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Abstract

Quantification of physiological changes in plants can

capture different drought mechanisms and assist in selec-

tion of tolerant varieties in a high throughput manner. In

this context, an accurate 3D model of plant canopy provides

a reliable representation for drought stress characteriza-

tion in contrast to using 2D images. In this paper, we pro-

pose a novel end-to-end pipeline including 3D reconstruc-

tion, segmentation and feature extraction, leveraging deep

neural networks at various stages, for drought stress study.

To overcome the high degree of self-similarities and self-

occlusions in plant canopy, prior knowledge of leaf shape

based on features from deep siamese network are used to

construct an accurate 3D model using structure from mo-

tion on wheat plants. The drought stress is characterized

with a deep network based feature aggregation. We com-

pare the proposed methodology on several descriptors, and

show that the network outperforms conventional methods.

1. Introduction

Drought stress is a primary factor for limiting crop pro-

ductivity [17]. Thus, there is an urgent need for breed-

ing high yielding cultivars. Quantification of physiologi-

cal traits (plant phenotyping) can explain diverse drought

stress responses and assist in selection of these cultivars in

a high throughput manner. Current methods for drought

stress study are predominantly based on extraction of fea-

tures from 2D images [17]. Due to high self-occlusions in

plants, this results in information loss since 2D images are

canopy projections on a plane [7]. Thus, precise 3D model-

ing of plant canopy is required for an accurate quantification

of different phenotypic traits such as wilting, biomass etc.

for drought stress analysis.

Recently, many methods that use image samples to di-

rectly model the plant are primarily based on visual hull

[21] or Multi-View Stereo (MVS) [42]. Kumar et al. [20]
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employed visual hull algorithm for 3D reconstruction with

a static plant canopy and camera rotating at fixed height

around it using a turntable setup. Cai and Miklavcic [6]

utilized 2D skeletons to overcome the difficulties such as

overlapping plant parts and broken segments for a smooth

3D reconstruction. Kumar et al. [19] presented a mirror

based setup that enabled the back of the plant to be captured

in the front view, however, it resulted in loss of resolution.

Visual hull methods for reconstruction of thin leaf surfaces

with discontinuities in plant canopy often result in overesti-

mated models. In contrast to the previously mentioned ap-

proaches, authors in [37] employed multi-view stereo and

Structure from Motion (SfM) to obtain initial sparse point

cloud and then patch based MVS (PMVS) was used to ob-

tain dense point clouds to represent basil, tomato plants and

mint leaves. Lou et al. [23] also utilized SfM followed

by stereo matching and depth-map merging process for 3D

plant modeling. These studies are suitable for plants with

broad leaves but for thin leaved plants (For Ex: wheat, rice)

such approaches generate point cloud with hole and gaps.

Thus, Pound et al. [30] presented a patch based method to

obtain dense model of rice and wheat canopy. They uti-

lized correspondence based methods [11, 51] to obtain ini-

tial point clouds and these points are segmented into small

patches (leaf segments) developed individually using level

sets, which optimizes the model based on neighboring in-

formation. But, the cluster size to obtain leaf level segmen-

tation before the level set step depends on the complexity of

the plant structure and is a user driven parameter.

The methods discussed previously indicate that the 3D

modeling of plants is a challenging task due to high self-

occlusions and leaves spanning arbitrary directions [50].

Thus, in contrast to the aforementioned image based meth-

ods, we propose to use a prior on the leaf shape of the plant

for a robust and dense 3D reconstruction. This is followed

by 3D segmentation to obtain the point cloud corresponding

only to the plant canopy from the reconstruction. Another

challenge is the extraction of relevant traits that success-

fully encapsulates the physiological changes in response to

drought. Therefore, motivated by recent success of deep
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neural networks, in this work we propose to take a learn-

ing based approach over 3D models of plants for comput-

ing such traits. The 3D features are directly extracted from

the obtained point cloud using a deep neural network and is

fused with learned local features from the same model for

aggregating local and global information. We compare the

features from the deep neural network with several base-

lines based on deep and local 3D descriptors to demonstrate

the effectiveness of the learned features in characterizing

the subtle differences in the plant architecture under drought

stress. In view of the above, the following are the contribu-

tions of this paper:

• We reconstruct a 3D model of plants at mature growth

stages with high degree of occluded leaves, by infus-

ing keypoints and descriptors from a deep network to

a Structure from Motion (SfM) pipeline. We show that

this method is better than traditional keypoint detector

and descriptors used with SfM for 3D plant reconstruc-

tion.

• We propose and evaluate an aggregation of learned

global and local features with a deep neural network

for 3D Point Cloud. We show that the learned features

are capable of encoding structural and visual changes

in plant during drought stress. Although many meth-

ods have been proposed for the purpose of drought

stress identification [45, 3], but to the best of our

knowledge, this is the first work that utilizes deep net-

works on 3D data to learn an implicit representation of

features for drought stress characterization. We eval-

uate the features from deep networks against conven-

tional descriptors, The reliability of different 3D fea-

tures are shown based on drought stress classification

demonstrating that deep networks provide better accu-

racy and lesser computational complexity at test time.

The rest of the paper is organized as follows. In Sec-

tion 2, we discuss literature related to the proposed work

followed by methodology in Section 3. Finally, Section 5

contains the concluding comments.

2. Related Work

Lang [22] presented a contact based method by employ-

ing a mechanical arm with potentiometers to touch the plant

surface and record its joint rotations to obtain 3D models.

This method is semi-invasive as the apparatus can change

the target canopy structure. Another approach [46] used

sonic digitizer, where the pointer was an ultrasound emitter

and based on the time intervals between emission and re-

ception of sound in the sensor, the position was computed.

But, this approach is sensitive to the structure of the plant

canopy and wind. These contact based techniques are la-

bor intensive and low throughput as experts are needed to

register the measurement. Another set of approaches is to

create plant models based on compact user defined rules.

Generative L-systems [32] rules motivated by plant growth

and relational growth models have been applied to a variety

of problems. These methods are used for creating synthetic

plant structures but they do not capture the detailed structure

of real plants and the parameters used for their synthesis are

difficult to use for a non-expert.

Light Detection and Ranging (LiDAR) sensing technol-

ogy has also been utilized to obtain 3D models of plants.

Authors in [18] employed laser scanners to model 3D sur-

face of leaves and petioles as polygonal meshes of Ara-

bidopsis thaliana. Li et al. [33] presented a framework

to track and detect plant growth by a forward-backward 3D

point cloud analysis, where the 3D point cloud was pro-

duced based on a structured light scanner over time. Mesh

based 3D LIDAR approach was proposed by Paproki et

al. [28] where the plant was partitioned into morphologi-

cal regions. The robustness of the presented method was

based on the calculation of Leaf Area Index (LAI). Sirault

et al. [47] fused PMVS, voxel coloring and LiDAR data us-

ing registration algorithms in their digitizing platform. The

camera was calibrated using a fixed camera setup with pot-

ted plants on a precise turntable. Although these methods

can deal with complex plant boundaries, some laser-based

approaches fail in direct sunlight. Moreover, the scanning

time increases with the resolution of the point cloud and it

requires expensive equipment inaccessible to many.

In contrast to LiDAR approaches, Kinect sensor systems

simultaneously capture both depth and color images thus,

making it suitable for phenotypic analysis. Azzari et al. [1]

utilized a Microsoft Kinect sensor combined with the point

cloud library to obtain the depth images and extract proxy

indices for plant volume. Alternatively, Cai [5] integrated

both visible image and Kinect depth map to compute a ro-

bust depth estimate. Since the Kinect sensor has a compa-

rably low-resolution, the depth estimation at object bound-

aries becomes unreliable. Thus, it may not be able to cap-

ture the 3D information of plants with narrow leaves. The

narrow leaves can fall between the key points of the emitted

pattern, resulting in decoding errors of the structured light

patterns.

Recently, several architectures have been proposed with

deep neural networks for plant phenotyping [29, 26, 49] and

leaf segmentation [36, 34]. While they do not address the

problem of drought stress, these work aim at 2D imaging

modality instead of 3D. Moreover, deep neural networks

capable of processing 3D data have come up very recently

[25, 35, 12], explaining the lack of representative work on

plant phenotyping with 3D and deep neural networks.
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Figure 1. Flow diagram for the proposed approach

3. Methodology

The end to end pipeline is shown in Figure 1. The pro-

posed approach begins with 3D reconstruction using Struc-

ture from Motion where we use learned keypoints and de-

scriptors obtained by fine-tuning a deep network. This is

followed by segmenting the 3D plant canopy from the re-

constructed point cloud. After this, techniques based on

local and deep descriptors are used to directly extract rel-

evant features from the point cloud. These features are then

utilized for drought stress classification of wheat plants.

3.1. 3D Plant Reconstruction using Learned Invari-
ant Feature Transform

Our 3D reconstruction pipeline utilizes recent progress

in deep networks [25, 35, 12]. Specifically, we modify the

standard SfM pipeline as proposed in [48] to use learned

keypoints and descriptors based on deep networks. We em-

ploy Learned Invariant Feature Transform (LIFT) [52] for

learning the keypoint detector and descriptor instead of the

Scale-Invariant Feature Transform (SIFT) [24]. The out-

put of the proposed framework is shown in Figure 2. The

authors in [48] used SIFT detector and descriptors for find-

ing correspondence among images. SIFT is a hand-crafted

feature where keypoints are found by scale-space analysis

to identify the most discriminative and transform invariant

regions in an image while the descriptor encapsulates the

information within a pre-defined region around the detected

keypoints. On the other hand, keypoints in LIFT correspond

to distinctive regions, where the conditions defining distinc-

tiveness are learned with a deep siamese network on the

dataset for the target domain. Additionally, the SIFT de-

tector and descriptor are designed to work independently

of each other, while in case of LIFT, the learning of detec-

tor and descriptor is achieved with the help of an end-to-

end pipeline. Therefore, SIFT is suitable for applications

where the characteristics of an image follow the underlying

assumptions behind the design of SIFT while LIFT aims at

adapting to the distinctive characteristics within the images

of the problem under consideration.

In our initial experiments, we observed that SIFT re-

sulted in point clouds with holes along the base and leaf

tips. The reason being that images of a plant from different

viewing angles appeared similar and suffered from heavy

occlusion of leaves in wheat plants (Figure 2), resulting in

false matches by SIFT in a few regions. We performed ex-

periments with Speeded-Up Robust features (SURF) [2] as

well, and observed the same problems (holes). Since the

structure of plants is complicated (thin, smooth, heavily oc-

cluded, highly similar leaves), we resorted to the current

setting of leveraging learned keypoints and descriptors for

assisting the reconstruction pipeline. As discussed above,

due to the self similar, low texture regions and high de-

gree of occlusion in plant images, SIFT and SURF failed to

characterize regions (lack of sufficient and appropriate key-

points) for acceptable point cloud reconstructions. Many

recent works utilize deep networks to learn patch based de-

scriptors [44, 53, 52, 16] from images. Therefore, we se-

lected LIFT [52] for its ability to learn keypoints and cor-

responding descriptor based upon specific characteristics of

the dataset. This becomes important in the current scenario

since plant images present unique challenges unlike other

type of images.

Learning deep network based patch descriptors and de-
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tectors requires us to train the detector-descriptor with

specific examples. This allows the network to adjust to

intricacies in the structure of the plants, especially the

curvature and variation in color (a key component for

identifying drought stress) etc. We perform training of

the LIFT detector-orientation estimator-descriptor pipeline

with a leaf correspondence dataset (described ahead) fol-

lowing the methodology proposed by the authors of LIFT.

The leaf correspondence dataset consists of 10, 210 im-

ages of various plants captured from various viewing an-

gles with different cameras. We use these images, to con-

struct 3D models using VisualSFM [51] with SIFT features.

In total, we reconstruct 90 3D models from approximately

90-110 views per plant. After this, positive and negative

samples are formed based on whether the respective key-

points are preserved or not, respectively, in the correspond-

ing 3D reconstruction using SfM. We then extract the train-

ing patches following the methodology suggested by the

authors of LIFT. The patches thus extracted provide addi-

tional information during the training process as the used

regions from the 3D model are robust from multiple views

and hence the details from the surrounding regions can be

exploited by the deep siamese network.

Authors in [41] provide a comparative evaluation of var-

ious descriptors including those based on deep networks on

various image related tasks. They found that a few varia-

tions of SIFT such as SIFTRoot, SIFTPCA performed bet-

ter in a structure from motion pipeline than learned descrip-

tors. However, the datasets on which SfM pipelines are usu-

ally evaluated have rigid structures, while the current use

case involves plants where the objects are non-rigid, thin

and highly similar. Moreover, the images are captured in

a green house with no control on lighting and movement

of objects in the surrounding with variations in the posi-

tion of the leaves (due to air etc.) posing additional chal-

lenges. Therefore, it becomes important in our case to have

significant number of correspondences on the plant itself,

unlike earlier techniques on plant 3D reconstruction where

background information was used as an indicator for cam-

era parameter estimation and subsequently 3D reconstruc-

tion [30].

3.2. 3D Segmentation using Voxel Cloud Connec-
tivity Segmentation

We use Voxel Cloud Connectivity Segmentation (VCCS)

[27] for segmenting the plant canopy from the reconstructed

point cloud. It works directly on 3D point clouds. While

segmenting leaves in 2D images is an active area of research

[43, 10], due to availability of depth information the prob-

lem in 3D can be looked at from a pure computer vision

perspective. Here a plant’s relative placement with respect

to the surroundings can be leveraged. Moreover, in our case

the background is significantly distinctive than the plant it-

self. Since VCCS utilizes spatial location (x,y,z) as well

RGB information associated with points to perform seg-

mentation, we directly use it for segmenting the point cloud.

The method consists of converting the input point cloud to a

voxelized point cloud and building an adjacency graph. For

constructing the adjacency graph, a voxel grid is formed and

seed voxels are selected and initialized. The isolated vox-

els are filtered by considering a small search volume around

the seed voxels. Voxels are then clustered, conditioned upon

the smallest gradient within the search volume. The clusters

are further aggregated into supervoxels by comparing a 39

dimensional feature vector derived using XYZ, RGB etc.

from respective cluster centers. The aggregation proceeds

in a breadth first manner to provide the final segmentation.

3.3. 3D Features: Local and Deep Descriptors

Our next step in the pipeline is to extract 3D features

from the point cloud. We consider two types of descrip-

tors (i) Local Descriptors (ii) Deep Descriptors. The former

includes the class of descriptors which rely on finding key-

point in 3D point clouds and then describing it with the help

of its neighborhood. The latter involves using deep neural

networks for learning features from 3D point clouds. We

now describe each of these in the following subsections.

3.3.1 Local Descriptors

We evaluate Signature of Histograms of Oriented Gradients

(SHOT) [39], Rotational Projection Statistics (RoPS) [15]

and Fast Point Feature Histograms (FPFH) [38] for drought

stress classification. With comprehensive analysis, Guo et

al. [14] showed that these descriptors provide superior re-

sults on a variety of benchmark tasks involving 3D point

clouds. However, applicability and comparison of these de-

scriptors in characterizing various plant related tasks, and

specifically drought stress identification, has not been stud-

ied earlier.

The primary advantage with local descriptors is in their

ability to encode geometrical properties of the model. This

characteristic makes them suitable for quantifying vari-

ous phenotypic traits involving structural changes. We at-

tempt to leverage this characteristic of local descriptors for

drought stress identification, where the leaves undergo vari-

ous structural changes depending upon the amount of stress.

3.3.2 Deep Descriptors

There are two types of deep architectures to process 3D

data: (i) 3D Convolutional Neural Networks (3D-CNN)

[25, 31] (ii) PointNet [12]. Due to the inherent nature of

the convolution operation, the 3D-CNNs work on structured

data, i.e., voxelized cloud. However, PointNet is a recent

architecture that works directly on unstructured 3D Point
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Figure 2. Sample views of a wheat plant under control [(a)-(c)] and drought stress [(e)-(g)] condition in the phenomics facility. The

last column [(d),(h)] shows the corresponding 3D reconstruction using LIFT keypoints and descriptors (models are shown without RGB

rendering for clarity). The figure is shown for one drought plant, the dataset consists of plants with varying drought stress levels.

Cloud data. Voxelization of the point cloud introduces ap-

proximation to the model as it is essentially a quantization

process. Therefore, we adopt PointNet as the deep network

for further processing.

PointNet generates a global feature on the input point

cloud. This is done by learning a permutation invariant rep-

resentation of the points from the input point cloud which

is encoded into a vector using a symmetric function. The

invariance to transformation is achieved using a joint align-

ment network which essentially predicts an affine transfor-

mation matrix and applies it to the point cloud while fea-

tures from multiple point clouds are aligned using a feature

transformation matrix. However, by design, the global fea-

ture produced by PointNet does not capture local geometric

information. We observed this to be the reason for rela-

tively poor performance of global features from PointNet

trained on traditional objects as discussed in Section 4. In

order to overcome this limitation, we aggregate the local

and global information similar to PointNet’s segmentation

network, i.e., the global descriptor is fed back to the net-

work along with the descriptor of the keypoint to generate

a more robust keypoint descriptor. Next, we quantize the

local descriptors thus obtained for the keypoints detected

on the point cloud and concatenate it with the the global

descriptor. The motivation being that such a fusion would

make the resultant (global) descriptor encode both local and

global information. Here, local information encodes fine

changes in the surface and color of a plant while experienc-

ing the drought, while the global information encapsulates

the overall change in the structure of the plant, possibly such

as leaf rolling, color variations over multiple leaves, wilting

etc. As will be shown in experiments, the aggregation of

local information provides significant performance gains.

3.4. Drought Stress Classification

In order to classify the objects, we follow the classifica-

tion pipeline shown in Figure 1. The pipeline begins by ex-

tracting 3D features from segmented 3D point cloud (Plant

Canopy). This is followed by a training and testing phase. It

must be noted that the number of keypoints (and hence the

local descriptors) are different for each point cloud. There-

fore, during training phase, we learn a quantized feature

representation of the 3D features. Quantization is neces-

sary to obtain a single descriptor of uniform length for each

point cloud. We experimented with both Fisher Vector [40]

and Bag of Visual Words [9] and found that Fisher Vector

works better in our case. Our training set consists of 3D

point cloud of wheat plants (note it is not the same set of

images on which LIFT was trained). In literature, Fisher

Vector has mostly been used with SIFT features [13], while

it has not been found suitable directly for depth data [4].

However authors in [8] propose a Convolutional Fisher Ker-

nel including preprocessing steps which allows Fisher Vec-

tor to efficiently encode depth data as well. In this work, we

directly quantize the features using Fisher Vector. As will

be evident in the experimental section, the Fisher Vectors

are able to discriminatively encode the point cloud features.

Since the size of the codebook from Fisher Vector is small,

we use a linear classifier, Support Vector Machine (SVM)

for further classification. This setting allows us to reduce
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the overall computational complexity while maintaining ro-

bustness.

4. Experimental Results

4.1. Dataset

Data Collection: The drought experiment was con-

ducted on wheat pots at the Plant Phenomics Facility,

Indian Agricultural Research Institute (IARI), Pusa, New-

Delhi during Rabi season of 2016-17. Two replicates of

each genotype of wheat plants were studied. For each pair,

one was grown in well-watered conditions while the other

was subjected to water deficit conditions for a period of

5 continuous days. The images were taken by manually

moving the visible camera (Canon 60D EOS) with eight

mega-pixel resolution around the plant. A few sample

images of the plants are shown in Figure 2.

Dataset Details: For experiments reported in the cur-

rent study, the dataset consists of 3, 200 images having a

resolution of 5184 x 3456 pixels each for 34 wheat plants.

Out of these, 17 plants belongs to the control category

while the rest, under water-deficit conditions, belong to the

drought stress category. For each plant, we took 80-100

images from various angles and distances in an indoor

environment with varying background depending upon the

size and complexity of occlusions in a plant. The training

set consists of 2304 images from 24 healthy and drought

stress plants while test set comprises of the rest of the

images.

4.2. Results

Baseline: Due to lack of prior studies on performance

of quantization technique with 3D descriptors, especially

in case of plants, we report results on both Fisher Vec-

tor (FV) and Bag of Visual Words (BoVW), which are

amongst the most popular feature quantization techniques.

We use the common dataset as described above for train-

ing and testing various methods. For PointNet, we re-

port results on both pre-trained model and after fine-tuning

PointNet with 3D Point Cloud models from the training

dataset. Here, the pre-trained model refers to the Point-

Net trained for the task of object classification [12]. The

fine-tuning is performed by initializing the weights from

the pre-trained PointNet for object classification and then

continuing the training process with the 3D point cloud of

the wheat plants. Further, the results are reported for both

global descriptor (PointNet(global) and Fine tuned PointNet

(global)) and aggregated descriptor (PointNet (aggregation)

and fine tuned PointNet (aggregration)), for both pre-trained

and fine-tuned PointNet respectively.

Qualitative Results: Figure 2 (column 4) shows a view of

the reconstructed 3D model of a control and drought plant.

One can observe that the base of reconstructed model of the

drought plant have clean reconstruction despite heavy oc-

clusion. Similar observation can be made for control plant

where leaves are occluded throughout the plant structure,

while also having smooth curvature in some leaves. Recon-

struction of such fine details can be attributed to the quality

of matches on the leaf surfaces from learned keypoints and

descriptors for 3D reconstruction. This also shows potential

for the technique to be generalized to other types of plants

as well.

Quantitative Results: We report comparative evaluation

on classification accuracy and computational complexity of

the proposed methodology. The accuracy is computed as

the percentage of number of correct classifications to the to-

tal number of test inputs for respective classes i.e. drought

and healthy. Table 1 shows that the fine-tuned PointNet with

aggregation descriptor outperforms all the other techniques

with the closest being RoPS (FV) by 1.9%, followed by

fine-tuned PointNet (Global) by 2.8%. However, it is in-

teresting to note that pre-trained PointNet on rigid objects

performs poorly against all the compared descriptors. This

could be due to two reasons (i) the default architecture of

PointNet is not easily generalizable, and, (ii) as discussed

earlier, plants have smooth and textureless surface and are

usually heavily occluded, which are not usually found in

rigid bodies. The good performance of fine-tuned PointNet

further strengthens the argument that the proposed aggre-

gration of features is indeed able to characterize the struc-

tural and visual changes such as wilting, color variations

etc. in the plant.

Further, RoPS (FV) outperforms all the other local de-

scriptors followed by SHOT (FV). It can be seen that de-

scriptors quantized with Fisher Vector consistently perform

better than the corresponding encoding with Bag of Visual

Words with gap on an average being 1.6%. This shows that

as with 2D descriptors, Fisher Vector is able to encode a

more discriminative representation of local descriptors as

compared to BoVW. Therefore, in the aggregration of feau-

res in fine-tuned PointNet, Fisher Vector was used as the

feature quantization technique.

The computation time shown in Table 1 is computed by

summing the average description time for each keypoint

along with quantization (excluding PointNet) and classifi-

cation for a model averaged over all the 3D models in the

test dataset. It can be seen that deep descriptors are nearly

twice as fast as local descriptors at test time. However, we

do note that while it takes significantly less time for com-

puting descriptor and classifying a point cloud at test time, it

took approximately 4x more time than the local descriptors

to train the network.
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Table 1. Classification Accuracy in 3D and Feature Computation Time

Descriptor
Accuracy

(%)

Computation Time (sec)

[Average Per Model]

SHOT (FV) 76.0 5.3

SHOT (BoVW) 74.2 6.8

RoPS (FV) 77.2 4.9

RoPS (BoVW) 75.4 5.2

FPFH (FV) 73.3 3.9

FPFH (BoVW) 72.1 4.3

PointNet (Global) 65.4 2.3

PointNet (Aggregation) 67.2 2.36

Fine tuned PointNet (Global) 76.3 2.4

Fine tuned PointNet (Aggregation) 79.1 2.5

5. Conclusion

We proposed a novel end-to-end automated pipeline

for drought stress classification in plants in 3D. We per-

formed exhaustive experiments and demonstrated the ef-

fectiveness of the proposed methodology on wheat plants.

We showed that deep descriptors fine tuned on plant point

clouds perform better than local descriptors. However, we

also showed that deep descriptors on point clouds with-

out fine tuning perform worse than local descriptors, which

mandates the need to pursue efforts in this direction for pub-

licly available large datasets of plants. In future works, the

proposed work can also be used for analyzing characteris-

tic changes in plant architecture in response to other abiotic

stresses.
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