
Citation: Tarafder, S.; Badruddin, N.;

Yahya, N.; Nasution, A.H.

Drowsiness Detection Using Ocular

Indices from EEG Signal. Sensors

2022, 22, 4764. https://doi.org/

10.3390/s22134764

Academic Editor: Filippo Zappasodi

Received: 13 May 2022

Accepted: 8 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Drowsiness Detection Using Ocular Indices from EEG Signal
Sreeza Tarafder 1, Nasreen Badruddin 1,* , Norashikin Yahya 1 and Arbi Haza Nasution 2

1 Department of Electrical and Electronic Engineering, Institute of Health and Analytics, Universiti Teknologi
PETRONAS, Seri Iskandar 32610, Malaysia; sreeza_19001742@utp.edu.my (S.T.);
norashikin_yahya@utp.edu.my (N.Y.)

2 Department of Informatics Engineering, Faculty of Engineering, Universitas Islam Riau,
Tembilahan 28284, Indonesia; arbi@eng.uir.ac.id

* Correspondence: nasreen.b@utp.edu.my; Tel.: +60-133962648

Abstract: Drowsiness is one of the main causes of road accidents and endangers the lives of road
users. Recently, there has been considerable interest in utilizing features extracted from electroen-
cephalography (EEG) signals to detect driver drowsiness. However, in most of the work performed
in this area, the eyeblink or ocular artifacts present in EEG signals are considered noise and are
removed during the preprocessing stage. In this study, we examined the possibility of extracting
features from the EEG ocular artifacts themselves to perform classification between alert and drowsy
states. In this study, we used the BLINKER algorithm to extract 25 blink-related features from a
public dataset comprising raw EEG signals collected from 12 participants. Different machine learning
classification models, including the decision tree, the support vector machine (SVM), the K-nearest
neighbor (KNN) method, and the bagged and boosted tree models, were trained based on the seven
selected features. These models were further optimized to improve their performance. We were able
to show that features from EEG ocular artifacts are able to classify drowsy and alert states, with the
optimized ensemble-boosted trees yielding the highest accuracy of 91.10% among all classic machine
learning models.

Keywords: drowsiness detection; electroencephalography; ocular artifacts; machine learning;
ensemble learning

1. Introduction

Drowsy driving has become a worldwide concern because it causes numerous fatali-
ties on roads annually. According to the National Safety Council, drowsy driving causes
approximately 100,000 accidents, 71,000 injuries, and 1550 deaths annually [1]. According
to the American Automobile Association, drowsy driving accounts for 9.5% of all acci-
dents [2]. Drowsiness refers to the moment immediately before sleep onset. During this
time, a person feels sleepy and finds it difficult to keep their eyes open. Drivers traveling
long distances often drive in a drowsy state. Other factors that can lead to drowsiness are
sleep deprivation, monotonous driving, and alcohol consumption. The effects of drowsi-
ness on driving include loss of focus, slow reaction times, and poor judgment, which can be
detrimental to drivers and other road users. Drowsiness-related motor vehicle accidents are
likely to result in serious injuries and death, which can have a considerable socioeconomic
impact. Hence, efforts should be made to prevent such accidents, including the develop-
ment of systems to detect driver drowsiness. There have been numerous investigations
for an effective and accurate driver drowsiness detection system over the past decades.
Primarily, these methods can be categorized into two types based on the source of the data
or measurement: vehicle- and driver-based [3]. Table 1 summarizes the different methods
used to detect drowsiness.

Sensors 2022, 22, 4764. https://doi.org/10.3390/s22134764 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22134764
https://doi.org/10.3390/s22134764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5666-3984
https://orcid.org/0000-0001-6283-3217
https://doi.org/10.3390/s22134764
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22134764?type=check_update&version=1

Sensors 2022, 22, 4764 2 of 17

Table 1. Different methods of drowsiness detection.

Categories Features Measurements Sensors

Vehicle-based Vehicular

Steering wheel
movement [4]

Attached to the vehicleAngular velocity [5]

Acceleration [4]

Lateral distance [6]

Driver-based

Behavioral

PERCLOS [7]

Not attached to the driver

PATECP [8]

PATMIO/yawning [9]

Blinking [10]

Gaze detection [11]

Head pose [11]

Facial expression [12]

Hand motion [13]

Physiological

EEG [14]

Attached to the driver

ECG [15]

EOG [16]

EMG [17]

Skin responses (GSR
& PPG) [18,19]

fNIRS [20]

Vehicle-based methods use measurements obtained from vehicles, such as lane devia-
tions, braking patterns, and steering wheel grip, as indicators of driver drowsiness [4–6].
Compared to driver-based methods, vehicle-based data require less processing and are
more straightforward to interpret. However, individual driving skills, habits, and envi-
ronmental factors such as weather and road conditions may lead to inaccurate results.
Driver-based methods can be further divided into those that capture the driver’s behavior
using cameras placed in the vehicle and those that measure the driver’s physiological
signals using sensors attached to the body. Some of the investigated visual behavioral
indicators include drooping posture, blink frequency, yawning, head movement, head
position, gaze direction, blink duration, fixed gaze, frequent nodding, and sluggish facial
expressions [7–13]. Visual-based methods have the advantage of being non-intrusive; how-
ever, the detection accuracy can be affected by poor lighting conditions, differences in image
angle, poor image resolution, and occlusions such as eyeglasses. However, non-visual tech-
niques that use physiological signals are not affected by these factors and can be a viable
alternative for detecting signs of drowsiness. Furthermore, physiological signals can pro-
vide a more accurate measure of drowsiness owing to their strong relationship with driver
fatigue. Some of the physiological signals that have been used are electroencephalogram
(EEG), electrocardiogram (ECG), electrooculogram (EOG), photoplethysmogram (PPG),
galvanic skin response (GSR), and functional near-infrared spectroscopy (FNIRS) [14–20].
EEG signals are used to analyze brain states such as sleep, alertness, fatigue, and stress
and are most commonly used in sleep-related research [21]. Various time and frequency
features of EEG signals have been used for drowsiness detection in previous studies. The
main issue in using EEG in real-world driving conditions is the wearability of the EEG
devices. Efforts have been made to address this issue by reducing the number of electrodes
required; however, this may lead to reduced accuracy. To overcome this, other studies

Sensors 2022, 22, 4764 3 of 17

have proposed hybrid approaches in which an EEG is complemented by an ECG [22] or an
EOG [23]; however, this requires extra ECG or EOG sensors be placed on the body.

In this study, we adopted a different approach to finding a complementary indicator of
drowsiness from EEG signals. It is well known that an EEG signal captures not only neural
activities but also artifacts, which are undesirable electrical signals from other physiological
activities and movements. The most prominent type of artifact is the ocular artifact, which is
caused by eyeblinks and eye movements. In most EEG analyses, the conventional approach
regards these artifacts as contaminants and removes them during the preprocessing stage by
using any of the available eyeblink artifact removal techniques. However, we contend that
because an EOG has been used in combination with an EEG for drowsiness detection and
that many of the visual-based techniques in driver drowsiness detection rely on features
extracted from the eyes [10,24], there is a possibility that similar information can also be
extracted from the eyeblink artifacts in an EEG. One possible application of our work is a
system that combines conventional EEG analyses for drowsiness detection, such as power
spectrum analysis and connectivity with ocular information, which are also extracted from
the same EEG signal. The advantage of this system over the hybrid EEG–EOG drowsiness
detection system is that it does not require the placement of additional sensors around the
eye area.

To the best of our knowledge, few studies have been conducted to determine whether
drowsiness can be detected from ocular features extracted from EEG signals that have
not undergone artifact removal [25,26]. Therefore, in this study, we attempt to answer
the question: “Can we use ocular indices extracted from EEG signals contaminated with
eyeblink artifacts as drowsiness indicators”? In this investigation, we used BLINKER
software developed by the authors in [27] to extract ocular indices from EEG signals.
The embedded feature selection method was then used to select the most effective and
valuable ocular parameters obtained from BLINKER for the classification. In this study,
we investigated both traditional machine learning techniques and deep learning methods
for classification.

The main contributions of this study are twofold. First, this study explores the potential
of using features or measurements extracted from ocular artifacts in EEG signals for the
detection of driver drowsiness. In doing so, a novel method of drowsiness detection can be
developed, which is based on features extracted from EEG signals that have not undergone
the ocular artifact removal process. This new method can complement existing drowsiness
detection based on frequency domain analysis of EEG signals. Second, the features and
classification methods that achieved the best classification performance were investigated.

The remainder of this paper is organized as follows. A literature review of related
studies is presented in Section 2, followed by a detailed description of the methodology in
Section 3. Section 4 presents the results and discussion, and Section 5 concludes the paper.

2. Related Work

Numerous studies have been conducted to successfully detect drowsiness among
drivers, and blink-related parameters have been widely investigated. Previous research has
shown that blink duration and frequency can be used to indicate driver drowsiness [28,29].
However, most of this type of research uses image-based techniques to extract the blink
parameters for drowsiness detection. Researchers have used different types of cameras
to collect eye images or video recordings of a driver’s face, which are then processed to
extract features related to their eyes [29–31]. Vision-based drowsiness detection has some
limitations. It can be affected by problems such as different lighting conditions, the eye
region being outside the image frame, and occlusions such as spectacles or sunglasses.
According to [32], EEG-based drowsiness detection is better than the visual method because
the drivers have to wear masks due to COVID-19. The preprocessing of the EEG signal
includes linear filtering and wavelet threshold denoising.

Of all the non-visual techniques, EEG-based methods are the most predictive and
reliable for drowsiness detection. However, very few studies have explored the use of

Sensors 2022, 22, 4764 4 of 17

ocular artifacts in EEG signals to extract blink-related features such as blink duration, blink
frequency, and blink amplitude to detect driver drowsiness. A helmet-based physiological
signal monitoring system that differs between alert and drowsy states by detecting blinking
and heart rate variability (HRV) is discussed in [33]. The results showed that blinking
duration (higher than 400 ms) and eye-opening time increased during the sleepiness state
compared with the alert state. Blink signals were collected from the raw data and processed
to obtain six different features: blink duration, closing time, reopening time, positive
peak, negative peak, and interval. The drowsiness detection technique presented by
Kartsch et al. [34] is based on behavioral and physiological studies of subjects using EEG
signals. The blink duration was calculated using a single channel, and an alarm was
triggered when the average blink duration exceeded a given threshold of 500 ms. The
detection accuracy of the system was 85%. The researchers in [10] used a combination of
EEG and EOG signals to measure blink duration for driver drowsiness detection.

Some of the most up-to-date EEG-based techniques include feature extraction and
classification as part of the drowsiness detection process [35]. Feature extraction typically
involves the extraction of different frequency bands from EEG signals using techniques
such as discrete wavelet transform (DWT), fast Fourier transform (FFT), independent com-
ponent analysis (ICA), principal component analysis (PCA), and autoregression (AR). The
classification methods used include support vector machine (SVM), K-nearest Neighbors
(KNN), naïve Bayes classification, decision trees, ensemble methods, artificial neural net-
work (ANN), linear discriminant analysis (LDA), etc. FFT was used to extract features from
EEG data in [36–38] but used different classifiers. A KNN classifier with k = 3 yielded the
best accuracy of 95.24% in [30], an SVM yielded the best accuracy of 83.71% in [37], an ANN
yielded a better accuracy of 86.5% compared with an SVM in [32], and linear regression
was found to provide an accuracy of 90% in [39]. In [40], the KNN classifier obtained an
accuracy of 91% when applied to features extracted using short-time Fourier transform
(STFT) and was found to outperform an LDA and an SVM when performing classification
from features extracted using time analysis [40]. However, an SVM outperformed a KNN
when using the determinism (DET) feature extracted by the recurrence quantification anal-
ysis. Priya et al. [41] used a publicly available EEG dataset where the subjects’ eye state was
mentioned and trained a KNN model to predict drowsiness. The study focuses on different
feature engineering techniques to boost the accuracy of the KNN model up to 98%. An
ANN was used in [42] to train chaotic features and the logarithm of the EEG signal energy
and in [43] on a combination of EEG features that were selected using an LDA. Therefore,
it can be concluded that the best classifier or machine learning technique depends heavily
on the features that have been extracted to perform the classification. This implies that
any investigation of new features for drowsiness detection must include various machine
learning techniques to achieve the best results.

Based on the literature review, blink-related parameters, such as blink duration, eye-
opening time, and eye-closing time, were measured using image-based drowsiness de-
tection techniques. However, EEG-based drowsiness detection techniques use spectral
analysis. Most EEG-based drowsiness detection methods use spectral analysis and the
extraction of different frequency bands in the EEG signal. The work closest to our proposed
technique is [34], where the blink duration was extracted from the EEG signal and used as
the first-level indicator of drowsiness. However, our work conducts further investigation
by considering all other measurements that can be extracted from the eyeblink artifact
of an EEG, not just the blink duration. The literature has shown that different machine
learning and deep learning techniques have been successfully used to perform classification
from EEG signals. Therefore, to obtain the best performance in classifying drowsy and
alert states from ocular features in EEG signals, it is necessary to investigate a few types
of classifiers.

Sensors 2022, 22, 4764 5 of 17

3. Methodology

This section discusses the methodology used in the study. Figure 1 shows a flowchart of
the methodology. Details of the methodology are elaborated in the subsequent subsections.

Sensors 2022, 22, x FOR PEER REVIEW 5 of 18

3. Methodology
This section discusses the methodology used in the study. Figure 1 shows a flowchart

of the methodology. Details of the methodology are elaborated in the subsequent
subsections.

Figure 1. Flowchart of the research methodology.

3.1. Dataset
The public dataset collected in [44] was used in this study. EEG signals were recorded

from 12 healthy participants by using a neuroscan amplifier with 40 channels in a
simulator-based driving environment. The EEG recordings were performed in two
phases. The first phase lasted for 20 min, while the second phase was continuous driving
for 40 to 100 min duration until the subject reported driving fatigue. The EEG in the last 5
min of the first phase was marked as a normal or alert state, and the last 5 min of the
second phase was marked as fatigue or drowsy state. The sampling frequency used was
1000 Hz.

The BLINKER toolbox [27], which works on the MATLAB platform, was used to
extract ocular indices from EEG eyeblink artifacts. BLINKER detects the intervals and

Figure 1. Flowchart of the research methodology.

3.1. Dataset

The public dataset collected in [44] was used in this study. EEG signals were recorded
from 12 healthy participants by using a neuroscan amplifier with 40 channels in a simulator-
based driving environment. The EEG recordings were performed in two phases. The first
phase lasted for 20 min, while the second phase was continuous driving for 40 to 100 min
duration until the subject reported driving fatigue. The EEG in the last 5 min of the first
phase was marked as a normal or alert state, and the last 5 min of the second phase was
marked as fatigue or drowsy state. The sampling frequency used was 1000 Hz.

The BLINKER toolbox [27], which works on the MATLAB platform, was used to extract
ocular indices from EEG eyeblink artifacts. BLINKER detects the intervals and potential
blinks created from the EEG signal when the signal is more significant than 1.5 standard
deviations above the overall signal mean. It considers only those possible blinks that stretch

Sensors 2022, 22, 4764 6 of 17

for more than 500 ms and are at least 50 ms apart. BLINKER employs a tent-fitting method
to define blinks because typical blinks have rounded, tent-like shapes. Figure 2 shows a
schematic of a sample blink artifact with various blink landmarks. LeftZero is the last zero
crossing. If the signal does not cross zero between the current blink and the previous blink,
LeftZero is the frame with the lowest amplitude. A similar definition is applied to the
RightZero frame.

Sensors 2022, 22, x FOR PEER REVIEW 6 of 18

potential blinks created from the EEG signal when the signal is more significant than 1.5
standard deviations above the overall signal mean. It considers only those possible blinks
that stretch for more than 500 ms and are at least 50 ms apart. BLINKER employs a tent-
fitting method to define blinks because typical blinks have rounded, tent-like shapes.
Figure 2 shows a schematic of a sample blink artifact with various blink landmarks.
LeftZero is the last zero crossing. If the signal does not cross zero between the current
blink and the previous blink, LeftZero is the frame with the lowest amplitude. A similar
definition is applied to the RightZero frame.

Figure 2. A schematic diagram of an eye-blink signal with the various blink landmarks used by the
BLINKER software [27].

The interval between LeftZero and maxFrame is the upstroke, whereas that between
maxFrame and rightZero is the downstroke. For each potential blink in a candidate signal,
BLINKER computes the best linear fit for the inner 80 percent of the upstroke and
downstroke as represented by dotted black lines in Figure 2. The first local minimum to
the left of the maximum velocity frame during the upstroke is LeftBase. In the
downstroke, RightBase is the first local minimum to the right of the maximum-velocity
frame. TentPeak is the intersection of the upstroke and downstroke. In a stereotypical
blink, TentPeak is slightly ahead of and above the maximum of the actual blink trajectory,
which is called BlinkPeak.

The proximity of a potential blink to a typical blink is measured by its quality, which
is denoted by R2 in this example. Simple assessments of how closely the blink matches a
stereotypical blink are provided by the values of R2 and the relative position of TentPeak
to BlinkPeak. This specification removes many tiny quick eye movements without
eliminating genuine blinks. BLINKER chooses the best signal to characterize the shapes
and properties of the blinks. It provides 25 blink-related parameters for a set of potential
blinks. Table 2 lists the descriptions of these parameters.

Table 2. Features from BLINKER and their description.

Feature Name Feature Description

Duration Base (DB)
The difference between rightBase and leftBase to determine the blink

length in seconds.

Duration Zero (DZ) The difference between rightZero and leftZero to determine the blink
length in seconds.

Duration Tent (DT) The difference between rightZero and leftZero to determine the blink
length in seconds.

Figure 2. A schematic diagram of an eye-blink signal with the various blink landmarks used by the
BLINKER software [27].

The interval between LeftZero and maxFrame is the upstroke, whereas that between
maxFrame and rightZero is the downstroke. For each potential blink in a candidate signal,
BLINKER computes the best linear fit for the inner 80 percent of the upstroke and down-
stroke as represented by dotted black lines in Figure 2. The first local minimum to the left of
the maximum velocity frame during the upstroke is LeftBase. In the downstroke, RightBase
is the first local minimum to the right of the maximum-velocity frame. TentPeak is the
intersection of the upstroke and downstroke. In a stereotypical blink, TentPeak is slightly
ahead of and above the maximum of the actual blink trajectory, which is called BlinkPeak.

The proximity of a potential blink to a typical blink is measured by its quality, which
is denoted by R2 in this example. Simple assessments of how closely the blink matches a
stereotypical blink are provided by the values of R2 and the relative position of TentPeak to
BlinkPeak. This specification removes many tiny quick eye movements without eliminating
genuine blinks. BLINKER chooses the best signal to characterize the shapes and properties
of the blinks. It provides 25 blink-related parameters for a set of potential blinks. Table 2
lists the descriptions of these parameters.

3.2. Preprocessing

In the preprocessing stage, eyeblink artifacts were first extracted from the EEG signals
corresponding to the alert and drowsy states of each subject using the BLINKER algorithm
and labeled accordingly. Table 3 summarizes the number of blink occurrences extracted
from each subject for alert and drowsy states.

Data cleaning was performed to remove missing values, corrupted values, and incom-
plete features. Finally, data smoothing was performed by averaging five consecutive data
points to reduce random variations in the raw data.

Sensors 2022, 22, 4764 7 of 17

Table 2. Features from BLINKER and their description.

Feature Name Feature Description

Duration Base (DB) The difference between rightBase and leftBase to determine the blink length in seconds.

Duration Zero (DZ) The difference between rightZero and leftZero to determine the blink length in seconds.

Duration Tent (DT) The difference between rightZero and leftZero to determine the blink length in seconds.

Duration Half Base (DHB)
The difference between the frame defining the left-half base amplitude and the first intersection of the

horizontal line drawn from the blink value at that point to the downstroke of the blink is the length of the
blink in seconds.

Duration Half Zero (DHZ)
The difference between the frame indicating the left-half zero amplitude and the first intersection of the

horizontal line drawn from the blink value at that point to the downstroke of the blink is the length of the
blink in seconds.

Inter Blink Maximum Amplitude (IBMA) Length of the intervals of any successive blink peaks in seconds.

Inter Blink Maximum Velocity Base (IBMVB) The time in seconds between one blink’s maximum positive velocity (estimated from leftBase) and the
following blink’s maximum positive velocity (calculated from leftBase).

Inter Blink Maximum Velocity Zero (IBMVZ) The time in seconds between one blink’s maximum positive velocity (estimated from leftZero) and the
following blink’s maximum positive velocity (calculated from leftZero).

Negative Amplitude Velocity Ratio Base (NAVRB) The AVR (amplitude velocity ratio) computed using the maxBlink to rightBase interval.

Positive Amplitude Velocity Ratio Base (PAVRB) The VAR computed using the leftBase to maxBlink interval.

Negative Amplitude Velocity Ratio Zero (NAVRZ) The VAR computed using the maxBlink to rightZero interval.

Positive Amplitude Velocity Ratio Zero (PAVRZ) The amplitude velocity ratio computed using the leftZero to maxBlink interval.

Negative Amplitude Velocity Ratio Tent (NAVRT) The right tent line’s slope and the tent peak of any blink to compute the amplitude velocity ratio.

Positive Amplitude Velocity Ratio Tent (PAVRT) The tent peak and slope of the left tent line to determine the amplitude velocity ratio.

Time Shut Base (TSB) From the leftBase, the blink closest to 90% of its amplitude.

Time Shut Zero (TSZ) From the leftZero, the blink closest to 90% of its amplitude.

Time Shut Tent (TST) The blink closest to 90% of the tent peak height calculated in seconds.

Peak Max Blink (PMB) The maximum amplitude of any blink.

Closing Time Zero (CTZ) Difference between the maxFrame and leftZero calculated in seconds.

Reopening Time Zero (RTZ) Difference between the rightZero and maxFrame calculated in seconds.

Closing Time Tent (CTT) Difference calculated in seconds between the LeftxIntersect and xIntercept frames that create the tent.

Reopening Time Tent (RTT) Difference calculated in seconds between the xIntersect and RightxIntercept frames that create the tent.

Peak Time Blink (PTB) The maximum blink time in seconds since the beginning of the file.

Peak Time Tent (PTT) Time in seconds since the beginning of the file of the tent’s peak.

Peak Max Blink (PMB) Maximum blink amplitude.

Peak Max Tent (PMT) Maximum tent peak height.

Table 3. The number of observations obtained from the BLINKER algorithm.

Subjects
Number of Samples Obtained from BLINKER

Alert Drowsy

Subject 1 0 94

Subject 2 197 50

Subject 3 45 40

Subject 4 25 86

Subject 5 48 47

Subject 6 105 182

Subject 7 53 44

Subject 8 15 58

Subject 9 182 264

Subject 10 79 156

Subject 11 61 75

Subject 12 13 45

Sensors 2022, 22, 4764 8 of 17

3.3. Data for Training, Validating, and Testing

After preprocessing, 1963 eyeblink artifacts with 25 features were selected for training
and testing. This resulted in 49,075 features that were sufficient for training and testing the
models. Of the 1963 eye-blink artifacts, 1288 eyeblink artifacts belonged to the “Drowsy”
class while the remaining 675 eyeblink artifacts belonged to the “Alert” class. For predictive
modeling, it is important to split the data into training, validation, and testing sets, which
allows the development of a highly accurate model. The training set was the dataset used
to train the model, and the model learned the underlying patterns from the training set.
The validation set was used to validate the performance of the model during training, and
the test set was a separate set of data used to test the model after training. In this study,
70% of the data was used to train and validate the models, and the remaining 30% was
used to test the models.

A subject-independent k-fold cross-validation technique was applied to train the
models. In this study, 10-fold cross-validation was used to prevent overfitting. This
approach randomly divides the dataset into 10 groups/folds, and each fold is approximately
the same size. For each iteration, 1 group was considered as a hold-out or test dataset and
the remaining 9 groups were considered as the training set. In this way, 10 iterations were
performed so that each data point was trained. In each iteration, the method returned
an accuracy score, and the average of the accuracy scores was used as the consolidated
cross-validation accuracy score.

3.4. Investigation of Classic Machine Learning Models and Ensemble Methods
3.4.1. Feature Selection

There are three types of feature-selection methods: filter, wrapper, and embedded. In
this study, the embedded feature selection technique was applied to obtain the best features
out of 25 features provided by BLINKER. This method performs better than other methods
because the feature selection process is performed while training the model, and the most
valuable features are selected to achieve better performance [45]. The embedded method
comprises decision trees that represent a feature-based process in which each decision tree
is formed by extracting random features. A subset of the dataset was created, and different
combinations of features were tested to obtain the best accuracy. The predictive model was
then trained based on the best accuracy provided by a subset of features.

3.4.2. Choice of Classifiers

This study focuses on the binary classification problem in which the classes are fa-
tigue/drowsy and alert. The classifiers used in our investigation were decision tree (DT),
K-nearest neighbor (KNN), and support vector machine (SVM).

A decision tree (DT) is a supervised machine-learning algorithm in which the root node
is used to decide based on specific parameters. The branches from the node correspond to
the possible outcomes of the nodes and are connected to the next decision node. Leaf nodes
are the final outcomes that typically represent class distributions or labels [46]. In this
study, a fine tree and an ensemble of decision tree classifiers were trained. Gini’s diversity
index was used as the split criterion, and a split of 100 was used to train the model. On the
other hand, the optimized DT model has been hyperparameter-tuned using the maximum
number of splits ranging from 1 to 1374 and 2 different split criteria, Gini’s diversity index
and maximum deviance reduction. Because small trees make decisions more quickly than
large trees do, they are much easier to see and understand.

This principle behind the ensemble models for machine learning is to combine multiple
models to improve the overall performance. Among various ensemble techniques, bagging
and boosting are the most popular and were used in this study [47]. The bagging method is
used to reduce variance in high variance classifiers, such as decision trees. Several subsets
of data from the training dataset are chosen using row sampling with replacement and fed
to the base learners in parallel [48]. The base learners (DT) were trained on a subset of the
data and provided an output. The outputs from all DT models were aggregated, and the

Sensors 2022, 22, 4764 9 of 17

final output was obtained based on majority voting. Unlike bagging, the basic principle
behind boosting is to apply homogenous machine learning techniques sequentially, with
each ML method attempting to enhance the model’s stability by focusing on the errors
produced by the previous ML algorithm [49]. The main difference among all variants of
the boosting approach is how each base learner’s mistakes are regarded as improved by
the following DT in the sequence. We applied AdaBoost, one of the most widely used
boosting algorithms, which assigns equal weights to each sample of the training dataset
when training the first weak DT. The subsequent weak learner model is trained using the
recalculated weights of the sample to present a misclassification from the previous model.
The AdaBoost algorithm performs prediction by recalculating the weighted average of the
weak models.

The K-nearest neighbor (KNN) algorithm predicts the similarity between the seen
and unseen data points. The KNN algorithm is much faster than algorithms that require
training, such as the support vector machine (SVM), because it only stores training data
and does not learn from it. In this study, the traditional KNN model was trained using
K = 3. The model was further optimized using Bayesian optimization in which the number
of neighbors, the distance metric, and the distance weight were considered.

The support vector machine (SVM) is a popular supervised learning algorithm used
for regression and classification. The primary approach of the SVM is to find the decision
boundary/hyperplane that maximizes the distance between the data points of different
classes in an N-dimensional space, where N represents the number of features. Data
points closer to the decision boundaries are called support vectors, which influence the
maximization of the hyperplane [50]. In this study, we used a fine Gaussian SVM with a
kernel scale of sqrt (P)/4, where P is the number of predictors and a hyperparameter-tuned
SVM, where the kernel function, kernel scale, and box constraint level were tuned before
model training to improve the model performance and prediction.

3.4.3. Hyperparameter Tuning

Hyperparameter optimization in machine learning aims to find the hyperparameters
of a given machine learning algorithm that return the best performance as measured on a
validation set [14]. Finding the best combination of hyperparameters can be difficult, but it
is possible to automate the process using different optimization methods such as grid search,
random search, and Bayesian optimization. Bayesian optimization was used in this study.
With this approach, the algorithm tracks past evaluation results used to form a probabilistic
representation of the model performance. This was performed using an objective function
as the primary evaluator of the hyperparameter. Bayesian optimization aims to reduce
errors by using more data. This approach continuously updates the surrogate probability
model after each evaluation of the objective function [51]. For the decision tree model, the
hyperparameters chosen for tuning were the number of splits and the split criteria. The
distance metric, the distance weight, and the number of neighbors (K-value) were selected
for tuning in the KNN classifier, whereas for the SVM model, the box constraint level,
kernel function, and kernel scale were the hyperparameters that were tuned. Finally, for
the ensemble models, the hyperparameters selected for tuning were the ensemble method,
number of learners, learning rate, maximum number of splits, and the number of predictors
to be sampled.

3.5. Performances Metrics

The performance of each model was analyzed using the following performance metrics.

3.5.1. Sensitivity/Recall/True Positive Rate (TPR)

The true positive rate (TPR) measures the predictive model to correctly identify the
true positives (TP). TPR is the ratio of correctly predicted actual positives to the total
number of observations in the actual class, which includes false negatives (FN). A higher

Sensors 2022, 22, 4764 10 of 17

TPR value indicates that the predictive model classifies the actual positives more accurately.
The TPR is given by (1).

TPR =
TP

TP + FN
(1)

3.5.2. Fallout/False Positive Rate (FPR)

The false-positive rate (FPR) is the total number of false positives (FPs), which are
negative observations incorrectly classified as positive observations, divided by the total
number of negative observations. For any predictive model, the FPR value should be low,
indicating that the predictive model accurately classifies true negative (TN) observations.
The FPR is given as

FPR =
FP

FP + TN
(2)

3.5.3. Miss Rate/False Negative Rate (FNR)

The total number of positive observations incorrectly classified as negative observa-
tions divided by the total number of positive observations is the false-negative rate (FNR)
or miss rate. The FNR value should be low, as it indicates that the model classifies true
positives more accurately and is given as

FNR =
FN

FN + TP
(3)

3.5.4. Precision

Precision or positive predictive value (PPV) is the ratio of true positives to the sum of
true and false positives. The precision value ranges from 0 to 1, and higher values indicate
that the predictive model performs better in classifying true and false classes. The precision
is given as

Precision =
TP

TP + FP
(4)

3.5.5. Accuracy

The accuracy is the ratio of correctly classified observations to the total number of
observations. This is a significant measure for evaluating predictive models. It summarizes
performance based on the number of correct predictions (TP and TN). However, they do
not provide much information on false positives and false negatives. Accuracy is calculated
using (5).

Accuracy =
TP + TN

TP + FP + FN + TN
(5)

3.5.6. F1-Score

The F1-Score is an excellent evaluation metric for determining the balance between
precision and recall and when the class distribution is uneven. The F1-Score is given as

F1 − Score = 2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(6)

3.5.7. ROC–AUC

The receiver operating characteristic (ROC) provides a summary of the performance
of a classifier. The TPR is plotted along the y-axis; the FPR is plotted along the y-axis, and
the threshold value used for the observations of a particular class can be adjusted. The
area under the curve (AUC) indicates the accuracy of the model in terms of separability. A
predictive model is better than random guessing if the AUC value is greater than 0.5. A
model is considered good if its AUC value is larger than 0.8.

Sensors 2022, 22, 4764 11 of 17

4. Results and Discussion

The tree-based embedded method selected 7 useful features out of the 25 features
provided by BLINKER, which increased the accuracy of the predictive models. The features
are the peak time tent (PTT), inter-band maximum amplitude (IBMA), negative amplitude
velocity ratio base (NAVRB), closing time tent (CTT), inter-link maximum velocity base
(IBMVB), duration half zero (DHZ), and duration tent (DT). Figure 3 shows the best features
selected from the 25 features. The y-axis on the left and right shows the importance value of
each bar and the cumulative percentage of the feature importance, respectively. The x-axis
represents the feature indices. The line graph above the bar shows the cumulative sum of
the importance values. Feature importance indicates the variables that are more relevant
to the target classes. The feature importance value of 98% shows that the seven selected
features can improve the predictive model’s performance and reduce the computation cost.
These seven features were used to train the decision tree, KNN, SVM, ensemble of bagged
trees, and ensemble of boosted tree classifiers.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 18

Figure 3. Selected features using the embedded feature selection technique where the line graph
above the bar shows the cumulative sum of the importance values.

Fine DT, fine KNN, fine Gaussian SVM, and an ensemble of bagged and boosted tree
classifiers were trained and further hyperparameter-tuned to observe the differences in
their performance. The accuracies and other performance metrics are listed in Table 4.

If we look at the other performance metrics in Table 4, even though the fine DT and
the optimized DT are 82% successful in classifying the data points into alert and drowsy
observed from the AUC value, the hyperparameter-tuned DT performs slightly better
than the fine tree in observing the FPR and FNR. The model was hyperparameter-tuned
using the maximum number of splits criterion, Gini’s diversity index, and maximum
deviance reduction. Bayesian optimization yielded an accuracy of 80.40% when the
maximum number of splits was 211 and the split criterion was Gini’s diversity index.
After hyperparameter tuning, the accuracy improved by just 0.2%. However, when we
investigated the confusion matrix and the ROC–AUC curve, this model might perform
poorly, even though it provided over 80% accuracy. When the FPR and FNR are higher
for any model, the model misclassifies the true class as false and vice versa. A decision
tree’s aim is to reduce the training data into the smallest possible tree, and this is done by
separating the nodes into numerous sub-nodes and repeating the procedure during model
training until only homogenous nodes remain. For the fine DT, the number of splits used
was 100, and for the hyperparameter-tuned model, the number of splits was 211. Because
small trees make decisions more quickly than large trees and are much easier to
understand, this might be a reason why the hyperparameter-tuned DT does not show
much improvement in terms of performance.

For the fine KNN, the number of neighbors used was K = 3 along with the Euclidean
distance metric. For the hyperparameter-tuned KNN model, the hyperparameters
selected were the number of neighbors (between 1 and 688), the distance metric (city
block, Chebyshev, correlation, cosine, Euclidean, Hamming, Jaccard, Mahalanobis,
Minkowski, and Spearman), and the distance weight (equal, inverse, and squared
inverse). The best model performance was obtained when the number of neighbors was
three, the distance metric was Mahalanobis, and the distance weight was the squared
inverse. From the evaluation metrics of fine KNN and optimized KNN, it is clear that the
optimized KNN has better separability (AUC of 0.93) than the fine KNN model (AUC of
0.90) as shown in Table 4. In both KNN models, before and after hyperparameter tuning,
the optimal K value was three. However, after hyperparameter tuning, the separability
and accuracy of the model increased by 0.3% and 2.9%, respectively. The selection of
different distance metrics may result in a better performance in the hyperparameter-tuned
model.

Figure 3. Selected features using the embedded feature selection technique where the line graph
above the bar shows the cumulative sum of the importance values.

Fine DT, fine KNN, fine Gaussian SVM, and an ensemble of bagged and boosted tree
classifiers were trained and further hyperparameter-tuned to observe the differences in
their performance. The accuracies and other performance metrics are listed in Table 4.

If we look at the other performance metrics in Table 4, even though the fine DT and
the optimized DT are 82% successful in classifying the data points into alert and drowsy
observed from the AUC value, the hyperparameter-tuned DT performs slightly better than
the fine tree in observing the FPR and FNR. The model was hyperparameter-tuned using
the maximum number of splits criterion, Gini’s diversity index, and maximum deviance
reduction. Bayesian optimization yielded an accuracy of 80.40% when the maximum
number of splits was 211 and the split criterion was Gini’s diversity index. After hyper-
parameter tuning, the accuracy improved by just 0.2%. However, when we investigated
the confusion matrix and the ROC–AUC curve, this model might perform poorly, even
though it provided over 80% accuracy. When the FPR and FNR are higher for any model,
the model misclassifies the true class as false and vice versa. A decision tree’s aim is to
reduce the training data into the smallest possible tree, and this is done by separating the
nodes into numerous sub-nodes and repeating the procedure during model training until
only homogenous nodes remain. For the fine DT, the number of splits used was 100, and
for the hyperparameter-tuned model, the number of splits was 211. Because small trees
make decisions more quickly than large trees and are much easier to understand, this might
be a reason why the hyperparameter-tuned DT does not show much improvement in terms
of performance.

Sensors 2022, 22, 4764 12 of 17

Table 4. Performances of the classification models.

Model Performance Metrics
Before

Hyperparameter
Tuning

After
Hyperparameter

Tuning

Tuned Hyperparameters and the Optimal
Values

Decision Tree

TPR (%) 77.60 76.60

• Maximum number of splits: 211
• Split criterion: Gini’s diversity index

FPR (%) 18.00 16.80

FNR (%) 22.40 16.90

Precision (%) 75.80 76.70

Accuracy (%) 80.20 80.40

F1 score 0.77 0.77

AUC 0.82 0.82

KNN

TPR (%) 82.10 86.50

• Number of neighbors: 3
• Distance metric: Mahalanobis
• Distance weight: Squared inverse

FPR (%) 14.50 12.60

FNR (%) 17.90 10.10

Precision (%) 80.30 83.10

Accuracy (%) 84.10 87.00

F1 score 0.81 0.85

AUC 0.90 0.93

SVM

TPR (%) 75.20 82.50

• Box constraint level: 28.9228
• Kernel scale: 1
• Kernel function: Cubic

FPR (%) 12.10 11.10

FNR (%) 16.90 12.50

Precision (%) 81.70 84.20

Accuracy (%) 82.50 86.20

F1 score 0.78 0.83

AUC 0.91 0.91

Ensemble of Bagged Trees

TPR (%) 84.00 84.20

• Number of learners: 100, Maximum
number of splits: 84

• Number-of-Predictors-to-Sample: 8.

FPR (%) 14.10 12.20

FNR (%) 11.80 15.40

Precision (%) 81.00 83.20

Accuracy (%) 85.10 86.40

F1 score 0.83 0.84

AUC 0.93 0.94

Ensemble of Boosted Trees
(AdaBoost)

TPR (%) 79.70 91.00

FPR (%) 21.30 08.80

FNR (%) 15.70 06.70

Precision (%) 72.80 88.20

Accuracy (%) 79.10 91.10

F1 score 0.76 0.90

AUC 0.88 0.97

For the fine KNN, the number of neighbors used was K = 3 along with the Euclidean
distance metric. For the hyperparameter-tuned KNN model, the hyperparameters selected
were the number of neighbors (between 1 and 688), the distance metric (city block, Cheby-
shev, correlation, cosine, Euclidean, Hamming, Jaccard, Mahalanobis, Minkowski, and
Spearman), and the distance weight (equal, inverse, and squared inverse). The best model
performance was obtained when the number of neighbors was three, the distance metric
was Mahalanobis, and the distance weight was the squared inverse. From the evaluation
metrics of fine KNN and optimized KNN, it is clear that the optimized KNN has better
separability (AUC of 0.93) than the fine KNN model (AUC of 0.90) as shown in Table 4.

Sensors 2022, 22, 4764 13 of 17

In both KNN models, before and after hyperparameter tuning, the optimal K value was
three. However, after hyperparameter tuning, the separability and accuracy of the model
increased by 0.3% and 2.9%, respectively. The selection of different distance metrics may
result in a better performance in the hyperparameter-tuned model.

A traditional fine Gaussian SVM was trained with the Gaussian kernel function; the
kernel scale was 0.66, and the accuracy was 82.50% as shown in Table 4. The optimized
SVM model was trained using different box constraint levels ranging from 0.001 to 1000,
kernel scale values ranging from 0.001 to 1000, and Gaussian, linear, cubic, and quadratic
kernel functions. The Bayesian optimizer optimized all the hyperparameters and yielded
the highest accuracy (86.20%) when the kernel function was cubic, the kernel scale was
1, and the box constraint level was 28.9228. Even though both models before and after
hyperparameter tuning had similar separability (AUC = 0.91), the FPR and FNR values
were quite different. For example, the FNR of the Gaussian SVM was 16.9%, whereas
after tuning, it was found that a cubic SVM yielded an FNR of 12.5%. This indicates that
hyperparameter tuning reduces the number of false negatives when a cubic kernel function
is used. This also led to a higher accuracy than the Gaussian SVM.

Ensembles of bagged and boosted tree classifiers were also trained and hyperparameter-
tuned using Bayesian optimization for better predictive performance. The accuracy of the
bagged tree classifier was 85.10% and that of the boosted tree classifier using AdaBoost was
79.10%. To train the bagged tree classifier, several subsets of data from the training dataset were
selected using row sampling with replacement and fed to the base learners in parallel. The
outputs from all the base learning models were aggregated, and the final output was obtained
based on majority voting. Although, in general, the boosted tree classifier is better because it
tries to solve the errors of the base learners sequentially and builds up the model, it did not
show promising results on our dataset as boosting can be sensitive to outliers. Both models were
further optimized by tuning the hyperparameters. The hyperparameters selected for tuning
were the number of learners (50–500), learning rate (0.001–1), the maximum number of splits
(1–1374), and number-of-predictors-to-sample (1–8).

With hyperparameter tuning, the best performance of the bagged tree classifier was
obtained using 498 learners and 302 splits. However, the improvement in accuracy after
hyperparameter tuning was not significant, with an increase of 1.3% to 86.4. For the boosted
tree classifier, the best performance was obtained using AdaBoost, with a maximum number
of splits of 84 and 100 learners. The accuracy improved to 91.1%, and this value was the
highest achieved among all the models used in this study. The number of misclassified data
points was also small compared to the other ML models studied as shown in the confusion
matrix in Figure 4. The AUC value is 0.97, indicating that there is a 97% chance that this
model can correctly separate both classes. The F1-Score was 0.90, which indicates a better
balance in the precision and recall of the model.

Sensors 2022, 22, x FOR PEER REVIEW 14 of 18

hyperparameter tuning reduces the number of false negatives when a cubic kernel
function is used. This also led to a higher accuracy than the Gaussian SVM.

Ensembles of bagged and boosted tree classifiers were also trained and
hyperparameter-tuned using Bayesian optimization for better predictive performance.
The accuracy of the bagged tree classifier was 85.10% and that of the boosted tree classifier
using AdaBoost was 79.10%. To train the bagged tree classifier, several subsets of data
from the training dataset were selected using row sampling with replacement and fed to
the base learners in parallel. The outputs from all the base learning models were
aggregated, and the final output was obtained based on majority voting. Although, in
general, the boosted tree classifier is better because it tries to solve the errors of the base
learners sequentially and builds up the model, it did not show promising results on our
dataset as boosting can be sensitive to outliers. Both models were further optimized by
tuning the hyperparameters. The hyperparameters selected for tuning were the number
of learners (50–500), learning rate (0.001–1), the maximum number of splits (1–1374), and
number-of-predictors-to-sample (1–8).

With hyperparameter tuning, the best performance of the bagged tree classifier was
obtained using 498 learners and 302 splits. However, the improvement in accuracy after
hyperparameter tuning was not significant, with an increase of 1.3% to 86.4. For the
boosted tree classifier, the best performance was obtained using AdaBoost, with a
maximum number of splits of 84 and 100 learners. The accuracy improved to 91.1%, and
this value was the highest achieved among all the models used in this study. The number
of misclassified data points was also small compared to the other ML models studied as
shown in the confusion matrix in Figure 4. The AUC value is 0.97, indicating that there is
a 97% chance that this model can correctly separate both classes. The F1-Score was 0.90,
which indicates a better balance in the precision and recall of the model.

Accuracy is an excellent performance metric when there is an equal number of
observations in both classes. In addition to accuracy, precision/TNR, fallout/FPR,
recall/TPR, miss-rate/FNR, and F1-Score are other parameters often used to evaluate the
classification performance of neural networks. The precision and recall of the model
should be as high as possible, whereas the FPR and FNR should be as low as possible. The
F1-Score, which is the weighted average of precision and recall, was computed to evaluate
whether the models were good when there was an uneven class distribution between
drowsiness and alertness. Specifically, in our study, the dataset used suffers from a class
imbalance; hence, the F1-Score provides useful insight into how good the different
classifiers are in handling the imbalance. This measure can be used to evaluate whether a
model performs well despite an imbalance in the dataset.

Figure 4. Confusion matrix of the optimized ensemble AdaBoost method. Figure 4. Confusion matrix of the optimized ensemble AdaBoost method.

Sensors 2022, 22, 4764 14 of 17

Accuracy is an excellent performance metric when there is an equal number of obser-
vations in both classes. In addition to accuracy, precision/TNR, fallout/FPR, recall/TPR,
miss-rate/FNR, and F1-Score are other parameters often used to evaluate the classification
performance of neural networks. The precision and recall of the model should be as high
as possible, whereas the FPR and FNR should be as low as possible. The F1-Score, which
is the weighted average of precision and recall, was computed to evaluate whether the
models were good when there was an uneven class distribution between drowsiness and
alertness. Specifically, in our study, the dataset used suffers from a class imbalance; hence,
the F1-Score provides useful insight into how good the different classifiers are in handling
the imbalance. This measure can be used to evaluate whether a model performs well
despite an imbalance in the dataset.

From the evaluation metrics (shown in Table 4) of all the trained models, the
hyperparameter-tuned ensemble of the boosted tree classifier using AdaBoost had the
lowest FPR and FNR, and hence, it is the best model based on the dataset used in this study.
The ROC–AUC value also supports this statement, as the model has a higher separability
value than the other models. However, the ensemble of bagged tree classifiers did not
show much improvement after hyperparameter tuning, and one of the reasons might be
the high number of splits, which was 302. Decision trees are the base learners for ensemble
classifiers, and a higher number of splits in the decision tree makes the model more com-
plex. The AdaBoost algorithm assigns equal weights to each sample of the training dataset
when training the first weak learner. The subsequent weak learner model is trained using
the recalculated weights of the sample to present a misclassification from the previous
model. The algorithm makes predictions by recalculating the weighted average of the weak
learners, which improves the predictive performance of the trained model.

The ensemble classifier is robust and gives the best performance among all supervised
machine learning algorithms. The model uses multiple decision trees as base learners
instead of considering only one. Taking the most common or average prediction for
multiple decision trees renders the model more reliable than a single prediction model.
Without hyperparameter tuning, the ensemble of bagged trees provided better performance.
After hyperparameter tuning, the ensemble of boosted trees using AdaBoost provided the
best performance among all the models used in this study. Bayesian optimization also
helped improve the performance by keeping track of past evaluation results used to form a
probabilistic representation of the model performance. It builds a probability model of the
objective function and selects the most promising hyperparameters to evaluate the actual
objective function. Of the many hyperparameters available, only the significant parameters
are tuned to have the greatest effect on the ensemble classifier model result.

5. Conclusions

This study was performed on a public dataset of 12 subjects with EEG signals marked
as alert or drowsy. Different ML models were trained to classify the observations into
drowsiness and alertness, and their performances were evaluated based on different evalu-
ation metrics. Previous studies have demonstrated that eyeblink-related parameters are
good indicators of drowsiness. Therefore, in this study, eyeblink artifacts were used to
detect drowsiness among drivers. Previous EEG-based driver drowsiness detection systems
investigated brain rhymes such, as alpha, beta, and gamma to extract the features and
train different models to predict drowsiness. The proposed work presents a novel way of
detecting driver drowsiness using eyeblink artifacts extracted from EEG signals and the
application of machine learning. The BLINKER algorithm was used to extract blink-related
features from EEG signals. The observations obtained from BLINKER were cleaned and
preprocessed before use for feature selection and model training. The medium-tree-based
embedded feature selection technique selects the most useful features to improve the predic-
tive performance of the ML classification models. For the classical ML models, we selected
DT, KNN, SVM, and ensemble-bagged and boosted tree classifications. These models were
further optimized using Bayesian optimization to obtain improved performance.

Sensors 2022, 22, 4764 15 of 17

Among the classical ML models, the Bayesian-optimized AdaBoost classifier yielded
the best performance, with an accuracy of 91.10%, TPR of 91.0%, FPR of 8.8%, FNR of
6.7%, precision of 88.2%, AUC of 0.97, and F1-Score of 0.9. The high F1-Score also indicates
that the Bayesian-optimized AdaBoost classifier performs well with our dataset, which
has class imbalance issues. The main contribution of this work is that we have shown
that there is significant information that can be extracted from ocular or eyeblink artifacts
present in EEG signals. While in most work involving EEG analysis, these artifacts have
been dismissed as noise or unwanted signals, we have shown that for the right application,
this “unwanted” signal may hold valuable information. This paper has shown that it is
viable to use the features extracted from eyeblink artifacts in EEG signals for classifying
drowsy and alert states, and these features may be able to supplement drowsiness detection
techniques based on EEG signals. As opposed to driver drowsiness detection that is based
on hybrid EEG–EOG information, our work suggests that we are able to also obtain ocular
information without the placement of EOG sensors around the eye area.

One of the limitations of this study is the existence of class imbalance in the dataset.
Therefore, the accuracy of the classification models should not be the only metric for
evaluating the model performance. The F1-Scores for the best ML model in this study
indicate that the models can handle class imbalance well. Another limitation of this study
is that only one feature selection method was explored while investigating the classical
ML models. Suggested future work includes solving the class imbalance problem using
oversampling and undersampling, testing these models on different datasets, and using
different feature selection techniques for the ML model.

Author Contributions: Conceptualization, N.B.; Formal analysis, S.T. and N.Y.; Funding acquisition,
N.B. and A.H.N.; Investigation, S.T.; Methodology, S.T., N.Y. and A.H.N.; Project administration, N.B.;
Resources, N.B.; Supervision, N.B. and N.Y.; Validation, S.T. and N.Y.; Visualization, S.T.; Writing—
original draft, S.T.; Writing—review & editing, N.B., N.Y. and A.H.N. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by Yayasan Universiti Teknologi PETRONAS, grant number
[015LC0-241], and UTP-UIR International Research Collaboration Fund, grant number [015ME0-173].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: This study used a public EEG dataset of 12 subjects including EEG
signals of drowsy and alert state. The original article where this dataset was obtained is reference [44]
and the dataset is available at https://figshare.com/articles/dataset/The_original_EEG_data_for_
driver_fatigue_detection/5202739 (accessed on 12 May 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Drowsy Driving 2021 Facts & Statistics|Bankrate. Available online: https://www.bankrate.com/insurance/car/drowsy-driving-

statistics/#stats (accessed on 27 May 2021).
2. AAA: Drivers Drowsy in Nearly 10% of Accidents. Available online: https://www.usatoday.com/story/news/2018/02/07/aaa-

drowsy-driving-plays-larger-role-accidents-than-federal-statistics-suggest/313226002/ (accessed on 26 May 2022).
3. Pratama, B.G.; Ardiyanto, I.; Adji, T.B. A review on driver drowsiness based on image, bio-signal, and driver behavior. In

Proceedings of the 2017 3rd International Conference on Science and Technology—ICST, Yogyakarta, Indonesia, 11–12 July 2017;
pp. 70–75. [CrossRef]

4. Shi, S.-Y.; Tang, W.-Z.; Wang, Y.-Y. A Review on Fatigue Driving Detection. ITM Web Conf. 2017, 12, 1019. [CrossRef]
5. Ramzan, M.; Khan, H.U.; Awan, S.M.; Ismail, A.; Ilyas, M.; Mahmood, A. A Survey on State-of-the-Art Drowsiness Detection

Techniques. IEEE Access 2019, 7, 61904–61919. [CrossRef]
6. Saito, Y.; Itoh, M.; Inagaki, T. Driver Assistance System with a Dual Control Scheme: Effectiveness of Identifying Driver

Drowsiness and Preventing Lane Departure Accidents. IEEE Trans. Hum.-Mach. Syst. 2016, 46, 660–671. [CrossRef]
7. Kamarudin, N.H.; Ramli, R.; Zulkoffli, Z. Drowsiness Detection for Safe Driving Using PERCLOS and YOLOv2 Method. In Pro-

ceedings of the 6th International Conference on Mechanical Engineering Research—ICMER 2021, Online, 11–13 December 2021.

https://figshare.com/articles/dataset/The_original_EEG_data_for_driver_fatigue_detection/5202739
https://figshare.com/articles/dataset/The_original_EEG_data_for_driver_fatigue_detection/5202739
https://www.bankrate.com/insurance/car/drowsy-driving-statistics/#stats
https://www.bankrate.com/insurance/car/drowsy-driving-statistics/#stats
https://www.usatoday.com/story/news/2018/02/07/aaa-drowsy-driving-plays-larger-role-accidents-than-federal-statistics-suggest/313226002/
https://www.usatoday.com/story/news/2018/02/07/aaa-drowsy-driving-plays-larger-role-accidents-than-federal-statistics-suggest/313226002/
http://doi.org/10.1109/ICSTC.2017.8011855
http://doi.org/10.1051/itmconf/20171201019
http://doi.org/10.1109/ACCESS.2019.2914373
http://doi.org/10.1109/THMS.2016.2549032

Sensors 2022, 22, 4764 16 of 17

8. Wang, P.; Shen, L. A method of detecting driver drowsiness state based on multi-features of face. In Proceedings of the 2012 5th
International Congress on Image and Signal Processing, CISP 2012, Chongqing, China, 16–18 October 2012. [CrossRef]

9. Omidyeganeh, M.; Javadtalab, A.; Shirmohammadi, S. Intelligent driver drowsiness detection through fusion of yawning and eye
closure. In Proceedings of the VECIMS 2011—2011 IEEE International Conference on Virtual Environments, Human-Computer
Interfaces and Measurement Systems Proceedings, Ottawa, ON, Canada, 19–21 September 2011. [CrossRef]

10. Ahmad, R.; Borole, J.N. Drowsy Driver Identification Using Eye Blink detection. Int. J. Comput. Sci. Inf. Technol. 2015, 6, 270–274.
11. Choi, I.H.; Kim, Y.G. Head pose and gaze direction tracking for detecting a drowsy driver. Appl. Math. Inf. Sci. 2015, 9, 505–512.

[CrossRef]
12. Zhang, Y.; Hua, C. Driver fatigue recognition based on facial expression analysis using local binary patterns. Optik 2015, 126,

4501–4505. [CrossRef]
13. Xie, J.-F.; Xie, M.; Zhu, W. Driver fatigue detection based on head gesture and PERCLOS. In Proceedings of the 2012 In-

ternational Conference on Wavelet Active Media Technology and Information Processing (ICWAMTIP), Chengdu, China,
17–19 December 2012; pp. 128–131. [CrossRef]

14. Tarafder, S.; Badruddin, N.; Yahya, N.; Egambaram, A. EEG-based Drowsiness Detection from Ocular Indices Using Ensemble
Classification. In Proceedings of the 2021 IEEE 3rd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability
(ECBIOS), Tainan, Taiwan, 28–30 May 2021; pp. 21–24. [CrossRef]

15. Babaeian, M.; Mozumdar, M. Driver Drowsiness Detection Algorithms Using Electrocardiogram Data Analysis. In Proceedings
of the 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA,
7–9 January 2019; pp. 1–6. [CrossRef]

16. Zhu, X.; Zheng, W.L.; Lu, B.L.; Chen, X.; Chen, S.; Wang, C. EOG-based drowsiness detection using convolutional neural
networks. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014;
pp. 128–134. [CrossRef]

17. Mahmoodi, M.; Nahvi, A. Driver drowsiness detection based on classification of surface electromyography features in a driving
simulator. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2019, 233, 395–406. [CrossRef]

18. Koh, S.; Cho, B.R.; Lee, J.-I.; Kwon, S.-O.; Lee, S.; Lim, J.B.; Lee, S.B.; Kweon, H.-D. Driver drowsiness detection via PPG biosignals
by using multimodal head support. In Proceedings of the 2017 4th International Conference on Control, Decision and Information
Technologies (CoDIT), Barcelona, Spain, 5–7 April 2017; pp. 383–388. [CrossRef]

19. Misbhauddin, M.; AlMutlaq, A.; Almithn, A.; Alshukr, N.; Aleesa, M. Real-time driver drowsiness detection using wearable
technology. In Proceedings of the 4th International Conference on Smart City Applications, Tangier, Morocco, 25–27 October 2019;
pp. 1–6. [CrossRef]

20. Khan, M.J.; Liu, X.; Bhutta, M.R.; Hong, K.S. Drowsiness detection using fNIRS in different time windows for a passive BCI.
In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Singapore,
26–29 June 2016. [CrossRef]

21. Kamran, M.A.; Mannan, M.M.N.; Jeong, M.Y. Drowsiness, Fatigue and Poor Sleep’s Causes and Detection: A Comprehensive
Study. IEEE Access 2019, 7, 167172–167186. [CrossRef]

22. Awais, M.; Badruddin, N.; Drieberg, M. A hybrid approach to detect driver drowsiness utilizing physiological signals to improve
system performance and Wearability. Sensors 2017, 17, 1991. [CrossRef]

23. Desai, Y.S. Driver’s alertness detection for based on eye blink duration via EOG & EEG. Int. J. Adv. Comput. Res. 2012, 2, 93–99.
24. Khunpisuth, O.; Chotchinasri, T.; Koschakosai, V.; Hnoohom, N. Driver Drowsiness Detection Using Eye-Closeness Detection. In

Proceedings of the 2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS), Naples,
Italy, 28 November 2016; pp. 661–668. [CrossRef]

25. Stancin, I.; Cifrek, M.; Jovic, A. A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems.
Sensors 2021, 21, 3786. [CrossRef] [PubMed]

26. Goovaerts, G.; Denissen, A.; Milosevic, M.; van Boxtel, G.; van Huffel, S. Advanced EEG Processing for the Detection of
Drowsiness in Drivers. In Proceedings of the International Conference on Bio-Inspired Systems and Signal Processing, Angers,
France, 3–6 March 2014; pp. 205–212. [CrossRef]

27. Kleifges, K.; Bigdely-Shamlo, N.; Kerick, S.E.; Robbins, K.A. BLINKER: Automated extraction of ocular indices from EEG enabling
large-scale analysis. Front. Neurosci. 2017, 11, 12. [CrossRef] [PubMed]

28. Schleicher, R.; Galley, N.; Briest, S.; Galley, L. Blinks and saccades as indicators of fatigue in sleepiness warnings: Looking tired?
Ergonomics 2008, 51, 982–1010. [CrossRef] [PubMed]

29. Caffier, P.P.; Erdmann, U.; Ullsperger, P. The spontaneous eye-blink as sleepiness indicator in patients with obstructive sleep
apnoea syndrome—A pilot study. Sleep Med. 2005, 6, 155–162. [CrossRef] [PubMed]

30. Rahman, A.; Sirshar, M.; Khan, A. Real time drowsiness detection using eye blink monitoring. In Proceedings of the 2015 National
Software Engineering Conference (NSEC), Rawalpindi, Pakistan, 17 December 2015; pp. 1–7. [CrossRef]

31. Clavijo, G.L.R.; Patino, J.O.; Leon, D.M. Detection of visual fatigue by analyzing the blink rate. In Proceedings of the 2015 20th
Symposium on Signal Processing, Images and Computer Vision (STSIVA), Bogota, Colombia, 2–4 September 2015; pp. 1–5.
[CrossRef]

http://doi.org/10.1109/CISP.2012.6469987
http://doi.org/10.1109/VECIMS.2011.6053857
http://doi.org/10.12785/amis/092L25
http://doi.org/10.1016/j.ijleo.2015.08.185
http://doi.org/10.1109/ICWAMTIP.2012.6413456
http://doi.org/10.1109/ECBIOS51820.2021.9510848
http://doi.org/10.1109/CCWC.2019.8666467
http://doi.org/10.1109/IJCNN.2014.6889642
http://doi.org/10.1177/0954411919831313
http://doi.org/10.1109/CoDIT.2017.8102622
http://doi.org/10.1145/3368756.3369081
http://doi.org/10.1109/BIOROB.2016.7523628
http://doi.org/10.1109/ACCESS.2019.2951028
http://doi.org/10.3390/s17091991
http://doi.org/10.1109/SITIS.2016.110
http://doi.org/10.3390/s21113786
http://www.ncbi.nlm.nih.gov/pubmed/34070732
http://doi.org/10.5220/0004800102050212
http://doi.org/10.3389/fnins.2017.00012
http://www.ncbi.nlm.nih.gov/pubmed/28217081
http://doi.org/10.1080/00140130701817062
http://www.ncbi.nlm.nih.gov/pubmed/18568959
http://doi.org/10.1016/j.sleep.2004.11.013
http://www.ncbi.nlm.nih.gov/pubmed/15716219
http://doi.org/10.1109/NSEC.2015.7396336
http://doi.org/10.1109/STSIVA.2015.7330398

Sensors 2022, 22, 4764 17 of 17

32. Zhu, M.; Li, H.; Chen, J.; Kamezaki, M.; Zhang, Z.; Hua, Z.; Sugano, S. EEG-based System Using Deep Learning and Attention
Mechanism for Driver Drowsiness Detection. In Proceedings of the 2021 IEEE Intelligent Vehicles Symposium Workshops (IV
Workshops), Nagoya, Japan, 11–17 July 2021; pp. 280–286. [CrossRef]

33. Kim, Y.S.; Baek, H.J.; Kim, J.S.; Lee, H.B.; Choi, J.M.; Park, K.S. Helmet-based physiological signal monitoring system. Eur. J. Appl.
Physiol. 2008, 105, 365–372. [CrossRef]

34. Kartsch, V.; Benatti, S.; Rossi, D.; Benini, L. A wearable EEG-based drowsiness detection system with blink duration and alpha
waves analysis. In Proceedings of the International IEEE/EMBS Conference on Neural Engineering, NER, Shanghai, China,
25–28 May 2017. [CrossRef]

35. Shameen, Z.; Yusoff, M.Z.; Saad, M.N.M.; Malik, A.S.; Muzammel, M. Electroencephalography (EEG) based drowsiness detection
for drivers: A review. ARPN J. Eng. Appl. Sci. 2018, 13, 1458–1464.

36. Purnamasari, P.D.; Yustiana, P.; Ratna, A.A.P.; Sudiana, D. Mobile EEG Based Drowsiness Detection using K-Nearest Neighbor. In
Proceedings of the 2019 IEEE 10th International Conference on Awareness Science and Technology (iCAST), Morioka, Japan,
23–25 October 2019. [CrossRef]

37. Li, G.; Chung, W.Y. A context-aware EEG headset system for early detection of driver drowsiness. Sensors 2015, 15, 20873–20893.
[CrossRef]

38. Belakhdar, I.; Kaaniche, W.; Djmel, R.; Ouni, B. A comparison between ANN and SVM classifier for drowsiness detection based
on single EEG channel. In Proceedings of the 2nd International Conference on Advanced Technologies for Signal and Image
Processing, ATSIP 2016, Monastir, Tunisia, 21–23 March 2016; pp. 443–446. [CrossRef]

39. Ko, L.-W.; Lai, W.-K.; Liang, W.-G.; Chuang, C.-H.; Lu, S.-W.; Lu, Y.-C.; Hsiung, T.-Y.; Wu, H.-H.; Lin, C.-T. Single channel wireless
EEG device for real-time fatigue level detection. In Proceedings of the 2015 International Joint Conference on Neural Networks
(IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–5. [CrossRef]

40. Dey, I.; Jagga, S.; Prasad, A.; Sharmila, A.; Borah, S.K.; Rao, G. Automatic detection of drowsiness in EEG records based on time
analysis. In Proceedings of the 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India,
21–22 April 2017; pp. 1–5. [CrossRef]

41. Priya, V.V.; Uma, M. EEG based Drowsiness Prediction Using Machine Learning Approach. Webology 2021, 18, 740–755. [CrossRef]
42. Mardi, Z.; Ashtiani, S.N.; Mikaili, M. EEG-based drowsiness detection for safe driving using chaotic features and statistical tests.

J. Med. Signals Sens. 2011, 1, 130–137. [CrossRef]
43. Correa, A.G.; Orosco, L.; Laciar, E. Automatic detection of drowsiness in EEG records based on multimodal analysis. Med. Eng.

Phys. 2014, 36, 244–249. [CrossRef]
44. Min, J.; Wang, P.; Hu, J. Driver fatigue detection through multiple entropy fusion analysis in an EEG-based system. PLoS ONE

2017, 12, e0188756. [CrossRef] [PubMed]
45. Otchere, D.A.; Ganat, T.O.A.; Ojero, J.O.; Tackie-Otoo, B.N.; Taki, M.Y. Application of gradient boosting regression model for the

evaluation of feature selection techniques in improving reservoir characterisation predictions. J. Pet. Sci. Eng. 2021, 208, 109244.
[CrossRef]

46. Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674.
[CrossRef]

47. Polikar, R. Ensemble Learning. In Ensemble Machine Learning; Springer: Boston, MA, USA, 2012; pp. 1–34.
48. Richman, R.; Wüthrich, M.V. Nagging predictors. Risks 2020, 8, 83. [CrossRef]
49. Bauer, E.; Kohavi, R. Empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Mach. Learn.

1999, 36, 105–139. [CrossRef]
50. Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [CrossRef]
51. Pelikan, M.; Goldberg, D.; Cantu-Paz, E. BOA: The Bayesian Optimization Algorithm. In Proceedings of the GECCO’99: 1st

Annual Conference on Genetic and Evolutionary Computation, Orlando, FL, USA, 13–17 July 1999; pp. 525–532.

http://doi.org/10.1109/IVWorkshops54471.2021.9669234
http://doi.org/10.1007/s00421-008-0912-6
http://doi.org/10.1109/NER.2017.8008338
http://doi.org/10.1109/ICAwST.2019.8923161
http://doi.org/10.3390/s150820873
http://doi.org/10.1109/ATSIP.2016.7523132
http://doi.org/10.1109/IJCNN.2015.7280817
http://doi.org/10.1109/IPACT.2017.8245167
http://doi.org/10.14704/WEB/V18I2/WEB18351
http://doi.org/10.4103/2228-7477.95297
http://doi.org/10.1016/j.medengphy.2013.07.011
http://doi.org/10.1371/journal.pone.0188756
http://www.ncbi.nlm.nih.gov/pubmed/29220351
http://doi.org/10.1016/j.petrol.2021.109244
http://doi.org/10.1109/21.97458
http://doi.org/10.3390/risks8030083
http://doi.org/10.1023/A:1007515423169
http://doi.org/10.1109/72.788640

	Introduction
	Related Work
	Methodology
	Dataset
	Preprocessing
	Data for Training, Validating, and Testing
	Investigation of Classic Machine Learning Models and Ensemble Methods
	Feature Selection
	Choice of Classifiers
	Hyperparameter Tuning

	Performances Metrics
	Sensitivity/Recall/True Positive Rate (TPR)
	Fallout/False Positive Rate (FPR)
	Miss Rate/False Negative Rate (FNR)
	Precision
	Accuracy
	F1-Score
	ROC–AUC

	Results and Discussion
	Conclusions
	References

