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DRSIR: A Deep Reinforcement Learning Approach
for Routing in Software-Defined Networking

Daniela M. Casas-Velasco, Oscar Mauricio Caicedo Rendon, and Nelson L. S. da Fonseca

Abstract—Traditional routing protocols employ limited infor-
mation to make routing decisions which leads to slow adapta-
tion to traffic variability and restricted support to the quality
of service requirements of the applications. To address these
shortcomings, in previous work, we proposed RSIR, a routing
solution based on Reinforcement Learning (RL) in Software-
Defined Networking (SDN). However, RL-based solutions usually
suffer an increase in the learning process when dealing with large
action and state spaces. This paper introduces a different routing
approach called Deep Reinforcement Learning and Software-
Defined Networking Intelligent Routing (DRSIR). DRSIR defines
a routing algorithm based on Deep RL (DRL) in SDN that over-
comes the limitations of RL-based solutions. DRSIR considers
path-state metrics to produce proactive, efficient, and intelligent
routing that adapts to dynamic traffic changes. DRSIR was
evaluated by emulation using real and synthetic traffic matrices.
The results show that this solution outperforms the routing
algorithms based on the Dijkstra’s algorithm and RSIR, in
relation to stretching (stretch), packet loss, and delay. Moreover,
the results obtained demonstrate that DRSIR provides a practical
and viable solution for routing in SDN.

Index Terms—Deep Reinforcement Learning, Routing,
Software-Defined Networking

I. INTRODUCTION

ROUTING is the network function that determines the
end-to-end path between a source and a destination

node. Traditional routing protocols usually make decisions
based on shortest path calculation with limited additional
information, this leads to slow adaptation to traffic variability
and restricts its support for meeting Quality of Service (QoS)
requirements. Moreover, the continuous growth of the Internet
and the diversity of applications running on it have led to
significant challenges affecting the efficiency of decisions
based on limited information. On the other hand, the combi-
nation of Software-Defined Networking (SDN) and Machine
Learning (ML) can help overcome such shortcomings. SDN
provides opportunities to improve networks in relation to
programmability, global view, logically centralized control,
and decoupling of network control and packet forwarding.
ML techniques provide intelligence to SDN, which enables
it to learn autonomously to make optimal routing decisions
adaptable to traffic variations.

Some papers [1]–[6] have shown to improve network rout-
ing by leveraging SDN capabilities, but they do not exploit
network information intelligently. Other proposals [7]–[12]
have used supervised ML techniques to optimize existing

D. M. Casas-Velasco, and N. L. S. da Fonseca are with the Institute of Com-
puting, University of Campinas, Brazil. e-mail: danielac@lrc.ic.unicamp.br
and nfonseca@ic.unicamp.br.

O. M. Caicedo is with the Department of Telematics, Universidad del
Cauca, Popayán, Colombia. e-mail: omcaicedo@unicauca.edu.co.

routing strategies, but the training of these algorithms is based
on labeled datasets obtained from the operation of traditional
routing protocols, which demands high computational com-
plexity and makes the routing decisions dependent on limited
information

The solutions in [13]–[17] have employed Reinforcement
Learning (RL) to optimize the selection of routing algorithms.
Compared with supervised ML techniques, RL learns by trial
and error in the interaction with the environment, and, thus,
does not depend on labeled datasets. Moreover, optimization
targets (e.g., throughput and delay) can be easily adjusted by
the definition of reward functions. In previous work [18], we
proposed an approach called the Reinforcement Learning and
Software-Defined Networking for Intelligent Routing (RSIR),
which employs link-state metrics for routing in SDN. Results
showed that RSIR outperforms the Dijkstra-based routing.
Nonetheless, RL-based solutions usually can have a significant
increase in the learning process when handling large action
and state spaces, requiring the RL-agent to make several
interactions with the environment to converge towards reliable
estimations [19]. Various papers [20]–[30] have explored the
use of Deep Reinforcement Learning (DRL) techniques to
cope with the limitations of RL-based routing solutions. How-
ever, these papers focus on optimizing delay and neglect other
performance metrics such as loss and throughput. Moreover,
the use of link metrics to build a path can be restrictive, since
decisions based on local (link) information disregard the state
of other links on the path to the destination node.

In this paper, we take a step further towards the goal of an
efficient and intelligent routing scheme in SDN by introducing
a novel approach, called the Deep Reinforcement Learning
and Software-Defined Networking for Intelligent Routing
(DRSIR), which combines Deep Learning (DL) and RL to
overcome the shortcomings of RL-based routing solutions.
DRSIR introduces a model-free DRL-based algorithm that
uses path-state metrics and the global view and control offered
by SDN to compute and install optimal routes proactively in
forwarding devices, thus allowing adaption to dynamic traffic
changes without prior knowledge of the underlying network.
Using path-state metrics enables the reduction of knowledge
abstraction needed by the routing agent since this approach
directly explores different path options instead of link state
information. The DRSIR algorithm calculates optimal routes
using the Target and Online Neural Networks (NNs) that
allows the DRL-agent to reduce the error in estimations
based on path information. Moreover, the DRL-agent uses
Experience Replay Memory to accelerate the learning process.
Results show that DRSIR outperforms RSIR and other four
variations of the Dijkstra’s algorithm in relation to stretch,
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link throughput, delay, and packet loss. The results show that
DRSIR is a promising solution for cognitive routing in SDN.

The contributions of this paper are:

• A novel routing algorithm based on Deep Q-Learning,
Experience Memory Replay, Target Neural Network, and
Online Neural Network that considers path-state metrics
to define optimal routes in SDN;

• A prototype of the proposed algorithm.

The remainder of this paper is organized as follows. Section
II presents a brief background for the relevant concepts.
Sections III and IV detail our approach by introducing the
DRL-based routing architecture, the DRSIR agent, and the
routing algorithm. Section V presents the DRSIR prototype
and its evaluation results. Section VI compares the DRSIR
to existing approaches. Section VII presents conclusions and
suggestions for future work.

II. BACKGROUND

In RL models, a Markov Decision Process (MDP) formu-
lation defines a set of states and actions (S,A), and a reward
model, hereafter, called environment. In RL, a learning entity
(an agent) interacts with the environment by iterating over
states and selecting actions to be made. In the interaction, the
agent receives a reward value for each action applied [31];
this expresses its impact on the system performance. It aims
at learning a policy that optimizes the cumulative reward.
Thus, the agent learns by trial and error, observing the reward
obtained by the different actions performed. The learning of
an optimal policy π involves the estimation of a value function
(e.g., action-value function), which indicates the goodness of
an action At performed when the MDP is in a state St under
policy π [32].

RL algorithms can be either model-based, or model-free
[33]. For model-based algorithms, the agent employs a model
of the environment (i.e., a function that predicts state transi-
tions and rewards); this model defines how it should operate
in finding a solution. Such algorithms require a ground-truth
model of the environment that is usually not available. On the
other hand, model-free algorithms do not need such a model
of the environment to find an optimal policy; they learn to
estimate the expected reward for different actions either by
learning a value function approximation from which the policy
is inferred or by directly learning the policy function that maps
states to actions. RL algorithms can also be classified as either
off-policy or on-policy [31]. Off-policy refers to the fact that
the algorithm does not follow the same policy for sampling
(i.e., selecting an action for the current state) and updating its
value function. Instead, it chooses the action corresponding
to the best reward of actions available for updating the value
function. In on-policy algorithms, the policy used for updating
and acting is the same.

A well-known RL algorithm is Q-learning [34], which is
model-free and off-policy. The action-values are represented
by a state transition table (Q-table), where each state-action
pair (St, At) has an entry called Q-value Q(St, At). To update
the Q-value, Q-learning uses Equation 1.

Qt+1(St, At) = Qt(St, At) + α ·
[
Rt +min

A
Qt(St+1, A)−Qt(St, At)

]
(1)

where:
- Rt is the reward retrieved by the RL-agent in time t when
executing an action At at a given state St.
- α ∈ [0, 1] is the learning rate that determines the weight
of the newly gained information in relation to what was
previously available.
- γ ∈ [0, 1] is the discount factor that determines the impor-
tance of future rewards.

The expression in square brackets is the difference between
the target Q-value computed by Rt+min

A
Qt(St+1, A) and the

current Q-value Qt(St, At) for a pair of state-action (St, At).
When α = 0, the RL-agent does not to learn from the latest
(St, At) pair, when α = 1 the RL-agent retains the learned
information by considering the immediate reward Rt from the
pair (St, At). Moreover, a value of γ = 0 enables the RL-agent
to consider only the current reward Rt, while a factor γ = 1
makes possible for the RL-agent to consider future rewards.

The learning process of RL can be quite low when the
state and action spaces are large, and Deep Learning (DL)
has jointly been employed with RL to accelerate the learning
process. Such combination is denominated Deep Reinforce-
ment Learning (DRL), and it uses function approximators
such as NNs to extract knowledge from visited states. The
use of DL makes it possible for RL to obtain solutions that
were intractable when the latter was employed alone [35].
Deep Q-learning (a.k.a. Deep Q-Network (DQN) algorithm)
is a DRL technique conceived as an extension of Q-learning.
During the training of the DQN agent, the NN generalizes
the approximation of the Q-value function rather than using a
value from the Q-table. The NN receives a state as input and
maps it onto all possible Q-value actions.

III. DRL-BASED ROUTING ARCHITECTURE

In this section, we introduce a DRL-based routing architec-
ture. As illustrated in Figure 1, the architecture is composed of
the Topology Module, the Monitoring Module, the Processing
Module, the Routing Module, and the Installation Module.
These modules i) gather raw network data (e.g., port statistics)
from the forwarding devices located in the Topology Module
( 1 in the figure), ii) process the raw data to compute path-state
metrics ( 2 ), iii) explore and learn information on the state of
a path (path-state) to compute optimal paths for all source-
destination nodes in the network ( 3) , iv) retrieve routing path
information ( 4 ); and v) execute installation of flows in the
forwarding devices according to the paths computed ( 5 ).

The Topology Module represents the set of forwarding
devices (i.e., switches) in the underlying network. This mod-
ule responds to query requests with statistical information
gathered at the ports of the switches during running time.
The Monitor Module gathers this statistical information and
produces a topology map by employing the Network Discovery
and Network Statistics functions. The Network Discovery
function exchanges messages with the Topology Module con-
taining feature information. With the information received, the
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Fig. 1: DRL-based Routing Architecture

Network Discovery function maps switch ports to the ports
of its neighboring switches and furnishes the topology as
a set of tuples (i.e., switch id, port id, neighbor switch id,
neighbor port id) in the Network Data Repository. The Monitor
Module detects topology changes related to nodes and links
by periodically gathering topology information at each Change
Detection Time (tchad). The Network Statistics function is
responsible for gathering statistical information by exchanging
state messages with each switch at every t seconds. The replied
messages from the Topology Module are stored in the Network
Data Repository and provide an updated global view of the
network.

The Processing Module retrieves raw data from the Network
Data Repository, and then computes metrics that characterize
the state of a path (path-state metrics), which is stored in the
Path-state Data Repository as a set of entries containing infor-
mation about the source, destination, and a tuple of metrics.
The path-state metrics serve as input features for the Routing
Module which employs DRL to learn the network behavior and
create an optimal routing plan. The Routing Module hosts a
DRL-agent using DQN (as described in subsection IV-A). The
DRL agent learns and calculates paths by running the DRL-
based routing algorithm (as described in subsection IV-B)
during a Learning Time (tlear). The Routing Module passes
the routing plan to the Installation Module and saves it in the
Routing Paths Repository. Each entry in such repository is a
tuple representing the source, destination, and selected path.

The Installation Module retrieves path information from the

Routing Paths Repository and installs/updates flow rules in the
switches. The Installation module proactively populates the
flow tables of the switches (i.e., prior to all traffic matches),
which takes place in a time interval that depends on the
number of forwarding tables and the number of flow entries
to update, called Installation Time (tinst).

IV. DRSIR

DRSIR is a DRL-based routing approach for SDN. It
employs the architecture presented in Figure 1, which uses
metrics describing the states of the paths to explore, learn, and
exploit potential paths for all the source-destination pairs. The
metrics used are path bandwidth, path delay, and path packet
loss ratio. In this section, we detail the DRL-based agent and
the DSIR routing algorithm.

A. DRSIR Agent

Figure 1 depicts the DQN agent hosted in the Routing
Module, which also hosts the environment for training the
agent on the basis of the Action and State Spaces and the path-
state information provided by the Processing Module. The
reward value Rt is computed for action At at state St, allowing
the agent to find the next state St to be visited. The Reward
function gives the path cost quantified by path-state metrics.
The DQN agent learns the policy that selects actions which
will minimize the reward function. The DRSIR agent learns to
avoid high delay and loss ratios and prioritize paths with large
available bandwidth for making intelligent routing decisions.
The DQN-agent includes an Online NN, a Target NN, and a
Replay Memory database [36] to minimize the reward, learn
fast, and enhance stability in learning.

Next, we give details about the state and action spaces, the
reward function, the optimal policy, the Replay Memory, the
Online and Target NNs, and the exploration method used by
the DRSIR DQN agent.

1) State Space (S): The State Space is the set of states
that the DQN agent can observe. Each state corresponds to a
source-destination pair of nodes that communicates over the
network. Given a network topology with N nodes, the number
of source-destination pairs is given by the k-permutations
P (N, j) of N , where j = 2. Therefore, the size of the State
Space is |S| = |P (N, j)| = N !/(N − 2)!. The Network
Discovery function builds a map of the topology of the
network stored in the Topology Module, and the DQN agent
builds the State Space from the topology map.

2) Action Space (A): The Action Space is the set of actions
that can be taken on the states in the State Space. Each action
At ∈ [0, ..., k] corresponds to the selection of a specific end-
to-end path pi ∈ [p0, ..., pk] for a given state St. Therefore, the
DQN agent can select one path among a list of k candidate
paths that connect a source and a destination node. DRSIR
defines the k shortest paths for each source-destination pair,
computed by the Processing Module.

3) Reward Function: A Reward value is computed on the
basis of path-state metrics and gives the cost of a potential path
in the Action Space. DRSIR uses the Monitor and Processing
Modules located at the SDN controller to calculate the cost of
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all potential paths in the Action Space. First, the Processing
Module computes the instantaneous throughput bwalink, delay
dlink and packet loss ratio llink of all links considering
the number of packets that passed through the switch port
connected to the link. At each port, the SDN controller
periodically samples the number of bytes transmitted and
received. By comparing the retrieved values at two instants,
it is possible to compute the instantaneous throughput. After
sending a state-message to the Topology Module at time t1,
a reply message is recovered containing the received bytes,
bt1 . Then, after a period p, another request-stats message is
sent, and the number of bytes received bt2 is retrieved from
its reply message. The expression bwulink = [(bt2 − bt1)/p]
gives the instantaneous throughput, where p is the duration of
the sampling interval. The available link bandwidth bwalink
is thus computed as the difference between the link capacity
caplink and the instantaneous throughput of the link bwulink,
bwalink = caplink−bwulink. The expression llink = (btxt1−
brxt2)/btxt1 gives the instantaneous loss ratio, where p is
the period between the arrival of reply messages containing
the transmitted bytes btxt1 and brxt2 at times t1 and t2,
respectively.

The computation of the instantaneous delay value follows
the method described in [37], which uses the Link Layer Dis-
covery Protocol (LLDP) [38] and OpenFlow messages [39].
The Processing Module sends an LLDP message via the SDN
controller c0, which goes through the path c0-si-sj-c0, with
si and sj being the switches connected by the link (si, sj).
The time elapsed between transmission and reception of the
LLDP message is the difference between the timestamp values
(dlldpcij ). The time taken by the message to go from c0 to the
si port (c0-si) is estimated as half the time elapsed between
the transmission and reception of the OpenFlow echo_request
and echo_reply messages sent by c0 to si. A similar procedure
is used to estimate the time elapsed as the message goes from
sj to c0. The expression dsi−sj = dlldpcij − dc0−si − dc0−sj
gives the instantaneous delay in the link (si, sj). For a given
path P ∈ A, the Processing Module uses the bwalink, dlink
and llink of each link i ∈ P , to compute the bwapath, delay
dpath and packet loss ratio lpath employing Equations 2, 3,
and 4:

bwapath = min
i∈P

(bwalinki
) (2)

dpath =
∑
i∈P

dlinki
(3)

lpath = 1− [
∏
i∈P

(1− llinki
) (4)

The Reward Function is inversely proportional to the path
available bandwidth bwapath and directly proportional to the
path delay dpath and the path packet loss ratio lpath. To
avoid that one of the path-state metrics have more influence
than the others in the learning process, we normalize the
metrics values using the Min-Max technique [40], which re-
scales the range of the values of the metrics to a range with
values in an arbitrary interval [a, b]. The Reward Function is
defined in Equation 5, where ˆbwap, d̂p, l̂p are the normalized
values of the path available bandwidth, delay, and loss ratio,

respectively, and the values β1, β2 and, β3 ∈ [0, 1] are tunable
parameters useful to provide a weight value to a metric in the
reward calculation.

R̂ = β1 ·
1

ˆbwap
+ β2 · d̂p + β3 · l̂p (5)

4) Target and Online Neural Networks: The DQN-agent
employs two NNs, the Online and Target Networks. The
Online NN estimates the Q-values on the current state St (i.e.,
Q(st, At)), while the Target NN outputs the Q-values on the
next state St+1 (see Equation 6). The Online NN is trained at
each learning step to decrease the loss function (Equation 7).
At the start of the learning process, the weights of the Target
NN and those of the Online NN are the same. The values
of these weights are temporarily frozen to enhance learning
stability. During the training phase, the weights of the Target
NN are periodically updated to match the Online NN after a
pre-determined number of learning steps.

Q+(St, At) = Rt + γ ·min
A
Q(St+1, At) (6)

Loss = (Q+(St, At)−Q(St, At))
2 (7)

In DRSIR, the Online and Target NNs have the same
structure, including an input layer, one or several hidden
layers, and an output layer. For each state in the State Space,
the DQN agent encodes each source and destination pair as a
state. The input layer has one neuron that receives the state as
the input of the NN. The output layer has k neurons, i.e., one
neuron for each of the k actions in the Action Space A. Each
neuron in the output layer estimates a Qi-value associated
with action ai ∈ A. The number of hidden layers is defined
by testing in Section V-D.

5) Replay Memory: The DQN-agent stores past deci-
sions (experiences) in a dataset with entries of the form
St, At, Rt, St+1 in the Replay Memory, which allows sampling
batches of experiences and training offline on previously
observed data. We use this dataset to reduce the number of
interactions needed by the DQN-agent to learn [36]; mini-
batches can be sampled for this purpose, thus reducing the
variance in learning updates [41].

6) Exploration Method: DRSIR uses the Decay ε-greedy
exploration method [42]. This method employs a tunable
parameter, ε ∈ [0, 1], to determine if the agent should exploit
with a probability pr = ε or explore with a probability pr =
1− ε. The ε value is usually set to start at a maximum value
εmax and linearly decrease at a decay rate decr throughout the
learning process (steps) until reaching a minimum value εmin,
according to the expression ε = εmax− (steps× decr). Such
a decrease allows the DQN agent to go from an exploratory
policy at the start of the learning process to a more exploitative
policy as the learning process progresses [34]. The DQN agent
follows Equation 8 to select the next action in a specific state.
For each learning step, a random value x ∈ [0, 1] is generated.
If x < ε, the agent exploits. Otherwise, the agent explores.

A =

{
min
A
Qt(St, A), if x < ε

randomaction, otherwise
(8)
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B. DQN-based Routing Algorithm
The DRSIR introduces a routing algorithm that implements

a learning process to find the best paths for all the node pairs in
the network. Algorithm 1 receives the following parameters as
input: i) the number of learning episodes n, ii) the maximum
value of the ε parameter, iii) the decay rate decr, the number
of steps to start the training employing the dataset stored in
the Replay Memory (Replay start size rss), iv) the frequency
of steps in which the Target NN is updated (Target update
frequency tup), v) the list of the "k" paths per state kpaths,
and vi) information on the state of the paths. The output is
the set of best-rewarding routing paths for all pairs of nodes
in the network. The path is formed by state-action pairs with
the lowest values in the Q-table.

Algorithm 1: DRSIR Deep Q-learning routing process
Input :

Number of learning episodes: n
Exploration and exploitation parameter: εmax

Decay rate: decr
Replay start size: rss
Target update frecuency: tup
List of "k" paths per state: kpaths
Network path-state

Output: Set with the best routing path for all pairs of nodes in the
network

1 Initialize Online NN with weights θ, Target NNs with weights θ̂ and
Replay Memory

2 for episode← 1 to n do
3 The agent gets the initial state St // A random pair of

nodes (state);
4 while next state St+1 is not a final state do
5 Update ε = εmax − (steps× decr);
6 Select At for St by using ε-greedy exploration and

exploitation method with Equation 8;
7 Rt ← R(St, At) // Agent gets the reward

calculated from network path-state;
8 The agent gets the new state St+1;
9 Save experience expt = (St, At, St+1, Rt) into Replay

Memory;
10 if steps > rss then // Start training
11 Sample random mini-batch of experiences from

Replay Memory;
12 Estimate Q(St, At) with Online NN;
13 Calculate Q+(St, At) = Rt + γ ·min

A
Q(St+1, At)

with Target NN;
14 Minimize loss (Equation 7) with gradient descent and

backpropagation and update θ of Online NN;
15 if steps % tup == 0 then // Every tup steps
16 Update θ̂ of the Target NN and biases with θ of

the Online NN;
17 end
18 St ← St+1 // Move to the new state;
19 end
20 end
21 end
22 Use final θ to retrieve the path from kpaths that corresponds to the

action with the lowest Q-value for each state;
23 Store the set of paths for all pair of nodes in the network into the

Routes Data Repository

Algorithm 1 initializes the Online and Target NNs with
weights θ and θ̂, respectively, as well as the Replay Mem-
ory (Line 1). The routing algorithm goes through episodes
according to the steps in the loop from Line 2 to Line 21,
starting in an initial random state St. For each episode, the
DQN agent goes through a finite number of steps in an inner

loop and reaches the next state St+1, the ending state (i.e.,
state after going through m-steps) (Lines 4 to 20). Therefore, a
learning episode comprises a sequence of steps that correspond
to the states between an initial state and a final state. Each step
consists of selecting and performing an action, changing the
state, and receiving a reward.

The inner loop (Line 4 to Line 20) is executed as follows.
First, the DQN agent updates the value of the ε parameter
considering the decay rate decr (Line 5). It selects an action
from the Action Space (selects At for St), which is the
selection of a path from the k candidate paths for the current
state by using the ε-greedy method (Line 6). Then, the DQN
agent obtains a reward Rt computed in the environment by
using Equation 5 (Line 7). The DQN agent also gets the
next state St+1 (the next pair source-destination) (Line 8).
Finally, the experience expt = (St, At, St+1, Rt) is saved in
the Replay Memory (Line 9).

The DQN agent stores the experiences in the Replay Mem-
ory, and verifies the number of steps to start the training of
the Online NN, rss steps, (Line 10). When rss is reached,
the DQN agent randomly takes a mini-batch from the Re-
play Memory to train the Online NN (Line 11). Training
using experiences allows the agent to learn after a fewer
interactions than does an RL-agent. Then, the DQN agent
estimates Q(St, At) by using the Online NN (Line 12), and
calculates the associated target values Q+(St, At) by using
the Target NN (Line 13). After that, the gradient descent and
backpropagation algorithms are used to adjust the weights and
biases of the Online NN and to minimize the loss calculated
by Equation 7 (Line 14). After the execution of tup steps
and the storage of a certain number of experiences, the DQN
agent updates the weights and biases θ̂ of Target NN with
the weights and biases θ of the Online NN (Line 15 to Line
17). The DQN agent then moves to the next state (Line 18).
Finally, after the DQN agent makes the transition, it uses the
final θ value to retrieve the path from kpaths that corresponds
to the action with the lowest Q-value for each state (Line 22).
Once the DQN agent finds the best path for all pairs of source-
destination nodes, it stores them in the Routes Data Repository
(Line 23). The Installation Module retrieves these best paths
and installs them in the routing tables of the switches.

The worst-case complexity of Algorithm 1 is derived as
follows. DQN relies on the use of RL and the generalization
given by the NNs. In the worst case, the RL agent visits all
the states in the State and Action spaces, which implies a
complexity dependent on the size of the spaces. In DRSIR,
the State Space size is O(N2) where N is the number of
source-destination pairs in the network. The size of the Action
Space is limited to the k potential paths associated with each
state. The complexity for RL is, then, O(kN2). Since k is a
constant, the worst-case complexity is O(N2).

In DRSIR, the DQN agent learns from a reduced set of
experiences by generalizing the past decisions. The great ad-
vantage of employing the Online and Target NNs in the DQN
agent is the avoidance of visiting all the state-action pairs to
converge to an optimal policy. The computational complexity
for training the NNs is bounded by their architecture and the
input samples size (i.e., states). As the architecture of the
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Online and Target NNs is fixed (i.e., the number of hidden
layers, the input size, and the output size), then the maximum
number of iterations for learning is O(1). Therefore, the
complexity of training the NN has an O(N2), where N is the
total number of states. We refer the reader to [43] for further
explanation about the complexity of training NNs. Finally, the
worst-case complexity of Algorithm 1 is O(N2).

V. EVALUATION

This section presents the evaluation of DRSIR. Subsection
V-A depicts the test environment. Subsections V-B and V-C
show the performance metrics and traffic generation procedure,
respectively. Subsection V-D presents the set up of the learning
parameters, and Subsection V-E discusses the results.

A. Test Environment and Prototype

The DRSIR was evaluated using several topologies; in this
paper, the results are shown for 23-node and 48-node topolo-
gies. The 23-node topology mirrors the GÉANT topology
[44], an European data network. GÉANT, in 2004, had 37
links, with 50% of them having 10 Gbps, 40% having 2.5
Gbps, and 1% having 155 Mbps. We scaled these capacities
to 100 Mbps, 25 Mbps, and 1.55 Mbps due to limitations
imposed by the resources available in the machines running the
Mininet emulator. The 48-node topology was generated using
the Barabasi-Alberth algorithm [45]; which has 60 links with
equal capacities of 100 Mbps. In both topologies, each switch
had a host that forwarded and received traffic. The Data Plane
was developed using Mininet 2.2.2 [46] with Open vSwitches
2.3.1 and Python scripts running on an Ubuntu Server 14.04
Virtual Machine (VM) with 8 GB RAM.

We used the Application Program Interface (API) of the
Ryu controller [47] to develop the Monitoring and Installation
Modules with Openflow 1.3 [48] as the Southbound Interface
(SBI) to communicate with the Topology Module. We devel-
oped the Processing Module and the DQN agent by using
Python 3.5 with Tensorflow 2.2.0 [49], Numpy 1.16.4 [50],
and the Pandas 0.22 library [51]. We used Comma-Separated
Values (CSV) and JavaScript Object Notation (JSON) files
to store information in the Repositories. Every module in
the DRL-based architecture ran on an Ubuntu 16.04 VM
with a Core i5-4690 processor and 10 GB RAM. The VMs
used for this prototype were hosted on an Ubuntu Desktop
16.04 with an Intel Core i5-4690 and 16 GB RAM. These
VMs communicated using the Transmission Control Protocol
(TCP). The DRSIR prototype, as well as all test scripts, are
available in [52].

B. Performance Metrics

Table I shows the most common performance metrics used
to evaluate the routing proposals: the link throughput, link loss
ratio, and link delay. Moreover, we evaluated the stretch of
the paths that compares the length of a path to the theoretical
shortest path [53]. We developed an application on the SDN
controller, which computed the shortest path by implementing
the Dijkstra algorithm with equal edge weights. We computed
the performance metrics as explained in Subsection IV-A.

The DRSIR DQN-based routing is compared with that
of the RSIR algorithm [18]. As RSIR uses link-state met-
rics, we have modified RSIR to use path-state metrics as
does DRSIR to carry out a proper comparison. We compare
DRSIR with different variations of the Dijkstra’s algorithm
using the instantaneous delay (Dijkstradelay), instantaneous loss
(Dijkstraloss), and link available bandwidth (Dijkstrabw) as edge
weights. Moreover, DRSIR is compared to that of Dijkstra-
based routing using the link metric defined by Equation
9, which considers all the mentioned link metrics in the
computation of edge weight (Dijkstracomp). In an attempt to
conduct a fair comparison, all the routing variations of the
Dijkstra’s algorithm (developed and executed as applications
on the SDN controller) and the RSIR algorithm were subject
to the same traffic scenario applied to the DRSIR algorithm
in the evaluated topologies.

weight =
1

bwalink
+ dlink + llink (9)

C. Traffic Generation

In the emulation experiments, scripts for generating traffic
using the iperf3 tool were developed. The scripts generated
User Datagram Protocol (UDP) traffic for clients and servers
on the hosts, allowing the setting of transmission rates spec-
ified by the employed traffic matrices. The elements of these
matrices gave the traffic between pairs of nodes at different
times of the day. Sixteen publicly available intra-domain traffic
matrices [54] with values collected for the GÉANT topology
were used for the 23-node topology. Fourteen traffic matrices
were generated via the Modulated Gravity Model [55] for
the 48-node topology; peak hours having high traffic intensity
(from 7:00h to 14:00h).

D. Learning Parameters Setup

The widely used Adaptive moment estimation (Adam) op-
timizer [56] was employed by the DQN agent. The Adam
optimizer improves the gradient descent algorithm allowing
quick convergence in the training of deep networks. Moreover,
the Adam optimizer is also straightforward to implement and
requires little memory [57]. The Glorot uniform initializer [58]
for weights initialization and the ReLu activation function [59]
were employed by the DQN agent. These techniques have been
shown to maintain variance values similar during the learning
process in all NN layers.

For setting the learning parameters in the training of
the DQN agent, the convergence of a minimized reward in
episodic training was used as a parameter for comparison.
Several preliminary tests were conducted to set the learning
parameter values. Figure 2 shows the observed reward as a
function of the following learning parameters: number of hid-
den layers hls in conjunction with convergence time, number
of neurons in hidden layer neu, discount factor γ, number
of steps to the start of training the Online NN (replay start
size rss), decay rate decr at which the DQN agent explores
and exploits, the size of the mini-batch used to train the NNs,
and the number of steps indicating the updating frequency of
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Fig. 2: Reward with respect to different learning parameters (number of neurons, γ, rss, decr, bs, and tup)

the Target NN (target update frequency tup). For the sake of
brevity, we only show three or four results for each parameter.

We run the Algorithm 1 to observe the returned reward
in a single episodic training composed of 200 episodes with
30 steps per episode for each test, to identify the algorithm
convergence to a minimized reward value as a function of the
learning parameters. Figure 2a shows that after roughly the
60th episode, the reward no longer decreased significantly as
a function of the number of hidden layers. Figure 2b shows
the impact on the convergence time of using one or more
hidden layers until the 60th episode. With hls = 1, the
produced reward is similar to that with other values of hls after
convergence. However, it takes only 5.79s to achieve these
reward values, while with hls = 2, 3 and 4, the convergence
time is 1.6s, 3.46s and 4, 73s higher than that. Thus, the Target
and Online NNs were defined with a single hidden layer, which
has been proven to be sufficient to approximate any function
correctly [60]. Figure 2c shows that a hidden layer with 50
neurons obtains a slightly lower reward than hidden layers with
150 or 300 neurons. Moreover, a larger number of neurons
requires more extended training periods.

Figure 2d depicts the reward as a function of γ. For γ = 0.1,
the DQN agent slightly decreases the reward, but the value is
still close to those given by γ equals to 0.5 and 0.9. In Figure

2e, the rss parameter indicates the number of steps before
starting to exploit the knowledge obtained from experience
when training the NNs, e.g., the value rss = 100 means
that the training of the NNs started after 100 steps. Results
show that a value of rss = 400 quickly causes the agent to
start minimizing the reward, and achieving a slightly lower
reward than when rss is 100 or 900. For the exploitation and
exploration method, εmax was set to 1 to ensure the maximum
probability of exploration when the learning process starts.
Figure 2f shows that with low decr values such as 1/1000 and
1/2000, the DQN agent requires more episodes to converge
to a minimized reward than when using a high value such as
1/400. Figure 2g shows that a mini-batch bs = 15 produces
a slight improvement in convergence than values bs = 30 and
45. The parameter tup indicating the number of steps after
which the weights and biases of the Target NN are updated.
Figure 2h shows a slightly improvement when tup = 100 than
when tup is set to either 300 or 500.

E. Performance Analysis

Next, the DRSIR algorithm is compared to that of RSIR
and the variations of the Dijkstra’s algorithm. The results are
averaged every hour; the figures also show the traffic generated
per hour.
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Fig. 3: Performance metrics resulting from the DRSIR for 23-node topology

1) Results for a 23-node topology: Figure 3 shows the
stretch, link delay, loss ratio, and link throughput produced by
DRSIR, RSIR, and the variations of the Dijkstra’s algorithm
for a 23-node topology. Figure 3a shows the values of the
mean stretch averaged over all paths. The paths chosen by the
DRSIR present a smaller stretch value than those produced by
the Dijkstradelay, Dijkstraloss, and Dijkstracomp. In particular,
we observe that DRSIR selects a larger number of shorter
paths than do the three other algorithms; stretch values 5%,
10%, and 5% smaller than those obtained by the Dijkstradelay,
Dijkstraloss, and Dijkstracomp algorithms, respectively. More-
over, the paths produced by the DRSIR are shorter (at most
8%) than those produced by the RSIR. The results also show
that the DRSIR indicates paths with stretch values slightly
higher (6%) than those produced by the Dijkstrabw.

Figure 3b presents the mean link delay produced by DRSIR,
RSIR, and the variations of the Dijkstra’s algorithm. The
mean link delay produced by the DRSIR algorithm are, on
average, 14%, 43%, 59%, 25%, and 15%, at most, 44%, 73%,
87%, 44%, and 40% lower than those given by those of the
RSIR, Dijkstradelay, Dijkstraloss, Dijkstrabw, and Dijkstracomp
algorithms, respectively. The mean link delay results show that
the DRSIR algorithm tends to choose less congested paths than
do the RSIR and Dijkstra’s algorithms; therefore, the delay
obtained using the DRSIR is less than that given by the RSIR
and the four Dijkstra’s variations.

Figure 3c reveals that the mean loss values produced by
the DRSIR algorithm are lower than those given by the
RSIR, Dijkstradelay, Dijkstraloss, Dijkstrabw, and Dijkstracomp.

In particular, the values produced by the DRSIR algorithm are,
on average, 51% and, at most, 73% lower than those obtained
by the variations of the Dijkstra’s algorithm, and on average
17% and, at most, 55% lower than that produced by the RSIR
algorithm. Results show that Dijkstra’s algorithm variations
usually select longer routes and more frequently use low-
capacity links, causing traffic concentration and congestion in
these links.

Figure 3d shows the mean link throughput throughout the
day. DRSIR uses a higher number of paths less utilized
than do the RSIR, Dijkstradelay, Dijkstraloss, Dijkstrabw, and
Dijkstracomp algorithms. The link throughput is consequently
lower than those produced by RSIR and the Dijkstra’s vari-
ations most of the time with a lower mean delay and loss.
The link throughput is on average 20%, 18%, 33%, 18% and
30%, and at most, 31%, 30%, 41%, 29% and 42%, lower than
those produced by the RSIR, Dijkstradelay, Dijkstraloss, bw and
Dijkstracomp algorithms, respectively.

2) Results for a 48-node topology: Figure 4 presents the
results for a 48-node topology. Figure 4a shows the mean
stretch computed for all the paths found by DRSIR, RSIR, and
the variations of the Dijkstra’s algorithm. The results evince
that DRSIR finds a larger number of shorter paths than do the
Dijkstradelay, Dijkstraloss, and Dijkstracomp algorithms for this
topology. The DRSIR algorithm indicates paths with stretch
values 23%, 7%, and 17% smaller than those obtained by the
Dijkstradelay, Dijkstraloss, and Dijkstracomp algorithms, respec-
tively. The DRSIR algorithm finds paths with stretch values
slightly higher (< 1%) than those produced by Dijkstrabw.
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Fig. 4: Performance metrics resulting from the DRSIR for 48-node topology

Moreover, the paths produced by the DRSIR algorithm are
shorter (9% and at most 14%) than those given by the RSIR
algorithm.

Figures 4b and 4c present the mean delay and mean loss
ratio given by the DRSIR, RSIR, and the four variations of the
Dijkstra’s algorithm throughout the day. The results show that
the DRSIR algorithm produces smaller mean delay and smaller
mean loss ratio values than those produced by the RSIR
algorithm and the four variations of the Dijkstra’s algorithm.
The mean delay produced by DRSIR are, on average, 24%,
57%, 36%, 33%, and 54% lower than the mean delay values
produced by the RSIR, Dijkstradelay, Dijkstraloss, Dijkstrabw,
and Dijkstracomp algorithms, respectively. The mean loss ratio
values observed with the DRSIR algorithm are on average
36% and at most 57% lower than those produced by the four
variations of the Dijkstra’s algorithm, and on average 10%
and at most 26% lower than those obtained with the RSIR
algorithm.

Figure 4d presents the values of mean link throughput
throughout the day. The results show that the link throughput
produced by the DRSIR algorithm is at most 13%, 36%,
34%, 25%, and 40% lower than those produced by the
RSIR, Dijkstradelay, Dijkstraloss, Dijkstrabw, and Dijkstracomp
algorithms, respectively. The paths chosen by DRSIR include
more less utilized links than do the paths chosen by the RSIR
and variations of the Dijkstra’s algorithm.

3) Topology Change Analysis: When a topology change
occurs, the DRSIR algorithm detects the change, calculates
new routes, and installs them. For DRSIR, the setup time tchad

is 1s. The DQN agent computes all routes for the 23-node and
48-node topologies in tlear = 5.3s and 7, 2s (the average ex-
ecution times of Algorithm 1 for each topology), respectively.
The Installation Module spends on average tinst = 1.6s to
update the flow entries. Thus, the DRSIR algorithm takes on
average tchad + tlear + tinst = 7.9s and 9.8s to handle a
change in the 23-node and 48-node topologies, respectively.
In comparison with the Routing Information Protocol (RIP),
which would typically take 30s to handle a topological change.
The DRSIR algorithm requires a shorter response time due
to the employment of a centralized controller with a global
view of the network, the generalization provided by the NNs,
and the adoption of a network-state routing approach with
metrics at the path-level. The OSPF reaction to topological
changes when considering a minimum hello-interval = 1s and
an spf-delay = 1s is approximately 9s (5s + the average
execution time of the Dijkstra’s algorithm), which is slightly
lower than the time the DRSIR algorithm takes. The RL-agent
of RSIR (using path-state metrics) computes all routes for
the 23 and 48-node topologies in 2.8s and 4.7s, respectively;
thus, the RSIR algorithm takes on average 5.4s and 8.1s
to handle change in the topologies. Therefore, the DRSIR
algorithm obtained a tlear higher than that achieved by the
RSIR algorithm because the DQN agent spends more time
training two NNs; however, better performance metrics offset
this cost.

4) CPU and Memory Analysis: To compare the perfor-
mance of DRSIR and RSIR, we also evaluate the consumption
of CPU and storage memory of its DQN and Q-learning
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TABLE I: Related Work

Paper Description Control Learning approach Action Performance metrics

[13] QAR: QoS-aware adaptive routing with multi-layer hierarchies intended to
minimize signaling delay in large SDNs C RL (Q-learning) Next-hop Delivery delay, packet loss, and hop

count

[15] CRE: a logically centralized Cognitive Routing Engine, based on Random
NNs with RL to find optimal overlay paths. C RL (Random NN) Next-hop Delay

[14] Link costs calculation for path computation with OSPF for distributed
routing in SDN D RL (Q-learning) Link weight values Delay and jitter

[16] An approach called SDCoR for choosing the proper traditional routing
algorithm regarding changes in the Internet of Vehicles (IoV) environment D RL (Q-learning) Routing Protocol Delivery delay, delivery ratio

[17] A routing protocol for Wireless Sensor Networks (WSN) based on dis-
tributed RL that learns the path to the sink node D RL (Q-learning) Next-hop Node lifetime and energy-efficiency

[18] RSIR: An RL-based approach for intelligent routing in SDN based on
link-state metrics

C RL (Q-learning) Next-hop Link stretch, delay, loss and throughput

[20] A learning agent based on DRL that optimizes routing to minimize network
delay C DRL (DDPG) Link weight values Network delay

[21] A DRL-based mechanism to achieve routing optimization called DROM
in SDN

C DRL (DDPG) Link weight values Delay

[22] NetworkAI: A network architecture using network monitoring technologies
and artificial intelligence to generate control policies C DRL (DQN) Not reported Delay

[23] A DRL-based agent with convolutional neural networks in the context of
KDN designed to enhance the performance of QoS-aware routing C DRL (DDPG) Link weight values Delay, loss and qualified flows

[24] Two DQN-based algorithms designed to reduce the network congestion
probability with a short transmission path C DRL (DQN) Next-hop Throughput

[25] Tide: A time-relevant DRL network control architecture to optimize routing C DRL (DDPG) Link weight values Delay

[26] A DRL-based routing algorithm to manage multiple service requests of
crowd distribution in smart city sectors C DRL (DQN) Next-hop Service access delay, successful ac-

cess rate, network usage

[27] DRL-THSA: A Two-hops state-aware routing strategy based on DRL for
LEO satellite networks

D DRL (DQN) Next-hop Delay, throughput, drop rate

[28] A DRL-based scheme to enable intelligent Service Function Chaining
(SFC) routing decision-making in dynamic network conditions C DRL (PPO) Link weight values Path delay and link usage

[29] DQSP: A DRL-based QoS-aware secure routing approach for SDN-IoT C DRL (DDPG) Next-hop Packet delivery rate, attacked node
use probability

[30] A deep multi-agent DRL approach for packet routing to avoid network
congestion D DRL (DQN) Next-hop Path delay and link usage

DRSIR A DRL-based solution for intelligent routing in SDN based on path-state
metrics

C DRL (DQN) Path Selection Link stretch, delay, loss and throughput

C: Centralized and D: Distributed

agents, respectively. Figure 5 shows the results of the eval-
uation for the 48-node topology, disclosing that the agents do
not intensively consume the resources of the Routing Module.
Indeed, they only consume 29% and 32% of the CPU, and 279
and 287 MBytes of storage memory. Therefore, we can state
that the DRSIR and RSIR agents are efficient regarding CPU
and storage memory. Moreover, these agents have a constant
consumption of RAM (approximately 2.5%).
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Fig. 5: CPU and Memory used by the agents of DRSIR and
RSIR

VI. COMPARATIVE ANALYSIS

Table I briefly summarizes the work related to DRSIR by
showing the type of control routing employed, the employed
RL/DRL type of learning approach, the RL/DRL adopted
action, and the metrics evaluated. The work in [13]–[17]
explored RL techniques, such as Q-learning, in SDN either to
employ actions for choosing the proper routing protocol within
the environment state or at the next-hop node when building
a routing path. In the following paragraphs, we compare
DRSIR with the routing solutions proposed in [20]–[30],
which employed DRL techniques for routing in SDN. Such
a comparison is conducted regarding the use of the traditional
routing protocols, learning approach and used technique, type
of control routing, and type of employed action.

Dependence on Traditional Routing Protocols. Although
DRL does not require labeled datasets for agents training, the
solutions in [20], [21], [23], [28] depend on traditional routing
protocols for computing paths since their agents do not learn
to build or select the best path. In these papers, agents that
learn to optimize link weight values and use traditional routing
protocols (e.g., Dijkstra) to compute paths based on optimized
weights are commonly deployed. The work in [22], [24]–[27],
[29], [30] and the DRSIR algorithm learn to select the next
hop in a path or the end-to-end path for each pair of nodes.

Learning Approach. The DRSIR and the papers [20]–
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[30] employ model-free and off-policy algorithms by learning
either a value function or a policy. Specially, the work in
[22], [24], [26], [30], and DRSIR employed DQN, which is
proper for routing problems where the MDP defines a discrete
action space. The works in [20], [21], [23], [25], [27]–[29]
employed actor-critic algorithms [34] such as the DDPG (Deep
Deterministic Policy Gradient) and PPO (Proximal Policy Op-
timization) algorithms which are useful for continuous action
spaces (e.g., selecting link weights values for each link in a
network). Unlike the DQN, the output of the DDPG algorithm
is not discretized as a set of fixed actions but rather defined
to return a real number/vector. Continuous actions are more
challenging learning than discrete actions, and discretizing
them can improve performance notably [61].

Routing Control. DRSIR and the works in [20]–[26],
[28], [29] leverage the global network view offered by SDN
to deploy centralized routing strategies that use either the
Knowledge Plane or the Control Plane to compute paths and
properly install flows in the tables of the forwarding devices.
In contrast, the solutions introduced in [27] and [30] deploy
routing strategies in a distributed fashion so that routing nodes
turn themselves into learning entities that makes local routing
decisions based on information learned from the environment.
These routing solutions can generate signaling overhead in the
Data Plane that can contribute to network congestion.

Action. The action spaces used in the papers reviewed
are commonly link and hop-based. Specifically, we identified
two types of actions for the routing solutions: setting up the
link weight values of a topology representing the underlying
network [20], [21], [23], [25], [28], and selecting the next-
hop node when building a routing path [24], [26], [27],
[29], [30]. Both kinds of action can limit the solutions for
the use of external routing algorithms such as the Dijkstra’s
algorithm. Furthermore, the performance of an end-to-end
path performance can only be satisfied when all hops are
appropriately chosen; the performance can drop significantly
when any hop is wrongly selected by a link/hop-based routing
scheme. Unlike what is found in other papers, the DRSIR
algorithm optimizes routing decisions by employing path-state
metrics as features in the learning process, meaning that the
DRSIR agent directly uses knowledge of the paths instead of
extracting information from the link-state to choose the next-
hop node or update link weight values.

VII. CONCLUSIONS

In this paper, we have introduced DRSIR, an approach
which employs DRL for routing in SDN. The DRSIR uses
Deep Q-learning, a model-free algorithm that makes the DRL-
agent find the appropriate routing policy without making any
assumption about the dynamics of the environment. DRSIR
learns while transitioning over states and actions without prior
knowledge about the underlying network. The DRL-based
routing algorithm of the DRSIR produces routes for every pair
of source-destination nodes in a network. It prioritizes paths
with high available bandwidth and low delay and loss as the
best routing option based on path-state metrics. The results
showed that most of the time the DRSIR indicates shorter and

less congested paths than those indicated by the RSIR and the
four versions of Dijkstra’s algorithm. As a result, the mean
delay and loss produced by DRSIR are lower than that the
given by the RSIR and Dijkstra’s variations. It is noteworthy
that the DRSIR does not require previously labeled data
representing the system under consideration for training the
DRL-based agent. The acquisition of labeled training datasets
has high computational complexity and makes the routing
solutions dependent on traditional routing protocols to build
such datasets. The results presented in this paper encourage
the use of the DRSIR as a feasible and practical strategy to
carry out routing in SDN.

For future work, we intend to explore multi-level RL
schemes to deal with centralized control challenges such as
scalability on larger-scale networks. We also intend to improve
the set up of the learning parameters in order to make the agent
self-configurable.
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