-6 revealed that the WA-ANN

model better predicted than did the ANNmodel. Ali et al. [20] focused on multi-scalar SPI-

based meteorological drought prediction in Pakistan using three different models (M5Tree,

ensemble-ANFIS, & minimax probability machine regression (MPMR)). From the results, the

ensemble-ANFIS model was found to outperform the other models in predicting SPI6 & SPI12
compared to SPI3 prediction. Liu et al. [21] applied ELM, online sequential ELM (OS-ELM),

and self-adaptive evolutionary ELM (SAE-ELM) for drought forecasting based on SPI and

SPEI in Khanhhoa Province, Vietnam. The study reported the SAE-ELMmodels to perform

best compared to the other models. Mouatadid et al. [22] applied MLR, ELM, LSSVR, and

ANNmodels for drought prediction over eastern Australia using multi-scalar SPI & SPEI. The

study reported ELM and ANNmodels to perform best compared to MLR & LSSVR models in

terms of drought prediction. Soh et al. [23] applied the WT-ARIMA-ANN andWT-ANFIS

models for meteorological drought forecasting using 1-, 3-, and 6-month SPEI in the Langat

River basin, Malaysia. Comparison of results reveals WT-ARIMA-ANN outperformed than

the other for SPEI-3 and SPEI-6 prediction in the study region.

According to the literature, the exploration of new reliable and robust version of AI models

is still ongoing. Also, AI models behave differently from one region to another. Hence, this is

essential to understand the influence of synoptic climatological information on each station.

The efficiency of the CANFIS model is investigated for drought index (SPI) forecasting. Two

models (i.e., MLPNN and MLR) are developed for validation. Six meteorological stations,

including Almora, Bageshwar, Champawat, Nainital, Pithoragarh, and Pantnagar, were

selected for meteorological drought prediction, based on multiple SPI lead times (e.g., SPI-1,

SPI-3, SPI-6, SPI-12, & SPI-24). Statistical modeling techniques (i.e., ACF and PACF) were

employed for the abstraction of input based on correlated lag months.

2. Case study and applied models

2.1 Case study region and data description

The present study was conducted at six meteorological stations; Almora, Bageshwar, Champa-

wat, Nainital, Pithoragarh, and Pantnagar positioned in the Kumaon region of Uttarakhand

State, India (Fig 1, https://www.diva-gis.org/gdata). The altitude of the Kumaon region varies

from 223m to 3669m above MSL with the geographical area of 21313 km2. Table 1 presents

altitude, latitude, longitude, and data available all through the year in the region. The Uttara-

khand State (28˚ 43’ N to 31˚ 28’ N latitudes, and 77˚ 34’ E to 81˚ 03’ E longitudes) sharing its

northwest boundary with Himachal Pradesh, South boundary with Uttar Pradesh, the south-

east boundary with Nepal, and the northeast boundary with China. The altitudes of Uttara-

khand State ranges from 145m to 7796m above MSL and comprises with 13 districts, clustered

into 2 administrative regions, (i) Garhwal region with 7 districts (Haridwar, Tehri Garhwal,

Pauri Garhwal, Chamoli, Dehradun, Rudraprayag, and Uttarkashi), and (ii) Kumaon region
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with 6 districts (Almora, Bageshwar, Champawat, Nainital, Pithoragarh and Udham Singh

Nagar (Pantnagar)). It is characterized by temperate climate, although the plains have a tropi-

cal climate, which has a temperature range of -0 to 43 ˚C with annual rainfall ranging from

260–3955 mm. Major rainfall events (60 to 85% of the annual total) have occurred from June

to September (monsoon season).

The monthly scale if weather data (i.e., rainfall) for 5 stations; Almora, Bageshwar, Champa-

wat, Nainital, and Pithoragarh were acquired from the Indian Meteorological Department

Fig 1. Study location map of Kumaon region, Uttarakhand.

https://doi.org/10.1371/journal.pone.0233280.g001

Table 1. Details of study stations and rainfall data availability.

Meteorological station Latitude (N) Longitude (E) Altitude (m) Rainfall data (year)

Almora 29˚ 48’ 40" 79˚ 26’ 13" 1759 1901–2015

Bageshwar 30˚ 05’ 06" 79˚ 55’ 30" 2513 1901–2015

Champawat 29˚ 21’ 54" 80˚ 04’ 26" 1791 1901–2015

Nainital 29˚ 23’ 20" 79˚ 27’ 18" 1945 1901–2015

Pithoragarh 30˚ 11’ 31" 80˚ 21’ 54" 3669 1901–2015

Pantnagar 29˚ 00’ 29" 79˚ 38’ 02" 223 1961–2016

https://doi.org/10.1371/journal.pone.0233280.t001
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(IMD), Pune (India). While, Pantnagar station data was obtained from the research crop Cen-

tre located at the G. B. Pant University of Agriculture and Technology, Pantnagar.

2.2 Calculation of the SPI

The standard index for defining, monitoring and analysing the meteorological drought (MD)

conditions on multi-time scales is SPI, discovered by McKee et al. [24]. More than (� 30)

years monthly precipitation data is required for computation of SPI for a given time-scale at

any place by transforming the original precipitation series into a standardized normal distribu-

tion. Three probability distributions; normal, lognormal, and gamma were applied to the run-

ning sum of 1-, 3-, 6-, 9-, 12-, and 24-month rainfall series, and out of these three bests, one

was decided though KS (Kolmogorov-Smirnov) test. The KS test revealed the gamma probabil-

ity distributions fitted well to the running sum series of rainfall data. In the current study, the

computation of SPI involved the use of gamma distribution at 1-, 3-, 6-, 9-, 12-, and 24-month

time-scales over Almora, Bageshwar, Champawat, Nainital, Pithoragarh, and Pantnagar sta-

tions. For more information on the mathematical calculation of the SPI, one can refer to [25–

28].

2.3 Co-active neuro-fuzzy inference system (CANFIS)

Jang et al. [29] invented the basic concept of CANFIS model by extending the adaptive neuro-

fuzzy inference system (ANFIS) to produce multiple outputs. It may be used as universal

approximator of any nonlinear function. The CANFIS model assimilates the features of a

fuzzy inference system (FIS) and artificial neural network (ANN) together in a single frame to

process the complex systems rapidly and accurately. The dominant potential of CANFIS

model stems from the pattern-dependent weights between the consequent layer and the fuzzy

association layer. Fig 2a and 2b demonstrate the assembly of membership functions (MF) and

CANFIS model with two input variables (x and y), one output (c), under first-order Takagi-

Sugeno-Kang (TSK) model with IF-THEN for CANFIS model is as follows [30,31]:

Rule 1 : IF x is A
1
and y is B

1
THEN c

1
¼ p

1
xþ q

1
yþ r

1
ð1Þ

Rule 2 : IF x is A
2
and y is B

2
THEN c

2
¼ p

2
xþ q

2
yþ r

1
ð2Þ

where, A1, A2, and B1, B2 = the MFs for the inputs x and y, respectively; p1, q1, r1 and p2, q2, r2
= the parameters of the consequent part (Fig 2a). The characteristics of each layer is described

as follows:

Layer 1 (fuzzification layer): The nodes of this layer are adaptive (square), generates member-

ship function (or grades) of crisp input and each node output is computed as:

O
1;i ¼ mAi

ðxÞ for i ¼ 1; 2; ð3Þ

O
1;i ¼ mBi

ðyÞ for i ¼ 1; 2; ð4Þ

where, O1,i = the output of the ith layer, Ai and Bi = the linguistic labels (small, medium, large

etc.), x and y = the inputs to ith node, and mAi
and mBi

= the membership functions for Ai and
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Bi linguistic labels, respectively. The mathematical expression of the Gaussian MF is written as:

O
1;i ¼ mAi

xð Þ ¼ exp
�ðx�diÞ2

2s2

i

� �

ð5Þ

where, d and σ are the conditional parameters of the function. The parameters of this layer are

stated as premise parameters.

Fig 2. (a) MFs of two input variables in TSKmodel, and (b) architecture of proposed CANFIS model.

https://doi.org/10.1371/journal.pone.0233280.g002
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Layer 2 (rule layer): this node is circular and facilitated withP operator. The output of this

layer, called firing strengths, is the product of corresponding signals obtained from layer 1.

For example:

O
2;i ¼ wi ¼ mAi

ðxÞ�mBi
ðyÞ i ¼ 1; 2; ð6Þ

Layer 3 (normalization layer): this layer is circular and characterized by an N operator. The

main purpose of this layer is to normalize the signal of the previous layer and facilitated as

normalized firing strength by:

O
3;i ¼ �wi ¼

wi
P

i wi

i ¼ 1; 2; ð7Þ

Layer 4 (defuzzification layer): every node in this layer is square, and the parameters of this

layer are mentioned as consequent parameters. The contribution of ith rule towards the

total output is computed by Eq (8):

O
4;i ¼ �wici ¼ �wiðpixþ qiyþ riÞ i ¼ 1; 2; ð8Þ

Layer 5 (summation layer): this layer is also known as output node, labeled as S. In this node

the overall output is computed by summing all the incoming signals:

O
5;i ¼ �wici ¼

X

i
�wici ¼

P

i wici
P

i wi

ð9Þ

In this research, the CANFIS model was formulated with error-and-trail procedure using

gaussian (Gauss) MF, TSK fuzzy model, hyperbolic tangent (Tanh) activation function, and

delta-bar-delta (D-B-D) learning algorithm for multi-scalar SPI prediction at six study sta-

tions. NeuroSolutions 5.0 software [32] was utilized to calibrate (train) the CANFIS model

with a threshold of 0.001 for 1000 iterations.

2.4 Multi-layer perceptron neural network (MLPNN) model

Haykin [33] was the first scholar introduced the concept of the MLPNNmodel. MLPNN

model is a network of several layers of parallel processing units called neurons. In the MLPNN

model, each layer is linked to the subsequent layer via interconnections called weights (W). A

typical illustration of the feed forward MLPNNmodel, which consists of input (i), hidden (j)

and output (k) layers through interconnected weights (Wij &Wjk) among the neuron layers is

shown in Fig 3. The exact number of neurons and hidden layers are required for accurate map-

ping of the entire training dataset, which is problem-specific (the number of predictors and

predictands). The correction of values of the initially estimated weights is progressively

done through training by matching the predicted output with the pre-determined through

backpropagation [34]. The explicit expression for an output value in the MLPNNmodel is

written as:

Y ¼ fk �
XNj

j¼1
Wjk � fjð

XNi

i¼1
WijXi þ bjÞ þ bk

h i

ð10Þ
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where, Y is the output vector,Wij is the weight in hidden layer connecting the ith neuron in

the input layer and jth neuron in the hidden layer,Wjk is the weight in the output layer con-

necting the jth neuron in the hidden layer and kth neuron in the output layer, Xi is i
th input var-

iable for input-layer, Ni and Nj are the neurons in the input and hidden layers, and fj and fk are

activation function of hidden and output layer neurons, expressed as

f xð Þ ¼ ex � e�x

ex þ e�x
ð11Þ

A supervised learning approach, which contains three layers of input/hidden/output, was

used to design the architecture of the MLPNNmodel. Data normalization was realized using

the Tanh activation function (varies from -1 to 1) with the D-B-D learning algorithm. This

technique was considered fairly because of its quickness and robustness compared to the tradi-

tional gradient descent. Regarding the hidden layer, the optimal size of neurons was decided

through 2n + 1 concept provided by [35,36]; here, n represents the number of inputs. The

training of the MLPNNmodel was terminated after reaching 1000 epochs with a 0.001 thresh-

old value. The designed MLPNNmodel was applied at different locations for MD prediction.

2.5 Multiple linear regression (MLR) model

Among several well-established regression models within the field of hydrology and climate

MLR model is implemented widely [22]. The MLR model was selected as a second model to

Fig 3. Three-layer MLPNN configuration.

https://doi.org/10.1371/journal.pone.0233280.g003
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validate the capacity of the CANFIS model to predict the multi-scalar SPI. The MLR model

module the collinearity among one target (dependent) variable and several (two or more)

independent variables [37,38]. The regression equation of the MLR model can be written as:

SPI ¼ w
0
þ w

1
SPIt�1

þ w
2
SPIt�2

þ; . . . ;þ wkSPIt�n ð12Þ

where, SPI = the target variable at multi-time scales, SPIt−1, SPIt−2 to SPIt−n are input parame-

ters, w0 is the intercept of the MLR equation, and w1 to wk are the weights of the MLR

equation.

2.6 Optimal input nomination and model development

Nominating the appropriate input-output variables for modeling nonlinear hydrological pro-

cesses is a tedious task. In this research, long-term monthly rainfall data were utilized to com-

pute multi-time scale SPI (i.e., 1, 3, 6, 9, 12 and 24-month). The ACF and PACF analysis were

performed for picking up the optimal inputs (significant lags) for target output [39–41]. The

ACF and PACF are calculated using the Eqs 13 and 14:

ACFk ¼
PN�k

t¼1
ðYt � �Y Þ ðYtþk � �Y Þ
PN

t¼1
ðYt � �Y Þ

ð13Þ

PACFk;k ¼
ACF �Pk�1

j¼1
PACFk�1;j ACFk�1

1�Pk�1

j¼1
PACFk�1;j ACFk�1

ð14Þ

where, N is the multi-scalar SPI observation in entire series, Yt and �Y are the mean whole

series, and k is the lag through series. Afterward, these PACF values were tested at 5% signifi-

cance level (SL) by constructing the upper and lower critical limits (UCL and LCL) by Eq (15):

UCL= LCL ¼ � 1:96
ffiffiffiffi

N
p ð15Þ

Figs 4a–4f to 9a–9f demonstrate the PACF results of multi-scalar SPI at Almora, Bageshwar,

Champawat, Nainital, Pithoragarh, and Pantnagar stations, respectively. The dotted red line in

these figures indicates the UCL and LCL at 5% SL if PACF value crosses these limits counted

statistically significant, and utilized for CANFIS, MLPNN, and MLR models development.

Table 2 provides the details of developed models with inputs and outputs, while Table 3 sum-

marizes the details of training (70%) and testing (30%) datasets percentages of multi-scalar SPI

utilized by CANFIS, MLPNN and MLR models for MD prediction at six different study

stations.

2.7 Performance evaluation metrics

The predictive performance of proposed and other models (i.e., CANFIS, MLPNN, and MLR)

were examined by using several performance evaluation metrices; the RMSE (root mean

square error), NSE (Nash-Sutcliffe efficiency), COC (coefficient of correlation), andWI (Will-

mott index) [42], and by pictorial inspection through scatter plot and Taylor diagram [43].

Their mathematical expression can be written as:
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Fig 5. The statitstical calculation of the partial autocorrelation function (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24
at Bageshwar station.

https://doi.org/10.1371/journal.pone.0233280.g005

Fig 4. The statitstical calculation of the partial autocorrelation function PACF for (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and
(f) SPI-24 at Alomra station.

https://doi.org/10.1371/journal.pone.0233280.g004
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Fig 7. The statitstical calculation of the partial autocorrelation function PACF for (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and
(f) SPI-24 at Nainital station.

https://doi.org/10.1371/journal.pone.0233280.g007

Fig 6. The statitstical calculation of the partial autocorrelation function PACF for (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and
(f) SPI-24 at Champawat station.

https://doi.org/10.1371/journal.pone.0233280.g006
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Fig 9. The statitstical calculation of the partial autocorrelation function PACF for (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and
(f) SPI-24 at Pantnagar station.

https://doi.org/10.1371/journal.pone.0233280.g009

Fig 8. The statitstical calculation of the partial autocorrelation function PACF for (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and
(f) SPI-24 at Pithoragarh station.

https://doi.org/10.1371/journal.pone.0233280.g008
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Table 2. Output-input relationship of SPI for prediction using CANFIS, MLPNN andMLRmodels at study
stations.

Name of station Output Input variables

Almora SPI-1 SPI-1t-1, SPI-1t-5, SPI-1t-12

SPI-3 SPI-3t-1, SPI-3t-2, SPI-3t-3, SPI-3t-4, SPI-3t-6, SPI-3t-7

SPI-6 SPI-6t-1, SPI-6t-3, SPI-6t-4, SPI-6t-6, SPI-6t-7, SPI-6t-12

SPI-9 SPI-9t-1, SPI-9t-6, SPI-9t-7, SPI-9t-8, SPI-9t-9, SPI-9t-10

SPI-12 SPI-12t-1, SPI-12t-3, SPI-12t-6, SPI-12t-9, SPI-12t-10, SPI-12t-12

SPI-24 SPI-24t-1, SPI-24t-2, SPI-24t-3, SPI-24t-7, SPI-24t-11, SPI-24t-12

Bageshwar SPI-1 SPI-1t-1, SPI-1t-4, SPI-1t-7

SPI-3 SPI-3t-1, SPI-3t-2, SPI-3t-3, SPI-3t-4, SPI-3t-6

SPI-6 SPI-6t-1, SPI-6t-2, SPI-6t-3, SPI-6t-5, SPI-6t-6, SPI-6t-7, SPI-6t-12

SPI-9 SPI-9t-1, SPI-9t-6, SPI-9t-7, SPI-9t-8, SPI-9t-9, SPI-9t-10

SPI-12 SPI-12t-1, SPI-12t-2, SPI-12t-3, SPI-12t-6, SPI-12t-9, SPI-12t-10, SPI-12t-12

SPI-24 SPI-24t-1, SPI-24t-2, SPI-24t-3, SPI-24t-6, SPI-24t-7, SPI-24t-10, SPI-24t-11, SPI-24t-12

Champawat SPI-1 SPI-1t-1, SPI-1t-4, SPI-1t-6, SPI-1t-7, SPI-1t-11

SPI-3 SPI-3t-1, SPI-3t-2, SPI-3t-3, SPI-3t-4, SPI-3t-6

SPI-6 SPI-6t-1, SPI-6t-2, SPI-6t-3, SPI-6t-6, SPI-6t-7, SPI-6t-10, SPI-6t-12

SPI-9 SPI-9t-1, SPI-9t-6, SPI-9t-8, SPI-9t-9, SPI-9t-10

SPI-12 SPI-12t-1, SPI-12t-2, SPI-12t-3, SPI-12t-6, SPI-12t-9, SPI-12t-10

SPI-24 SPI-24t-1, SPI-24t-2, SPI-24t-3, SPI-24t-7, SPI-24t-11, SPI-24t-12

Nainital SPI-1 SPI-1t-1, SPI-1t-4, SPI-1t-11, SPI-1t-12

SPI-3 SPI-3t-1, SPI-3t-2, SPI-3t-3, SPI-3t-4, SPI-3t-6, SPI-3t-7

SPI-6 SPI-6t-1, SPI-6t-2, SPI-6t-3, SPI-6t-5, SPI-6t-6, SPI-6t-7, SPI-6t-12

SPI-9 SPI-9t-1, SPI-9t-2, SPI-9t-6, SPI-9t-8, SPI-9t-9, SPI-9t-10

SPI-12 SPI-12t-1, SPI-12t-3, SPI-12t-6, SPI-12t-9, SPI-12t-10, SPI-12t-12

SPI-24 SPI-24t-1, SPI-24t-2, SPI-24t-3, SPI-24t-7, SPI-24t-10, SPI-24t-11, SPI-24t-12

Pithoragarh SPI-1 SPI-1t-1, SPI-1t-2, SPI-1t-5, SPI-1t-10, SPI-1t-11, SPI-1t-12

SPI-3 SPI-3t-1, SPI-3t-2, SPI-3t-3, SPI-3t-4, SPI-3t-6, SPI-3t-7, SPI-3t-9, SPI-3t-10, SPI-3t-11

SPI-6 SPI-6t-1, SPI-6t-2, SPI-6t-6, SPI-6t-7, SPI-6t-9, SPI-6t-12

SPI-9 SPI-9t-1, SPI-9t-2, SPI-9t-6, SPI-9t-8, SPI-9t-9, SPI-9t-10

SPI-12 SPI-12t-1, SPI-12t-2, SPI-12t-6, SPI-12t-10

SPI-24 SPI-24t-1, SPI-24t-2, SPI-24t-3, SPI-24t-7, SPI-24t-10, SPI-24t-11

Pantnagar SPI-1 SPI-1t-1, SPI-1t-11

SPI-3 SPI-3t-1, SPI-3t-3, SPI-3t-4, SPI-3t-9

SPI-6 SPI-6t-1, SPI-6t-6, SPI-6t-7, SPI-6t-12

SPI-9 SPI-9t-1, SPI-9t-8, SPI-9t-9, SPI-9t-10

SPI-12 SPI-12t-1, SPI-12t-2, SPI-12t-3

SPI-24 SPI-24t-1, SPI-24t-2, SPI-24t-3, SPI-24t-12

https://doi.org/10.1371/journal.pone.0233280.t002

Table 3. Percentage of training and testing datasets for CANFIS, MLPNN andMLRmodels at study stations.

Name of station Training data (70%) Testing data (30%)

Almora 1901–1981 1982–2015

Bageshwar 1901–1981 1982–2015

Champawat 1901–1981 1982–2015

Nainital 1901–1981 1982–2015

Pithoragarh 1901–1981 1982–2015

Pantnagar 1961–2000 2001–2016

https://doi.org/10.1371/journal.pone.0233280.t003
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1. Root mean square error [44,45]:

RMSE ¼
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2. Nash-Sutcliffe efficiency [46]:
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3. Coefficient of correlation [47,48]:
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4. Willmott index [49,50]:

WI ¼ 1�
PN

i¼1
ðSPIpre;i � SPIcal;iÞ

2
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i¼1
ðjSPIpre;i � SPIcal j þ jSPIcal;i � SPIcal jÞ
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where, SPIpre and SPIcal are the predicted and calculated multi time scale SPI values for the

ith dataset, SPIpre and SPIcal are the average of predicted and calculated multi time scale

SPI values, jSPIpre;i � SPIcal j represent the absolute difference between predicted and cal-

culated mean values, jSPIcal;i � SPIcal j represent the absolute difference between calcu-

lated and their mean values, and N is the total number of observations in a dataset.

3. Results of application and discussion

The SPI was computed at multi time scales (1, 3, 6, 9, 12, and 24-months) for meteorological

drought (MD) prediction in the Kumaon region by the application of relatively new AI model

called CANFIS. Two predictive models (i.e., MLPNN and MLR) were established for valida-

tion. Six meteorological stations, including Almora, Bageshwar, Champawat, Nainital, Pithor-

agarh, and Pantnagar, were used for modeling. Optimal inputs (lags) were nominated through

PACF at 5% SL for all SPI scales. Then models were evaluated statistically and graphically. The

model having minimal absolute error measures (RMSE) and highest (NSE, COC, andWI)

best-goodness-of-fit over the testing phase recognized healthier model for MD prediction over

the study area. The MD prediction results of applied AI models are discussed in the following

sub-sequent section.

The MD condition was predicted by finding the suitability of CANFIS, MLPNN and MLR

models for all SPI scales at six study stations. All the formulated models were trained with 70%

dataset, whereas the remaining 30% dataset was used for testing. Tables 4, 5 and 6 summarize

the RMSE, NSE, COC andWI values of CANFIS, MLPNN, and MLRmodels over the testing

phase. It was noticed from these tables that the CANFIS model produces best prediction for

Almora station over SPI-1, SPI-3, SPI-6, SPI-9, and SPI-12 (RMSE = 0.952, 0.486, 0.267, 0.292,

and 0.158; NSE = 0.136, 0.793, 0.942, 0.921, and 0.973; COC = 0.533, 0.932, 0.987, 0.967, and
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0.989; WI = 0.373, 0.924, 0.982, 0.977, and 0.993), for Bageshwar station over all SPI scales

(RMSE = 1.116, 0.562, 0.402, 0.298, 0.297, and 0.339; NSE = 0.074, 0.755, 0.886, 0.937, 0.941,

and 0.912; COC = 0.383, 0.907, 0.984, 0.982, 0.989, and 0.981; WI = 0.234, 0.906, 0.960, 0.981,

0.982, and 0.971), for Champawat station over SPI-1, SPI-3, SPI-6, SPI-9, and SPI-12

(RMSE = 0.820, 0.472, 0.358, 0.302, and 0.369; NSE = 0.205, 0.809, 0.908, 0.923, and 0.879;

COC = 0.539, 0.927, 0.984, 0.982, and 0.981; WI = 0.432, 0.932, 0.970, 0.977, and 0.962), for

Nainital station over SPI-1, SPI-3, SPI-6, SPI-9, and SPI-24 (RMSE = 0.949, 0.524, 0.332, 0.266,

and 0.328; NSE = 0.180, 0.782, 0.918, 0.946, and 0.892; COC = 0.644, 0.951, 0.988, 0.985, and

Table 4. RMSE, NSE, COC andWI values for multi-scalar SPI by CANFIS model during testing period at study stations.

Name of station Index Model structure Testing period

RMSE NSE COC WI

Almora SPI-1 Gauss-3 0.952 0.136 0.533 0.373

SPI-3 Gauss-2 0.486 0.793 0.932 0.924

SPI-6 Gauss-2 0.267 0.942 0.987 0.982

SPI-9 Gauss-2 0.292 0.921 0.967 0.977

SPI-12 Gauss-2 0.158 0.973 0.989 0.993

SPI-24 Gauss-2 0.233 0.922 0.964 0.978

Bageshwar SPI-1 Gauss-3 1.116 0.074 0.383 0.234

SPI-3 Gauss-2 0.562 0.755 0.907 0.906

SPI-6 Gauss-2 0.402 0.886 0.984 0.960

SPI-9 Gauss-2 0.298 0.937 0.982 0.981

SPI-12 Gauss-2 0.297 0.941 0.989 0.982

SPI-24 Gauss-2 0.399 0.912 0.981 0.971

Champawat SPI-1 Gauss-2 0.820 0.205 0.539 0.432

SPI-3 Gauss-2 0.472 0.809 0.927 0.932

SPI-6 Gauss-2 0.358 0.908 0.984 0.970

SPI-9 Gauss-2 0.302 0.923 0.982 0.977

SPI-12 Gauss-2 0.369 0.879 0.981 0.962

SPI-24 Gauss-2 0.458 0.760 0.956 0.913

Nainital SPI-1 Gauss-2 0.949 0.180 0.644 0.363

SPI-3 Gauss-2 0.524 0.782 0.951 0.915

SPI-6 Gauss-2 0.332 0.918 0.988 0.973

SPI-9 Gauss-2 0.266 0.946 0.985 0.984

SPI-12 Gauss-2 0.205 0.968 0.989 0.991

SPI-24 Gauss-2 0.328 0.892 0.960 0.967

Pithoragarh SPI-1 Gauss-2 0.945 0.305 0.771 0.523

SPI-3 Gauss-2 0.702 0.670 0.972 0.841

SPI-6 Gauss-2 0.380 0.921 0.990 0.974

SPI-9 Gauss-2 0.392 0.925 0.990 0.976

SPI-12 Gauss-2 0.380 0.935 0.990 0.979

SPI-24 Gauss-2 0.675 0.811 0.966 0.927

Pantnagar SPI-1 Gauss-2 0.744 0.303 0.737 0.539

SPI-3 Gauss-2 0.447 0.809 0.950 0.928

SPI-6 Gauss-2 0.272 0.931 0.972 0.980

SPI-9 Gauss-2 0.189 0.954 0.977 0.988

SPI-12 Gauss-3 0.077 0.991 0.996 0.998

SPI-24 Gauss-2 0.061 0.992 0.997 0.998

https://doi.org/10.1371/journal.pone.0233280.t004
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0.960; WI = 0.363, 0.915, 0.973, 0.984, and 0.967), for Pithoragarh station over SPI-6, and SPI-

9 (RMSE = 0.380, and 0.392; NSE = 0.921, and 0.925; COC = 0.990, and 0.990; WI = 0.974, and

0.976), and for Pantnagar station over all SPI scales (RMSE = 0.744, 0.447, 0.272, 0.189, 0.077,

and 0.061; NSE = 0.303, 0.809, 0.931, 0.954, 0.991, and 0.992; COC = 0.737, 0.950, 0.972, 0.977,

0.996, and 0.997; WI = 0.539, 0.928, 0.980, 0.988, 0.998, and 0.998). Similarly, MLPNNmodel

best MD prediction for SPI-24 (RMSE = 0.197; NSE = 0.944; COC = 0.975; and WI = 0.984) at

Almora, SPI-12 (RMSE = 0.193; NSE = 0.972; COC = 0.989; andWI = 0.992) at Nainital, and

SPI-1 and SPI-3 (RMSE = 0.909, 0.518; NSE = 0.357, 0.820; COC = 0.781, 0.954; and

Table 5. RMSE, NSE, COC andWI values for multi-scalar SPI by MLPNNmodel during testing period at study stations.

Name of station Index Model structure Testing period

RMSE NSE COC WI

Almora SPI-1 3-7-1 0.959 0.123 0.484 0.363

SPI-3 6-13-1 0.571 0.715 0.868 0.895

SPI-6 6-13-1 0.291 0.931 0.984 0.979

SPI-9 6-13-1 0.322 0.904 0.956 0.972

SPI-12 6-13-1 0.163 0.971 0.988 0.992

SPI-24 6-13-1 0.197 0.944 0.975 0.984

Bageshwar SPI-1 3-6-1 1.137 0.038 0.220 0.209

SPI-3 5-10-1 0.592 0.728 0.888 0.895

SPI-6 7-10-1 0.434 0.868 0.968 0.954

SPI-9 6-9-1 0.381 0.897 0.969 0.967

SPI-12 7-10-1 0.355 0.912 0.980 0.974

SPI-24 8-17-1 0.450 0.888 0.982 0.961

Champawat SPI-1 5-11-1 0.835 0.175 0.449 0.453

SPI-3 5-9-1 0.484 0.799 0.926 0.927

SPI-6 7-15-1 0.365 0.905 0.973 0.970

SPI-9 5-11-1 0.415 0.856 0.962 0.954

SPI-12 6-13-1 0.399 0.858 0.974 0.956

SPI-24 6-11-1 0.522 0.688 0.933 0.881

Nainital SPI-1 4-9-1 0.967 0.148 0.547 0.336

SPI-3 6-8-1 0.540 0.769 0.914 0.915

SPI-6 7-11-1 0.381 0.891 0.975 0.965

SPI-9 6-8-1 0.350 0.906 0.969 0.972

SPI-12 6-13-1 0.193 0.972 0.989 0.992

SPI-24 7-10-1 0.338 0.885 0.958 0.964

Pithoragarh SPI-1 6-8-1 0.909 0.357 0.781 0.585

SPI-3 9-18-1 0.518 0.820 0.954 0.933

SPI-6 6-8-1 0.434 0.987 0.979 0.965

SPI-9 6-11-1 0.544 0.857 0.972 0.948

SPI-12 4-9-1 0.608 0.833 0.966 0.938

SPI-24 6-11-1 0.815 0.725 0.940 0.882

Pantnagar SPI-1 2-3-1 0.767 0.258 0.722 0.485

SPI-3 4-5-1 0.499 0.791 0.926 0.922

SPI-6 4-6-1 0.365 0.877 0.946 0.962

SPI-9 4-7-1 0.219 0.938 0.970 0.983

SPI-12 3-7-1 0.086 0.990 0.995 0.997

SPI-24 4-9-1 0.088 0.981 0.993 0.995

https://doi.org/10.1371/journal.pone.0233280.t005
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WI = 0.585, 0.933) Pithoragarh station. The MLRmodel achieved poor results for all SPI scales

at all stations, expect Champawat (SPI-24), and Pithoragarh (SPI-12, and SPI-24).

Figs 10a–10f to 15a–15f illustrate the temporal variation “scatter plot” among predicted vs

calculated multi-time scale SPI observation generated by applied models (i.e., CANFIS,

MLPNN and MLR) during the testing phase at six study stations. As seen from these figures

the estimates of CANFIS model are adjacent to the 1:1 (best fit) line for SPI-1, SPI-3, SPI-6,

SPI-9, and SPI-12 at Almora and Champawat stations, for SPI all scales at Bageshwar and

Pantnagar stations, for SPI-1, SPI-3, SPI-6, SPI-9, and SPI-24 at Nainital station, and for SPI-6

Table 6. RMSE, NSE, COC andWI values for multi-scalar SPI by MLRmodel during testing period at study stations.

Name of station Index Testing period

RMSE NSE COC WI

Almora SPI-1 1.021 0.006 0.168 0.223

SPI-3 0.740 0.521 0.730 0.820

SPI-6 0.680 0.623 0.796 0.883

SPI-9 0.543 0.728 0.858 0.922

SPI-12 0.373 0.848 0.924 0.959

SPI-24 0.460 0.696 0.838 0.911

Bageshwar SPI-1 1.158 0.004 0.082 0.135

SPI-3 0.847 0.442 0.665 0.775

SPI-6 0.668 0.687 0.832 0.892

SPI-9 0.517 0.810 0.901 0.944

SPI-12 0.403 0.893 0.947 0.969

SPI-24 0.421 0.902 0.952 0.972

Champawat SPI-1 0.895 0.053 0.234 0.264

SPI-3 0.770 0.491 0.702 0.810

SPI-6 0.709 0.639 0.803 0.888

SPI-9 0.548 0.749 0.872 0.923

SPI-12 0.409 0.851 0.928 0.959

SPI-24 0.421 0.798 0.897 0.942

Nainital SPI-1 1.026 0.042 0.232 0.260

SPI-3 0.766 0.535 0.745 0.815

SPI-6 0.602 0.729 0.860 0.914

SPI-9 0.460 0.837 0.919 0.953

SPI-12 0.375 0.892 0.947 0.971

SPI-24 0.439 0.807 0.900 0.945

Pithoragarh SPI-1 1.041 0.157 0.438 0.407

SPI-3 0.723 0.649 0.815 0.868

SPI-6 0.553 0.832 0.916 0.948

SPI-9 0.422 0.914 0.959 0.975

SPI-12 0.296 0.960 0.982 0.989

SPI-24 0.434 0.922 0.961 0.979

Pantnagar SPI-1 0.884 0.015 0.145 0.251

SPI-3 0.774 0.497 0.711 0.793

SPI-6 0.648 0.612 0.785 0.877

SPI-9 0.448 0.743 0.865 0.928

SPI-12 0.292 0.881 0.940 0.969

SPI-24 0.168 0.931 0.966 0.983

https://doi.org/10.1371/journal.pone.0233280.t006
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and SPI-9 at Pithoragarh station. Additionally, these figures also show a similar pattern of

results as mentioned Tables 4 to 6.

Taylor diagram [43] concept was utilized to map the spatial pattern of calculated (reference

field) vs predicted (test field) multi-time scale SPI value by applied models (i.e., CANFIS,

MLPNN, and MLR) through the testing phase over the study region. Taylor diagram is a

2-dimensional graphical presentation incorporated the RMSE, correlation coefficient, and

standard deviation metrics together in one frame as the polar plot demonstrated in Figs 16a–

16f to 21a–21f. It was recorded from these figures that the CANFIS, MLPNN and MLR models

have a similar outline of results as observed in Tables 4 to 6 and Figs 10a–10f to 15a–15f.

Therefore, it is suggested that the applied models with optimal lags can predict multi-time

scale SPI effectively at six study stations.

The viability of relatively new artificial intelligence model called CANFIS model was

assessed for predicting the MD at six stations; Almora, Bageshwar, Champawat, Nainital,

Pithoragarh, and Pantnagar, based, based on multi-scalar standardized precipitation index

(SPI). The input variables were selected, based on statistical analysis (i.e., ACF and PACF) of

the most correlated lags to predict multiple SPI scale values. Based on the prediction accuracy

of the proposed CANFIS model, the proposed model distinguished itself over the competing

MLPNN and the MLR models. The MD prediction by the CANFIS model over the study sta-

tions displays the latent of the model (Table 7). It mimicked the actual trend of the SPI in this

particular region and demonstrated an intelligent system that can be valuable for water

resources managers and policymakers for drought mitigation.

Fig 10. Scatter plots of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values by CANFIS,
MLPNN andMLRmodels in testing period at Almora station.

https://doi.org/10.1371/journal.pone.0233280.g010
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Fig 12. Scatter plots of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values by CANFIS,
MLPNN andMLRmodels in testing period at Champawat station.

https://doi.org/10.1371/journal.pone.0233280.g012

Fig 11. Scatter plots of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values by CANFIS,
MLPNN andMLRmodels in testing period at Bageshwar station.

https://doi.org/10.1371/journal.pone.0233280.g011
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Fig 14. Scatter plots of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values by CANFIS,
MLPNN andMLRmodels in testing period at Pithoragarh station.

https://doi.org/10.1371/journal.pone.0233280.g014

Fig 13. Scatter plots of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values by CANFIS,
MLPNN andMLRmodels in testing period at Nainital station.

https://doi.org/10.1371/journal.pone.0233280.g013
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The results of proposed model were compared and validated against the nature-inspired

algorithm and stochastic (time-series) model built by numerous drought indices (DIs). For

instance, there are studies conducted on the SPI prediction using various versions of AI mod-

els [40,51–55]. Memarian et al. [56] applied the CANFIS model to predict the meteorological

drought in Birjand, Iran using global climatic indicators and lagged values of SPI. They found

a better predictive capability of the CANFIS model in the study region. Fung et al. [57] fore-

casted meteorological drought in Langat River basin, Malaysia using hybrid wavelet integrated

with boosting-SVR (W-B-SVR), multi-input-fuzzy-SVR (W-MI-F-SVR), and weighted-fuzzy-

SVR (W-WF-SVR) models based on 1, 3, and 6-month SPEI. Results reveal the superior

multi-scales SPEI was forecasted by the W-WF-SVR model. Kisi et al. [58] examined the

potential of hybrid ANFIS-PSO (particle swarm optimization), ANFIS-GA (genetic algo-

rithm), ANFIS-ACO (ant colony optimizer), ANFIS-BOA (butterfly optimization algorithm)

against classical ANFIS to forecast the meteorological drought at three synoptic stations

located in Iran, based on multi-scalar SPI. They fund the superior performance of hybrid

ANFIS models for forecasting SPI3, SPI6, SPI9, and SPI12 at study stations.

The reported literature evidenced the capability of ML models in drought metrological

drought prediction. The overall finding of this research suggested that AI models (i.e., CANFIS

&MLPNN) achieved better meteorological drought forecasting at different time scales at the

considered stations. As future research devotion, sensitivity analysis can be conducted for the

data, input variables and models to investigate the potential source influencing the modeling

performance results.

Fig 15. Scatter plots of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values by CANFIS,
MLPNN andMLRmodels in testing period at Pantnagar station.

https://doi.org/10.1371/journal.pone.0233280.g015
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Fig 16. Taylor diagram of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values
by CANFIS, MLPNN andMLRmodels in testing period at Almora station.

https://doi.org/10.1371/journal.pone.0233280.g016
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Fig 17. Taylor diagram of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values
by CANFIS, MLPNN andMLRmodels in testing period at Bageshwar station.

https://doi.org/10.1371/journal.pone.0233280.g017
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Fig 18. Taylor diagram of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values
by CANFIS, MLPNN andMLRmodels in testing period at Champawat station.

https://doi.org/10.1371/journal.pone.0233280.g018
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Fig 19. Taylor diagram of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values
by CANFIS, MLPNN andMLRmodels in testing period at Nainital station.

https://doi.org/10.1371/journal.pone.0233280.g019
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Fig 20. Taylor diagram of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values
by CANFIS, MLPNN andMLRmodels in testing period at Pithoragarh station.

https://doi.org/10.1371/journal.pone.0233280.g020
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Fig 21. Taylor diagram of predicted and calculated (a) SPI-1, (b) SPI-3, (c) SPI-6, (d) SPI-9, (e) SPI-12, and (f) SPI-24 values
by CANFIS, MLPNN andMLRmodels in testing period at Pantnagar station.

https://doi.org/10.1371/journal.pone.0233280.g021

PLOS ONE Drought index prediction using advanced fuzzy logic model

PLOSONE | https://doi.org/10.1371/journal.pone.0233280 May 21, 2020 27 / 31

https://doi.org/10.1371/journal.pone.0233280.g021
https://doi.org/10.1371/journal.pone.0233280


4. Conclusion

This research implements a relatively new AI model (i.e., CANFIS) to predict meteorological

drought using multiple SPI scales at Almora, Bageshwar, Champawat, Nainital, Pithoragarh

and Pantnagar stations positioned in the Kumaon region of Uttarakhand State, India. The

results yielded by the CANFIS model were compared against the MLPNN and MLR models

for each study station through performance evaluation indicators (RMSE, NSE, COC, and

WI), and visual explanation (i.e., scatter plot and Taylor diagram). According to the results of

comparison, the best model were obtained with Gaussian MFs, TSK fuzzy model, Tanh activa-

tion function, D-B-D learning algorithm at Almora and Champawat stations (SPI-1, SPI-3,

SPI-6, SPI-9, and SPI-12), at Bageshwar and Pantnagar stations (for all SPI scales), at Nainital

station (SPI-1, SPI-3, SPI-6, SPI-9, and SPI-24), and at Pithoragarh station (SPI-6, and SPI-9).

Consequently, the MLPNNmodel achieves the best prediction for SPI-24 (6-13-1) at Almora

station, for SPI-12 (6-13-1) at Nainital station, and SPI-1 (6-8-1) and SPI-3 (9-18-1) at Pithora-

garh station. The MLR model attains worst prediction at all stations and SPI scales, expect SPI-

24 at Champawat station, and SPI-12 and 24 at Pithoragarh station for prediction of meteoro-

logical drought. Therefore, this study demonstrates the worth utility machine learning models;

CANFIS and MLPNN for the magnificent prediction of current SPI based on antecedent

phases. Furthermore, the MD prediction through multi-time scale SPI observations by

machine learning models will hydrologists, agriculturists, water managers, and policymakers

to project drought mitigation strategy for sustainable planning and management of water

resources in the study region.
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