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Allergic reactions to drugs and chemicals are mediated by an adaptive immune response

involving specific T cells. During thymic selection, T cells that have not yet encountered

their cognate antigen are considered naive T cells. Due to the artificial nature of drug/

chemical-T-cell epitopes, it is not clear whether thymic selection of drug/chemical-specific

T cells is a common phenomenon or remains limited to few donors or simply does not

exist, suggesting T-cell receptor (TCR) cross-reactivity with other antigens. Selection of

drug/chemical-specific T cells could be a relatively rare event accounting for the low

occurrence of drug allergy. On the other hand, a large T-cell repertoire found in multiple

donors would underline the potential of a drug/chemical to be recognized by many

donors. Recent observations raise the hypothesis that not only the drug/chemical, but

also parts of the haptenated protein or peptides may constitute the important structural

determinants for antigen recognition by the TCR. These observations may also suggest

that in the case of drug/chemical allergy, the T-cell repertoire results from particular

properties of certain TCR to recognize hapten-modified peptides without need for

previous thymic selection. The aim of this review is to address the existence and the

role of a naive T-cell repertoire in drug and chemical allergy. Understanding this role has

the potential to reveal efficient strategies not only for allergy diagnosis but also for

prediction of the immunogenic potential of new chemicals.
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INTRODUCTION

Adverse drug reactions (ADRs) are a major public health problem. Up to one third of ADRs are

attributable to unpredictable drug hypersensitivity mediated by an adaptive immune response and

named drug allergy. The consequences of drug and chemical allergy can be severe, including

systemic adverse effects (1–3). T cells are central to allergic reactions. On one hand, drug-specific

T cells provide the necessary help for mounting an effective B-cell response observed in immediate-
type hypersensitivity reactions. On the other hand, T cells constitute the main pathogenic effector

cells in delayed hypersensitivity reactions (4–6). Most studies have focused on the identification of

memory T cells that recognize drugs/chemicals and the insights obtained have led to the
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development of allergy diagnostic tests (7–21). However,

attention has recently turned to the naive T-cell repertoire,

since it may largely determine the efficacy of the induced

immune response (22).

The aim of this review is to describe the role of the naive

T-cell repertoire in drug and chemical allergy. We provide an
overview of the data supporting different models of T-cell

recognition of drugs and chemicals and discuss speculative

models addressing the origin of drug/chemical responsive

naive T cells.

NOTION OF NAIVE T CELL REPERTOIRE

The identification of lymphocytes as the main cell type

responsible for both cellular and humoral immunity started in

the early 1950s with the emergence of cell culture techniques. It is

now clear that the ability of T cells to promote an effective
immune response depends on a large repertoire of unique T-cell

receptors (TCRs) generated and selected in the thymus. Indeed,

T-cell precursors randomly and imprecisely rearrange V and J

segments of the TCR alpha and V, D, and J segments of the TCR

beta chains to create a complete TCR.

Estimation of the TCR repertoire diversity ranges from > 1020

(23) to 1061 (24, 25). Nevertheless, there are only an estimated

1012 T cells in the human body (26). Hence, TCR repertoire

estimation vastly outnumbers the actual diversity of a person’s

TCR repertoire (27). This discrepancy is explained by thymic

selection where the fate of T-cell precursors is dependent on the

recognition of self-peptides (self-p) presented by MHC molecules

on thymic stromal cells (28). The overall outcome of the thymic
selection is the maintenance of a T-cell repertoire that has

sufficient, but not too strong, affinity for any self-pMHC

complex (29). T cells surviving thymic selection have not yet

encountered their cognate antigen, and hence are considered naive

T cells (25) (Figure 1). Typical naive T cells express CD45RA, the

co-stimulatory molecule CD27 in addition to lymph node-homing
receptors CD62L and CCR7 (30). However, similar to naive

T cells, human stem cell-like memory T cells (Tscm) express

CD45RA, CD62L and CCR7 (31) (Figure 1). In this case, the

expression of the death receptor CD95 that is upregulated on

Tscm is taken into consideration to distinguish them from

naive T cells (31). In general, Tscm constitute around 2-4% of
the total T-cell population in the periphery. Due to their self-

renewal and long-term persistence, Tscm were studied in

autoimmunity, cancer models and HIV-1 infections. However,

their implication in drug allergy is less understood (32, 33).

In the periphery, naive T cells constantly circulate between

secondary lymphoid organs and blood in pursuit of their specific

antigens. During their journey, the fate of naive T cells is dictated
by multiple checkpoints that maintain naive T cells in quiescence

(34). Upon encountering antigen, naive T cells proliferate and

differentiate into activated effector T cells as well as migrate to

peripheral tissues (30). A loss of thymus productivity is observed

during aging. However, the human naive T-cell repertoire is

maintained by peripheral T-cell proliferation driven by

homeostatic factors such as IL-7 and tonic TCR signaling

mediated by self-pMHC recognition (35, 36).

HOW DO T CELLS RECOGNIZE DRUGS

AND CHEMICALS?

Different studies have demonstrated that it is possible to detect

drug/chemical-responding T cells in allergic patients (37–42).

These T cells are activated following multiple non-mutually

exclusive models, illustrating the puzzling features of TCR

recognition by drugs/chemicals (43). In general, the mode of
T-cell activation depends on the chemical properties of the

molecule, the exposure conditions and the genetic background

of the patient.

In the hapten model, drugs/chemicals or haptens bind to self-

proteins to form a complex of a sufficient size to trigger an

immune response. This structure is then processed by antigen-

presenting cells (APCs) and the resulting haptenated peptides are
presented through MHC class I or class II-dependent pathways to

TCRs as de novo antigens (43, 44). Indeed, it is now well-accepted

that MHC-restricted hapten-specific TCRs in their majority do

not react to modified MHC molecules, but to haptenized peptides

associated with the MHC peptide-binding groove (Figure 1B).

Work conducted with synthetic hapten-peptide conjugates
showed two major types of hapten-specific TCRs: one reacting

to hapten without caring for the chemical composition of the

carrier peptide, and the other contacting hapten and peptide by

two apparently independent contact sites (44, 45).

In the pharmacologic interaction with immune receptors

(p-i) model (Figure 1C), the drug binds non-covalently to

either the TCR (p‐i TCR) or MHC protein (p‐i HLA) or to
both in a peptide-independent manner to directly activate T cells

(4, 46–49). Moreover, in the sulfamethoxazole (SMX) model of

p-i TCR, molecular dynamics simulations studies showed that

the drug may also bind to TCR at a position that is distant from

the site of TCR-pMHC interaction, altering TCR conformation

and resulting in higher affinity for self-pMHC (50). Several
experimental evidence support the p-i model showing that

some drugs can trigger T-cell activation without requiring

intracellular antigen processing. This interaction leads to rapid

T‐cell‐mediated reaction, which has features of hypersensitivity,

and/or alloimmune and/or autoimmune reactions (4, 46–48).

The hapten hypothesis and the pi-concept did not provide a

convincing mechanism explaining how abacavir induces adverse
reactions through the activation of CD8+ T cells in a HLA-

B*57:01-restricted manner (51). In this case, a new concept

emerged: the altered peptide model. This model postulates that

a small molecule can bind non-covalently to the MHC-binding

cleft directly or in the endoplasmic reticulum (ER) and alter the

specificity of peptide binding resulting in the presentation of novel
peptide ligands (51–53). Using molecular dynamics simulations,

recent studies demonstrated that abacavir may alter the

conformational ensemble of these neo-peptides with the

consequence of exposing peptide surfaces no longer recognized

as self by circulating T cells (54). Peptides presented in this context
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are recognized as ‘‘foreign’’ by the immune system and therefore

may elicit a T-cell response.

The clinical outcomes of drug or chemical allergic reactions

could vary from contact dermatitis, maculopapular rashes to
severe cutaneous adverse reactions and anaphylaxis, among

others (1, 3, 47, 48, 55). Different T-cell recognition models

can explain these multiple clinical outcomes. Contact

hypersensitivity and IgE-mediated response are characterized by:

1) hapten-peptide formation, 2) dose-response effect of hapten,

3) recognition of peptide-hapten conjugates by specific TCRs
and 4) rare HLA association with some allergens (13, 43, 44,

56, 57). For severe cutaneous adverse drug reactions (SCARs), the

(p-i) model with drug binding to either the TCR (p-i TCR)

or MHC (p-i HLA) results in T-cell activation (46). For the

altered peptide repertoire model and Abacavir Hypersensitivity

Syndrome, drugs bind non-covalently to regions of the HLA class I

molecules within the antigen-binding cleft altering the repertoire

of presented peptides and resulting in a polyclonal T-cell response

(4, 52, 53, 58).

EVIDENCE AND CHARACTERIZATION

OF A DRUG/CHEMICAL NAIVE

T CELL REPERTOIRE

The presence of activated and memory T cells in drug/chemical

allergic patients leads to the question of the origin of these drug/

chemical-responsive T cells. Since a naive T-cell repertoire is

mandatory for the induction of an antigen-specific T-cell
response, extensive efforts were taken to characterize drug/

FIGURE 1 | Origin of drug/chemical-reactive naive T-cell repertoire. The fate of naive T-cell precursors is dependent on the recognition of self-peptides (self-

p) presented by MHC molecules on thymic stromal cells. In the periphery, naive T cells expressing CD45RA, CD62L and CCR7 constantly circulate between

secondary lymphoid organs and blood in pursuit of their specific antigens. The origin of drug/chemical responsive T cells is unclear but thymic selection of

drug/chemical-specific naive T cells is unlikely. The process of central selection ensures that TCRs do not bind strongly to any self-pMHC molecules in the

periphery, preventing autoimmune reactions (A). Drugs/chemicals may alter self-pMHC complex and haptenated self-pMHC could have a high affinity for

their corresponding TCR. Depending on chemical reactivity, multiple haptenated peptides can be generated from one self-protein allowing a diversity of

association with different alleles and contributing to the high prevalence of immunization/allergy observed with some drug/chemicals (beta-lactams, skin

sensitizers) (B). In some cases, drugs/chemicals bind to MHC proteins in a peptide-independent manner to directly activate naive T cells mimicking the

conditions of alloreactivity (C).
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chemical-responsive naive T cells. T-cell priming assays provided

valuable tools to detect these drug/chemical-responsive T cells

(13, 59–61). Different approaches have been considered with

respect to the populations of T cells and APCs used as well

as the cell culture protocols and readouts (7–18, 62). Most

protocols are relying on T-cell cloning performed by limiting
dilutions with repetitive stimulation using APCs. Studies have

tested hapten-modified dendritic cells (DCs) (12, 63) or

haptenated self-proteins as an antigen source for purified

naive T cells (18, 64, 65). In some protocols, regulatory T cells

are removed from the co-culture system to increase the

detection of weakly immunogenic drugs/chemicals (12, 60,
66). The presence of drug/chemical-responsive T cells is then

detected most of the time using proliferation or cytokine

production as endpoints. These approaches are not only useful

to understand the mechanism of drug recognition but can also

provide valuable insights for the replacement of animal testing

(67). However, as expected, there are a number of problems
associated with the analysis of rare antigen-specific T cells as T-cell

priming assays present technical and conceptual limitations. Indeed,

the high inter-donor variability limits the reliability and

reproducibility of these assays. The choice of a reference protein for

haptenization as well as the drug concentration used might govern

the spectrum of T-cell responses. Moreover, artificial in vitro

conditions used in these assays limit their in vivo relevance (67, 68).
In the early 1990s, Moulon et al. showed the ability of naive

CD4+ T cells to respond to 2,4,6-trinitrobenzene sulfonic acid

(TNBS), the water-soluble derivative of the contact allergen

2,4,6-trinitrochlorobenzene (TNCB) (7). These findings were

further confirmed by different groups using TNBS or other

chemicals (e.g., nickel, Bandrowski’s base, the oxidation
product of p-phenylenediamine) (11, 16, 42, 61, 63, 69–72) as

well as different drugs (e.g., b-lactam antibiotics, SMX, dapsone,

telaprevir) (18, 37, 38, 64, 65, 69, 73). Thus, the naive T-cell

repertoire from every individual seems to harbor T cells able to

recognize drugs and chemicals of different origins and structures.

It is worth noting, that despite the presence of drug-responding

T-cell repertoire in the large population, only few individuals
develop allergic reactions due to additional susceptibility

factors, reviewed elsewhere. (e.g., HLA risk alleles, immune

regulation, diseases) (55, 74, 75). Moreover, the concomitant

presence of chemical-specific regulatory and effector T cells also

suggests that for allergy to occur, additional signals need to be

provided to break tolerance and to favor effector immune
response (76).

The hapten hypothesis with binding of drug/chemical to self-

proteins is the most common pathway by which chemicals

(TNBS) and drugs (b-lactam and SMX) recognize and activate

naive T cells (Figure 1). In these settings, T-cell response is

dependent on (1) the presence of APCs, (2) MHC molecules,

with anti‐class I and II Abs blocking their activation and (3) an
intact antigen processing mechanism. However, this concept was

challenged with the identification of a nickel-responding naive

T-cell repertoire (11, 63, 70). Indeed, nickel, like other

transitional metal ions, cannot form covalent bonds with

proteins. Hence, activation of nickel-specific naive T cells may

not require antigen processing as seen with classical haptens (57,

77). Instead, nickel ions form coordination complexes

predominantly with nitrogen residues in histidine or arginine

(57). These observations suggest that organic chemicals need to

bind to MHC-associated peptides to be recognized by TCR,

whereas metal ions are recognized after forming non-covalent
coordination bonds with MHC molecules, bound peptides

and TCR.

Beyond the simple presence of drug/chemical-responding naive

T cells, the question of their frequencies in relation with the

different chemical classes is also an open question. Determination

of antigen specific T-cell frequency relies on different techniques.
The diversity of the techniques used such as HLA class II tetramers

(78–80), libraries of polyclonal expanded naive T cells followed by

antigen priming (81), repeated naive T-cell priming with antigen-

loaded APCs or long-term T-cell priming (16, 18, 62, 63, 65, 69,

82–85) contributed to the heterogeneity of the results. Interestingly,

a good concordance was found when addressing the frequency of
strong immunogens such as keyhole limpet hemocyanin (KLH)-

specific T-cells with these different techniques (86). When

benzylpenicillin (BP)-specific T-cell frequency was evaluated after

repeated stimulation with APCs loaded with BP bioconjugates, an

estimated 0.3 to 0.6 pre‐existing reactive naive T cells were detected

in the blood of healthy donors per million of peripheral blood

circulating CD4+ T cells (18, 65, 69). Using the same technique, 0.3
to 0.5 nickel-specific naive T cells were detected per million of

circulating naive CD4+ T cells (63). These estimated frequencies

can be considered very low as expected for hapten-naive specific T

cells in healthy individuals (11). Surprisingly, this frequency of

drugs/chemical-specific naive T cells was in the range of the one

calculated for foreign antigens such as immunogenic therapeutic
Abs (82), ovalbumin (82), and HIV peptide vaccine (87) but below

the frequency found for KLH (18, 65, 82).

In addition to the number of naive T cells, the composition of

the naive T-cell repertoire can shape immune responses. Advances

in high‐throughput sequencing technologies have enabled the

detailed analysis of naive T‐cell spectrum. A private T cell

response is identified when the TCR specificity toward a specific
epitope is rarely observed in multiple individuals. In contrast,

some other antigen-specific TCRs are frequently observed in

multiple individuals and generate a public T cell response (88).

For instance, nickel or SMX-responding naive T cells were driven

by public TCR present in all individuals as well as by T cell

Receptor Beta Variable (TRBV) genes specific for each individual
(63, 89). Historically, the presence of antigen-specific public TCR

was observed in a variety of infectious and autoimmune diseases

and turned out to be useful for the development of vaccines and

therapeutic intervention (90). Recently, Pan et al. identified a

public abTCR from the cytotoxic T cells of patients with

carbamazepine-mediated SCAR and a bias for HLA-B*15:02 was

also reported (91). A likely hypothesis is a pi-concept response
with a public TCR recognizing a small chemical antigen presented

by the preferred HLA molecule from the preexisting memory T

cells. However, the cause and the role of TCR sharing within the

drug/chemical-reactive naive T-cell pool of multiple individuals is

still poorly addressed (Figure 2).
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HYPOTHESIS FOR THE ORIGIN OF DRUG/

CHEMICAL-RESPONDING NAIVE

T-CELL REPERTOIRE

Although based on a limited number of tested drugs and

experiments, we can now acknowledge that most, if not all,

individuals harbor a naive T‐cell repertoire for drugs and

chemicals. However, while our understanding of the molecular
mechanisms of TCR recognition by drugs/chemicals is

expanding, the question of the mechanism driving the

existence of drug/chemical-responding naive T-cell repertoire

is still a challenge to be solved. Due to the artificial nature

of drug-T-cell epitopes, it is unclear whether thymic selection

of drug-specific T cells is a common phenomenon, remains
limited to few donors, or simply does not exist. Selection of

drug/chemical‐specific T cells could be a relatively rare event

accounting for the low occurrence of drug/chemical allergy. On

the other hand, the large T‐cell repertoire found in multiple

donors underlines the potential of chemical/drug to be

recognized by many donors. This latter hypothesis suggests

that drugs/chemicals could be accidentally recognized by a

TCR specific for another target.

Our immune system must be able to discriminate harmless

non-self from dangerous non-self. There is multiple evidence

that some chemicals have found very specific ways to activate the
immune system by acting as danger signals (55, 64, 68, 92–102).

Therefore, our immune system may have evolved to mount a

specific defense mechanism avoiding prolonged exposure to

reactive drugs/chemicals. Consequently, one can speculate that

drug/chemical-reactive T cells are taking advantage of the

imperfect central tolerance to reach the periphery and mount a

protective immune response (Figure 1). However, there is no
experimental evidence in favor of this hypothesis. It is more likely

that the T-cell clones that are positively selected to recognize foreign

antigens are accidently reactive with drugs or chemicals. Drugs/

chemicals may alter self-pMHC complexes and haptenated self-

pMHC have a high affinity for their corresponding TCR

(Figure 1B). This concept was first elegantly described with
trinitrophenyl (TNP)-reactive T cells in the context of mouse

MHC-class I restricted responses (H-2Kb) (45, 56, 72, 103, 104).

FIGURE 2 | Drug/chemical-reactive naive T-cell repertoire: the tip of the iceberg. The naive T-cell repertoire of every individual harbors T cells able to recognize drugs

and chemicals of different origins and structures. This concept is now well recognized and accepted but is only the tip of the iceberg. However, the origin of these T cells,

the nature of their TCR (public vs private) as well as the correlation between their frequency and their chemical reactivity are still largely unknown. The origin of these cells

is not yet clearly determined, cross-reactivity with viral antigens or specific recognition of the chemical moiety bound to a self-peptide are a working hypothesis. Do we have

specific TCRs that will be more likely to expand depending on the type of recognition by TCRs (peptide-drug bioconjugates and hapten, pi-concept)? Is the frequency

of naïve T cells specific for drugs and chemicals very different between individuals? Is the frequency of these T cells constant with time suggesting a constant thymic

selection of T cells capable of expanding upon recognition of a drug or a chemical? All these questions are still open and are the unknown part of the iceberg.
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This MHC class I typically harbors an octameric sequence with Phe

or Tyr in position 5 and hydrophobic aliphatic amino acids in

position 8 as anchors (45). As expected, this pMHC complex did

not induce a strong cytotoxic T-cell response. Nevertheless, TNP-

modification, mainly in position 4 of the peptide sequence, leads to

CD8+ T-cell activation (45, 56). Thus, TCR recognized TNPmainly
in the form of MHC-associated with haptenated peptides, and the

immunodominant TNP epitopes were largely independent of the

carriers’ amino acid sequence. However, how drugs/chemicals

increase the affinity of pMHC to TCR is largely unknown.

Haptenation of a specific amino acid could block protease-

mediated enzymatic processing and/or modify the peptide-
binding affinity to the transporter associated with antigen

processing (TAP) (43), thereby creating structurally distinct

peptide-HLA complexes. In addition, in contrast to albumin-

derived peptides, BP-haptenated peptides, derived from BP-

albumin conjugate, can be recognized by multiple T-cell clones

and like TNP-peptides, the position of the lysine modified by BP
dictates the T-cell response (18, 64). In these settings, many T cells

react to haptens in a MHC-restricted but carrier-independent

fashion. Thus, drug/chemical protein modification results in a

particularly repetitive array of cross-reactive, immunodominant

determinants that may explain the unusual strong antigenicity of

these compounds (22).

Chemical reactivity may dictate the number of different
proteins or residues that are haptenated. High chemical

reactivity may increase the number of generated T-cell epitopes

and consequently may be translated into an increase in the

number of recruited naive T cells bearing different TCRs (22).

Consistently, it has been shown that strong contact sensitizers

induced a polyclonal T-cell response (105). Similarly, b-lactam
antibiotics covalently bind to lysine residues of many proteins (20,

21, 64, 106), generating multiple binding sites on proteins and

expanding the number of haptenated peptides to be recognized by

T cells (22). Moreover, binding on a specific amino acid such as

lysine with BP can generate more than one immunogenic epitope

demonstrating that drug conjugates have some TCR specificity

(43). The consequence is an augmentation of the size of the
repertoire of T cells involved in b-lactam recognition.

The situation for some drugs/chemicals (e.g., carbamazepine,

abacavir) may be somehow more restrictive (Figure 1C). Indeed

a specific HLA, a drug‐peptide complex and a unique TCR are

the drivers of the T-cell response to certain drugs (51, 107). The

most significant example is the association between abacavir
hypersensitivity reaction and HLA-B*57:01 (51). Moreover,

carbamazepine‐specific T cells could be primed from PBMCs

of healthy human donors, carriers of both HLA‐B*15:02 and a

specific TCR Vb (108). It should be also noted that some drugs

(e.g., abacavir) may alter the intracellular processing of self-

proteins and generate new antigenic determinants for TCRs that

may not be removed from the naive T-cell repertoire during
thymic selection. In these settings, naive T-cell activation may be

perceived as an accident due to genetic predispositions or specific

features of the molecule of concern.
Numerous patients suffering from allergic reactions are

concomitantly treated for infections. Specifically, SMX-reactive

T cells as well as Bandrowski’s base-responding T cells could be

primed from the memory pool of healthy donors (16). Thus, one

can speculate that chemical or drug naïve T-cell repertoires are

mainly pathogen-specific and in some cases, these T cells may

have a high propensity to cross-react with drugs or chemicals

(109). Indeed, T cells responding to abacavir were also shown to

recognize herpes viruses such as HSV1/2 derived-peptides (110).
Moreover, carbamazepine, allopurinol, or SMX-induced DRESS

can be a result of cutaneous and systemic manifestations of

CD8+ T cells directed against herpes virus antigens (109, 111).

In some cases, a nonspecific inflammation, independent of

chemical/drug exposure, may be sufficient to bypass the general

tolerance feature of naïve T cells, irrespective of their antigen
specificity. Similarly, a break in immune tolerance due to co-

inhibitory molecule blockade (e.g., PD‐1 and CTLA‐4) enhanced

the priming of naïve T cells to drugs (74, 89). These observations were

consistent with clinical studies showing increased incidence of drug

hypersensitivity reactions in patients receiving immune checkpoint

inhibitor therapy (112, 113). Collectively, in these different situations,
the immune system may be fooled by the presence of drugs or

chemicals which could lead to immunopathology.

CONCLUDING REMARKS

It has been 30 years since the chemical-responsive naive T-cell

repertoire was first described. Since then, multiple examples have

been documented and there is no doubt that more will be
uncovered. Not surprising anymore that drugs/chemicals, in their

majority, seem to be recognizedby the samemolecularmechanisms

as protein antigens. However, whether thymic selection of drug/

chemical-specific T cells is a common phenomenon, remains

limited to few donors, or simply does not exist is still unclear

(Figure 2). If the naive T-cell repertoire contributes to drug/
chemical allergy, then it is plausible that these reactions stem

from de novo responses to the drug/chemical, where these specific

T cells took advantage of the imperfect central tolerance to reach the

periphery andmount a protective immune response. Yet, it ismore

likely that naive T cells are accidently reactive to a drug or a

chemical. Several studies support the theory that chemical

modification of self-proteins increases the affinity of self-pMHC
to their cognate TCR or results in new antigenic determinants

(Figure 1). Good progress has also been made in our mechanistic

understanding of TCR recognition of drugs and chemicals (13, 43).

However, less is known about the origin of these T cells, the nature

of their TCR (public vs private) as well as the correlation between

their frequency and the chemical reactivity (Figure 2). Answering
these questions can be expected to open up new and exciting

avenues for drug/chemical allergy.
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