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Nanotechnology involves the engineering of functional systems at nanoscale, thus being attractive for disciplines ranging from
materials science to biomedicine. One of the most active research areas of the nanotechnology is nanomedicine, which applies
nanotechnology to highly speci
c medical interventions for prevention, diagnosis, and treatment of diseases, including cancer
disease. Over the past two decades, the rapid developments in nanotechnology have allowed the incorporation of multiple
therapeutic, sensing, and targeting agents into nanoparticles, for detection, prevention, and treatment of cancer diseases.
Nanoparticles o�er many advantages as drug carrier systems since they can improve the solubility of poorly water-soluble
drugs, modify pharmacokinetics, increase drug half-life by reducing immunogenicity, improve bioavailability, and diminish drug
metabolism.	ey can also enable a tunable release of therapeutic compounds and the simultaneous delivery of two or more drugs
for combination therapy. In this review, we discuss the recent advances in the use of di�erent types of nanoparticles for systemic
and topical drug delivery in the treatment of skin cancer. In particular, the progress in the treatment with nanocarriers of basal cell
carcinoma, squamous cell carcinoma, and melanoma has been reported.

1. Introduction

Nanotechnology is a generalization for techniques, materials,
and equipment that operate at the nanoscale. It is a revo-
lutionary approach that consists of the design, characteri-
zation, preparation, and application of structures, devices,
and systems by controlling shape and size at the nanoscale
[1]. According to the federal US research and development
program agency, the National Nanotechnology Initiative
(NNI), nanotechnology involves the development of carriers
devices or systems sized in 1 to 100 nm range although this
limit can be extended up to 1000 nm [2]. 	ese biomimetic
features, together with their high surface-to-volume ratio
and the possibility of modulating their properties, raised the
interest of the use in biomedical application with potential
applications in imaging, diagnosis, and therapy [3].

Over the past two decades, the rapid developments in
nanotechnology have allowed the incorporation of multiple
therapeutic, sensing, and targeting agents into nanoparticles,
for detection, prevention, and treatment of oncologic dis-
eases.

Nanomedicine has an enormous potential to improve
the selectivity in targeting neoplastic cells by allowing the
preferential delivery of drugs to tumours owing to the
enhanced permeability and retention e�ect (EPR). Further-
more, speci
c binding of drugs to targets in cancer cells or the
tumour microenvironment increases the e�ectiveness of the
speci
c treatment of cancer cells, while leaving healthy cells
intact. Nanoparticles (NP) can also improve the solubility
of poorly water-soluble drugs, modify pharmacokinetics,
increase drug half-life by reducing immunogenicity, improve
bioavailability, and diminish drug metabolism.	ey can also
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enable a tunable release of therapeutic compounds and the
simultaneous delivery of two or more drugs for combination
therapy [4, 5]. In addition, by reducing the drug doses, it
is also possible to reduce side e�ects and ameliorate the
patients’ compliance [6].	ese engineered nanocarriers o�er
also the opportunity to use the combination of imaging and
drug therapy to monitor e�ects in real time, as well as the
possibility to join the delivery of drugwith energy (heat, light,
and sound) for synergistic anticancer therapeutic e�ects [7].

Although skin cancer is not the most mortal form of
cancers, it is the most common form of malignancy in
the United States and many other countries [8]. Melanoma
represents only a very small proportion of skin cancer
incidence, but it accounts for the vast majority of skin cancer
deaths. Indeed, at the early stage, melanoma can be surgically
removed, with a survival rate of 99%, while metastasized
melanoma causes the death of 80% of patients within 5 years
from the diagnosis [9]. Other types of skin cancers, basal
cell carcinoma and squamous cell carcinoma, are the most
common diseases. Excision is the gold standard treatment
for these localized diseases. However, in very rare cases, they
can di�use to regional lymph nodes and distant sites. For
metastasized skin cancers, nanoparticles provide an e�ective
drug delivery system, allowing anticancer drugs to reach the
cancer site speci
cally and, thus, greatly improve treatment
e�cacy. In the following sections, we illustrated the major
forms of nanoparticles which have been used for systemic and
transdermal drug delivery in skin cancers and the speci
c
drug-nanoparticles formulations which have been reported
for the treatment of basal cell carcinoma, squamous cell
carcinoma, and melanoma.

2. Chemicophysical Characteristics of
Nanoparticles Employed for Drug Delivery
in Skin Cancers

Many nanoparticles have been studied for the treatment
of skin cancers, especially in melanoma treatment, includ-
ing liposomes, dendrimers, polymersomes, carbon-based
nanoparticles, inorganic nanoparticles, and protein-based
nanoparticles. In the following paragraphs, the characteristics
of the common nanoparticles used in skin cancer treatment
are described.

2.1. Liposomes. Liposomes are phospholipid vesicles (dimen-
sion of 50–100 nm and even larger) that have a bilayered
membrane structure, similar to that of biological mem-
branes, together with an internal aqueous phase. Liposomes
are classi
ed according to size and number of layers into
multi-, oligo-, or unilamellar. 	e aqueous core can be used
for encapsulation of water-soluble drugs, whereas the lipid
bilayers may retain hydrophobic or amphiphilic compounds.
To escape from reticuloendothelial system (RES) uptake a�er
i.v. injection, PEGylated liposomes, “stealth liposomes,” were
developed for reducing clearance and prolonging circulation
half-life [10]. Liposomes show excellent circulation, pene-
tration, and di�usion properties. 	e possibility to link the
liposomes surface with ligands and/or polymers increases

signi
cantly the drug delivery speci
city [11]. Early research
demonstrated that liposomes remain in the tumour intersti-
tial �uid just near the tumour vessels [12]. Currently, several
liposomal formulations in the clinical practice contain several
drugs for the treating of di�erent types of cancer, including
melanoma [13]. Several other liposomal chemotherapeutic
drugs are at the various stages of clinical trials. Moreover,
advances with cationic liposomes led to the successful deliv-
ery of small interferingRNA (siRNA) [14]. Newopportunities
were proposed by Muthu and Feng [15] that developed
theranostic liposomes, with the possibility of loading a wide
variety of diagnostic NP along with anticancer drug in
combination with vitamin E TPGS coating. Liposomes can
also bemodi
ed to incorporate a magnetic element for use in
monitoring their movement within the body using MRI [16]
or to entrap gases and drugs for ultrasound-controlled drug
delivery [17].

2.2. Solid Lipid Nanoparticles (SLNs). SLNs were introduced
at the beginning of the 1990s as an alternative delivery system
to liposomes, emulsion, and polymeric NP. SLNs present a
high physical stability; that is, they can protect the drugs
against degradation, and they allow an easy control the drug
release. 	e preparation of SLNs does not require the use
of organic solvents. 	ey are biodegradable and biocom-
patible and have low toxicity. In addition, the production
and sterilization on a large scale are rather easy [18]. Solid
lipid nanoparticles (SLNs) containing docetaxel improve the
e�cacy of this chemotherapeutic agent in colorectal (C-26)
and malignant melanoma (A-375) cell lines in “in vitro” and
“in vivo” experiments [19]. Cholesteryl butyrate solid lipid
nanoparticles have been shown to inhibit human umbilical
vein endothelial cells’ adhesiveness to cancer cell lines derived
from human colon-rectum, breast, prostate cancers, and
melanoma [20].

2.3. Polymeric Micelles and Nanospheres. Polymeric micelles
are formed by two or more polymer chains with di�er-
ent hydrophobicity. 	ese copolymers spontaneously assem-
ble into a core-shell micellar structure. Speci
cally, the
hydrophobic blocks form the core in order to minimize their
exposure to aqueous surroundings, whereas the hydrophilic
blocks form the corona-like shell to stabilize the core through
direct contact with water [21]. 	e typical size of micelles
for pharmaceutical applications ranges from 10 to 80 nm.
Micelles, being smaller than liposomes, have a short circula-
tion time, but they show a superior uptake by tumors, because
of the EPR e�ect. Poorly soluble drugs, with high loading
capacity (5–25wt %) can be carried in the hydrophobic
core, while the hydrophilic shell allows a steric protection
for the micelle and thereby reduces their systemic toxicity.
Functional groups suitable for ligands, such as antibodies,
peptides, nucleic acid aptamers, carbohydrates, and small
molecules, further increase their speci
city and e�cacy [22–
24].

Polymeric micelles are usually more stable in blood
than liposomes and other surfactant micelles. Due to their
considerably large size, these polymeric micelle systems can
also be used to codeliver two ormore drugs for combinational
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therapeutic modalities, such as radiation agents and drugs
[10, 25, 26]. Polymeric micelles were recently used for the
treatment of B16F10 melanoma bearing mice [27].

Paramagnetic metals, such as gadolinium (Gd) or man-
ganese (Mn), normally used in contrast agents, can also
easily be incorporated into micelles for imaging applica-
tions. Polymeric nanospheres are insoluble colloidal nano-
or microparticulates possessing a polymeric core with sizes
ranging from about 10 to 1000 nm. 	ey are mostly designed
as pH-sensitive drug delivery systems intended for oral deliv-
ery in order to survive in the strongly acidic environment of
the stomach [28].

2.4. Dendrimers. Dendrimers are unimolecular, monodis-
perse, synthetic polymers (<15 nm)with layered architectures
that constituted of a central core, an internal region con-
sisting of repeating units and various terminal groups that
determine the three-dimensional dendrimer characteristics
structures. Dendrimers can be prepared for the delivery of
both hydrophobic and hydrophilic drugs, nucleic acids, and
imaging agents due to their attractive properties such as well-
de
ned size and molecular weight, monodispersity, multiva-
lency, number of available internal cavities, high degree of
branching, and high number of surface functional groups
[10, 28–30]. Several literature sources demonstrate the ability
of dendrimer targeting ligands to induce the speci
c targeting
and destruction of tumours. 	ey include oligosaccharides,
polysaccharides, oligopeptides, and polyunsaturated fatty
acids as well as folate and tumor associated antigen [31–
33]. However, a controlled release of drugs associated with
dendrimers is still di�cult to obtain. New developments
in polymer and dendrimer chemistry have provided a new
class of molecules called dendronized polymers, which are
linear polymers that bear dendrons at each repeat unit,
obtaining drug delivery advantages because of their enhanced
circulation time. Another approach is to synthesize or con-
jugate the drug to the dendrimers so that incorporating a
degradable link can be further used to control the release of
the drug [1]. Dendrimers have also successfully been used
for the therapy, immunotherapy, and radio-immunotherapy
of various types of tumours [28] including melanoma [34]
and squamous skin carcinoma [35]. 	ey have also found
applications in the diagnostic imaging of cancer cells, such
as MRI. Gadolinium-conjugates dendrimers have allowed
the selective comprehensive targeting and imaging of tumors
[36].

2.5. Nanotubes. Carbon nanotubes belong to the family of
fullerenes and are formed of coaxial graphite sheets
(<100 nm) rolled up into cylinders. 	ese structures can be
obtained either as single- (one graphite sheet) or multiwalled
nanotubes (several concentric graphite sheets). 	ey exhibit
excellent physical, photochemical, and electrochemical
properties. Owing to their metallic or semiconductor
behaviour, nanotubes are o�en used as biosensors. Carbon
nanotubes can be also used as drug carriers and tissue-
repair sca�olds [37]. Tumor targeting single-walled carbon
nanotubes (SWCNT) have been synthesized by covalent
attachment multiple copies of tumor-speci
c monoclonal

antibodies, radiation ion chelates, and �uorescent probes
[38]. 	is delivery system can be loaded with several
molecules of an anticancer drug, because no covalent
bonds are required, so that the increased payload does not
signi
cantly change the targeting ability of the antibody.
	ey have also been remodelled to carry gadolinium atoms
for MRI of tumors and have been surface functionalised with
receptor agonists and antagonists for tumor targeting [39].
	e use of carbon nanotubes in the diagnosis and treatment
of melanoma has been recently reviewed [40].

2.6. Mesoporous Silica Nanoparticles. Mesoporous silica
nanoparticles (MSN) have attracted growing interest in the
last decades as an e�cient drug delivery system [41–43].
Compared with conventional organic carriers, MSN have
unique properties including tunable particle size and mor-
phology, tailoredmesoporous structure, uniform and tunable
pore size, high chemical and mechanical stability, high
surface area and pore volume, high drug-loading capacity,
and easy surface functionalization [44–46].

2.7. Quantum Dots. Quantum dots are colloidal �uorescent
semiconductor nanocrystals (2–10 nm).	ey possess a broad
absorption band and a symmetric, narrow emission band,
typically in the visible to near infrared (NIR) spectral range
[47].	e central core of quantum dots is usually composed of
combinations of elements from groups II–VI of the periodic
system (such as zinc, cadmium, selenium, and tellurium)
or III–V (such as arsenic and phosphorus) [48], which
are “overcoated” with a layer of ZnS. 	ey show size- and
composition-tunable emission spectra and high quantum
yield. Quantum dots are photostable; therefore, the optical
properties of QD make them suitable for highly sensitive,
long term, and multitarget bioimaging application [49, 50].
	e application to cancer detection lies in the ability to
select a speci
c colour of light emission of QD [33]. Indeed,
in order for QDs to be used for melanoma detection, the
surface must be treated to increase hydrophilicity and the
desired tumor-targeting ligand must be attached. Possible
ligands include antibodies, peptides, and small-molecule
drugs/inhibitors [51]. New approaches, such as the addition
of a silica coating or a biocompatible polymer coating,
have further increased the biocompatibility and reduced
their toxicity. Indeed, although quantum dots o�er a lot of
advantages in sensing and imaging and as contrast agents in
various techniques like MRI, PET, IR �uorescent imaging,
and computed tomography, there is uncertainty surrounding
the toxicity of the materials used.

2.8. Superparamagnetic Iron Oxide Nanoparticles. Superpar-
amagnetic iron oxide nanoparticles (SPIONs) acquire a
large magnetic moment in an externally applied magnetic

eld, thus attaining superparamagnetic behavior [49], which
makes them attractive materials for advanced biomedical
applications. 	ey can be used as contrast agent in MRI
[52]. 	ey are capable of producing high contrast per unit of
particles, so that small quantities of SPION are su�cient for
imaging therapy, thereby reducing the toxicity issues [49, 50].
SPIONs can convert the energy supplied by an externally
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Figure 1: Sites in skin for nanoparticle delivery. Topical nanoparticle drug delivery takes place in three major sites: stratum corneum (SC)
surface (a), openings of hair follicles (infundibulum) (b), and furrows (dermatoglyphs) (c). 	e nanoparticles are shown in green and the
drug in red. Other sites for delivery are the viable epidermis and dermis (modi
ed by Prow et al., [67]).

applied alternating magnetic 
eld into heat [53]. 	is gener-
ated heat can be used for the selective destruction of tumor
cells, which are more vulnerable to heating than normal
body cells [49, 53]. 	eir surface can be engineered with a
variety of functionalities, enhancing their biocompatibility
and biodegradability for widespread biomedical applications
[54]. In addition, polymers and capping agents can be
attached to the SPION surface for increased biocompatibility
and bioavailability, using biodegradable materials such as
cellulose, dextran, PEG, or PLGA [54]. Recently, a prototype
of carbon coated superparamagnetic iron oxide nanoparticles
(SPIO@C) for sentinel lymph nodes mapping in melanoma
and breast cancer patient has been developed [55].

2.9. Gold Nanoparticles. Gold nanoparticles (AuNP) are
metallic nanoparticles. Other examples include Ag, Ni, Pt,
and TiO2 nanoparticles. Gold nanoparticles (1–150 nm) can
be prepared with di�erent geometries, such as nanospheres,
nanoshells, nanorods, or nanocages. 	ese particles exhibit
a combination of physical, chemical, optical, and electronic
properties di�erent from other biomedical nanotechnologies
and provide a highly multifunctional platform for biochem-
ical applications in the delivery of gene, imaging agents, and
drugs [56, 57]. 	e advantages of gold nanoparticles are their
ease of preparation in a range of sizes, good biocompatibility,
ease of functionality, and their ability to conjugate with other
biomolecules without altering their biological properties
[58]. Gold nanoparticles with diameters ≤50 nm have been
shown to cross the BBB [59]. 	ey can be used to sensitize
cells and tissue for treatment regimens [28], to monitor
and to guide surgical procedures [60–62]. Di�erent types

of drugs, including proteins and DNA as well as smaller
drug molecules, have been linked to the surface chemistry
of AuNP, inducing a therapeutic e�ect in several types of
tumors, including melanoma. 	ey are also excellent labels
for biosensors, because they can be detected by numerous
techniques, such as optical absorption, �uorescence, and
electric conductivity [63]. 	e use of the confocal re�ectance
microscope with antibody-conjugated AuNP has made the
development of highly sensitive cancer imaging possible [64].
Furthermore, they are not toxic and biocompatible. In fact,
they do not elicit any allergic or immune responses [65, 66].

3. Transdermal Drug Delivery
Nanoparticles in Skin Cancers

Most chemotherapeutics are administered systemically and
are cytotoxic to healthy cells; therefore, cancer patients
must endure considerable morbidity. 	e topical adminis-
tration of anticancer drugs is an interesting alternative for
increasing drug targeting and therapeutic bene
ts (Figure 1)
[67]; the major challenge of this kind of treatment is to
increase penetration of the antineoplastic tumor drug in
su�cient levels to kill tumor cells [68]. Several techniques
such as the use of chemical enhancers (i.e., oleic acid, 1-
dodecylazacycloheptan-2-one or azone, dimethyl sulfoxide,
propylene glycole, and ethanol) and the application of an
electric 
eld (e.g., ionophoresis, sonophoresis, and electro-
poration) have, therefore, been developed to successfully
overcome skin barriers and to reach skin malignancies
by favouring drug penetration into the deep layers of the
epidermis [69]. 	e use of chemical penetration enhancers
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is the simplest strategy, causing temporary and reversible
disruption of the stratum corneum and leading to increased
anticancer drug penetration into the tumor. Moreover, great
interest has been shown in nanoparticles delivery systems
that can protect anticancer drugs against degradation and,
combined with physical methods, signi
cantly increase the
tumor penetration of the drugs. Applications of nanotech-
nology to skin cancer has seen much e�ort in the design of
new imaging and therapeutic approaches [70], themain focus
being on diagnosing and treating metastatic melanoma. It is
known that anticancer drugs showing hydrophilic properties
have a low oil/water partition coe�cient, high molecular
weights, and ionic characters [71] and, thus, do not easily
penetrate the stratum corneum. Drug permeation through
the stratum corneum is regulated by Fick’s second law [72]:

� = ���V�� ,
(1)

where � is the �ux, �� is the di�usion coe�cient of the
drug in the membrane, �

V
is the drug concentration in the

vehicle,� is the drug partition coe�cient, and� is the stratum
corneum thickness. It can be seen in the equation that the �ux
of a drug through the skin is governed by the di�usion coef-

cient of the drug in the stratum corneum, the concentration
of the drug in the vehicle, the partition coe�cient between
the formulation and the stratumcorneum, and themembrane
thickness. Nanocarriers can increase drug concentration in
the vehicle and so increase drug �ux.

Current topical treatments for skin cancer include
semisolid formulations of 5-�uorouracil [73], diclofenac [73],
and imiquimod. Another topical treatment also used and
approved by the US Food and Drug Administration (FDA)
is photodynamic therapy (PDT) [74].

	ese therapies are used to treat nonmelanoma skin
cancers and their precursor lesions, such as actinic keratosis.
Nanocarriers could improve skin targeting, improving the
drug’s ability to reach and penetrate into tumor cells. More-
over, nanocarriers can improve drug stability and reduce skin
irritation by avoiding direct contact of the drugwith the skin’s
surface [75]. As indicated before, liposomes are one of the
most studied nanocarriers for the treatment of cancer. 	ey
are colloidal particles composed of one or several lipid bilay-
ers [76] biocompatible with the stratum corneum, increasing
the liposome’s a�nity for the skin and making them able to
release drugs directly to this membrane. Liposomes contain-
ing doxorubicin [77, 78], cisplatin [79, 80], oxaliplatin [81],
camptothecin [82], and others have been shown to increase
these drugs’ cytotoxicity and to reduce side e�ects because of
direct targeting. Some of these liposomes, such asDOXIL, are
already commercially available. 	is liposomal formulation
contains doxorubicin and was approved in the US in 1995
[78]. 	e topical application of anticancer drugs is, once
again, primarily related to the administration of the prodrug
ALA for topical PDT. Fang et al. [83] performed an in vivo
study of the in�uence of liposomes and ethosomes in ALA
skin penetration. 	is study showed that the �exible lipo-
somes (ethosomes) increased 5-ALA penetration to a greater
degree than did the traditional liposomes, although both
formulations increased ALA penetration when compared to

the control treatment. Cationic ultradeformable liposomes
have also been shown to increase ALA skin permeability
in vitro. In vivo, these liposomes result in persistent ALA
retention in the skin and induce the production of high
levels of PpIX [84]. ALA skin retention was also improved
when a traditional ALA containing liposome was examined
in vitro [85]. In addition to these ALA studies, 5-�uorouracil-
loaded niosomes (niosomes are nonionic surfactant vesicles
with a similar structure to liposomes) showed an 8-fold
improvement of this drug’s cytotoxicity and penetration
when compared to the aqueous solution [86]. It is worth
noting that liposomes in combination with other drugs not
traditionally used in skin cancer treatments have also been
studied. For instance, tretinoin and diclophenac-loaded lipo-
somes [87, 88] showed improvement in these drugs’ skin pen-
etration over nonliposomal formulations. 	ese studies were
aimed at treating acne, psoriasis, and other in�ammatory
conditions but not skin tumors.	ese formulations, however,
are currently proposed to treat skin cancer malignances. In
summary, liposomes have been shown to increase drugs’
penetration into the skin, and it appears that ultradeformable
liposomes may have an even stronger e�ect. However, some
reports describe liposome instability and drug leakage during
the storage period [89].

	e most investigated nanoparticles for topical delivery
are solid-lipid nanoparticles and polymeric nanoparticles,
such as those made from poly(dl-lactic acid) (PLA),
poly(lactic-co-glycolic acid) (PLGA), and poly-�-caprolac-
tone (PCL) [90]. Both SLNs and polymeric nanoparticles
have been shown to promote sustained drug release and
protection against drug degradation when topically applied
[91, 92]. In addition, they allow for modi
cations to matrix
so�ness. It appears that nanoparticles can closely contact
the super
cial junctions of corneocyte clusters and furrows,
possibly favoring drug accumulation for several hours. 	is
would allow for the sustained release of anticancer drugs.
However, there are controversies regarding the ideal mean
diameter, �exibility, and super
cial charge of nanoparticles
to optimize skin penetration.

In conclusion, nanocarriers appear to be promising sys-
tems because they o�er several advantages, such as low skin
irritation and increased protection of encapsulated drug. An
especially important advantage of these formulations is that
they o�en increase anticancer drug penetration through the
skin.	e use of physical methods to improve the penetration
of nanocarriers should be considered to increase the anti-
cancer drug’s penetration into the skin and to provide for
targeted drug release inside tumor cells.

4. Drug Delivery Nanoparticles in
Nonmelanoma Skin Cancers: Squamous
and Basal Cell Carcinomas

Among the three main types of skin cancer: melanoma, basal
cell carcinoma (BCC), and squamous cell carcinoma (SCC),
BCC is the most common form, with an incidence rate that is
4 to 5 timesmore likely than SCC.However SCC is a common
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disease also, with a prevalence of more than 700,000 cases
each year in the United States [93].

	e risk of development of sporadic skin malignancies
has been linked to ultraviolet radiation exposure, skin type,
family history, prior history of skin tumors, and immuno-
suppression. However, a variety of hereditary syndromes can
result in an increased risk of developing skin tumors, includ-
ing nevoid BCC syndrome and xeroderma pigmentosum.

Excision is the gold standard treatment for localized
SSC and BBC. 	is can be obtained through curettage and
desiccation, surgical excision, radiation therapy, cryosurgery,
Mohs micrographic surgery, and micrographic surgery [93].

Although the majority of SCC and BCC remain locally
invasive, 1 to 5% of primary SCC may di�use to regional
lymph nodes and distant sites, such as lungs, liver, brain, and
other areas of the skin [94]. On the other hand, although very
rare, BCC can metastasize to distant sites of the body, which
is considered a terminal condition [95].

In the case of SCC, a topical 5-�uorouracil (5-Fu) treat-
ment is widely used when other treatments are impractical
and for patients who refuse surgical treatment [96]. It is
particularly useful for situations in which postoperative
healing is impaired, such as lesions that involve the lower limb
in elderly patients or those with venous stasis disease [97].

However, the topical application of 5-Fu o�en failed due
to the inadequate frequency and/or length of treatment,
insu�cient drug concentration, and a poor penetration of
5-Fu into the epithelium, which contributes to the tumor
recurrence [98].

To improve the penetration of 5-Fu and reduce many
negative side e�ects of conventionally used chemotherapy
drugs and control the release of the therapeutic agent, albu-
min/drug loaded magnetic nanocomposite spheres carrying
5-Fuwere prepared [93]. Since albumin accumulates in tumor
sites due to their altered physiology andmetabolism,Misak et
al. [93] demonstrated that the albumin/drug loadedmagnetic
nanocomposite spheres had signi
cantly superior therapeu-
tic e�ects in treating the skin cancer, with an increased
e�cacy to inhibit the tumor growth. 	e use of 5-FU-loaded
polybutyl cyanoacrylate nanoparticles was carried out in
local treatment of patients with basal cell carcinoma. A�er
application of this preparation once a day for 35–40 days, 31 of
32 patients achieved histologically con
rmed complete tumor
resolution demonstrating that this method is preferred by
patients who are not surgical candidates [99]. Photodynamic
therapy (PDT) is a nonsurgical treatment that induces a cyto-
toxic e�ect by application of a photosensitizer (PS) followed
by irradiation with wavelengths speci
c for its absorbance
spectrum, in the presence of oxygen. Upon the photoirradia-
tion of PS at speci
c wavelength(s), photodynamic reactions
can generate cytotoxic reactive oxygen species that oxidize
subcellular organelles and biomolecules, ultimately leading
to the destruction of diseased cells and tissues [100]. High
e�cacy is demonstrated for PDT using standardized proto-
cols in nonhyperkeratotic actinic keratoses, Bowen’s disease
(squamous cell carcinoma in situ), and super
cial basal cell
carcinomas (BCC) [101]. Two PS agents, aminolevulinic acid
(ALA) and methyl aminolevulinate (MAL), are currently
available for use with PDT. Aminolevulinic acid (Levulan

Kerastick, DUSA Pharmaceuticals Inc., Wilmington, MA)
with blue light PDT is approved for the treatment of actinic
keratoses in the USA, Korea, Mexico, Brazil, Argentina,
Chile, andColumbia.Methyl aminolevulinate (MAL;Metvix,
Galderma, Paris, France) is licensed in Europe for PDT of
actinic keratoses (AKs), Bowen’s disease, and BCC [102].
Although these compounds have only been granted licenses
for the treatment of actinic keratosis, the main clinical
application has been in the treatment of nonmelanomatous
skin lesions, mainly for basal cell carcinoma using a topical
application. However, due to the hydrophilic nature of ALA,
ALA-PDT has been hindered by the rate of ALA uptake into
neoplastic cells and its limited penetration into tissue. A 
rst
attempt has already been performed by using liposome to
better deliver ALA to the deep layers of epidermis [103]. ALA
loaded nanoparticles were also prepared by using chitosan,
a linear polymer composed of 2-amino-2-deoxy-	-D-glucan
by glycosidic linkages [104]. ALA has also been carried by
succinate-modi
ed chitosan (SCHI), physically complexed
with folic-acid-modi
ed chitosan [105], to improve drug
penetration and release in the cellular lysosome.

Encouraging results in the treatment of skin SCC “in
vitro” have been recently obtained by Shi et al. in A431 cells,
derived from human epidermoid SCC, by using poly(lactic-
co-glycolic acid) (PLGA), a biomaterial developed in the
1970s and approved by the United States Food and Drug
Administration (FDA), for ALA delivery [106].

Other methodological approaches to destroy SCC cells
involved the use of gold nanorods, functionalized with
epidermal growth factor receptor antibody conjugated with
gold nanorods which have been successfully used in an “in
vitro”model of human SCC,A431. Results obtainedwith laser
photothermal therapy demonstrated that immunolabeled
gold nanorods can selectively destroy the cancer cells and
induce apoptosis through the ROS mediated mitochondrial
pathway under low power laser exposure [107]. To prevent
skin tumors induced by ultraviolet B (UVB) radiation and
benzo(a)pyrene (BaP) treatment in mice, Das et al. loaded
apigenin (Ap), a dietary �avonoid having an anticancer
property, with poly(lactic-co-glycolide) nanoparticles (NAp)
[108].

Apigenin is one of the most common dietary antioxi-
dants, widely distributed in many fruits and vegetables and
in Lycopodium clavatum. 	e topical application of apigenin
in mice has been previously used to decrease the number
and size of tumors in the skin induced by chemical carcino-
gens [109] or by UV exposure in vivo [110]. However, the
nanoencapsulation of apigenin produced better e�ects than
free apigenin, due to their smaller size and faster mobility.
Moreover, NAp reduced tissue damage and showed better
potential in therapeutic management of skin cancer. In the
very rare cases in which local modalities are insu�cient to
resolve basal cell carcinoma, systemic therapy is required.
No cytotoxic chemotherapy has been approved for the treat-
ment of advanced BCC. However, with variable successes,
cisplatinum-based chemotherapy regimens have been used
in the past years [111]. Recent advances in the understanding
of the pathogenesis of BCC have led to the development
of therapeutics targeting the biological mechanism driving
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this malignancy. Indeed BCCs are critically dependent on a
single signaling pathway, the sonic hedgehog (Shh) pathway,
and the majority of BCC bearing mutations in genes in this
developmental pathway [112]. Since it has been demonstrated
that the inhibition of SHh-signaling can inhibit BCC tumor
growth, diverse small molecule inhibitors of speci
c SHh
signals are under study for the BCC targeted therapy [113].
However, until now, the nanoparticle-encapsulated inhibitor
of the transcription factor, Gli1 (NanoHHI) belonging to
the SHh pathway, has been used only in “in vitro” and “in
vivo” models of human hepatic carcinoma (HCCs). In these
models, Gli1 inhibition through NanoHHI has profound
tumor growth inhibition and antimetastatic e�ects [114].

5. Drug Delivery Nanosystems in Melanoma

At present, the most common drug used for the treatment of
melanoma is dacarbazine (DTIC), which is a US Food and
Drug Administration- (FDA-) approved, 
rst-line treatment
for patients with melanomas [115].

	e median survival time of patients with metastasized
melanoma is only 6−10 months, and the 5-year survival rate
is less than 20%. 	erefore, improved treatment e�ciency is
urgently needed for melanoma [116–118]. As discussed above,
many nanoparticles have been studied for the treatment of
melanoma, including liposomes [13, 119], dendrimers, poly-
mersomes, carbon-based nanoparticles, inorganic nanopar-
ticles, and protein-based nanoparticles [120, 121].

It has been shown that delivering the chemotherapeutic
agent doxorubicin by gold nanoparticles was very e�ective
against a melanoma cell line [122]. Lo Prete et al. applied
a cholesterol-rich nanoemulsion to deliver etoposide in a
mouse model of melanoma [123]. It decreased side e�ects,
increasing maximum tolerated dose 
vefold, and increased
the inhibition of tumor growth by concentrating etoposide at
the tumor site (a fourfold higher concentration in tumor than
with free etoposide). Doxorubicin was packed in a nanopar-
ticle with additional antibody against CD44, to speci
cally
target malignant cells [124]. 	e nanoparticle reduced the
tumor size by 60% compared with untreated tumor.

In treating metastatic melanoma, solvent-based taxanes
are active but demonstrate a high rate of toxicity and limited
e�cacy due to their water-insolubility, resulting in limited
uptake and adverse reactions to the solvents used in each
formulation. Using nanoparticles albumin bound paclitaxel
(Nab-PTX), Hersh et al. reported a Phase II clinical trial
in both previously treated and untreated melanoma patients
[125] and demonstrated that nab-paclitaxel was well tolerated
and active in both previously treated and chemotherapy-
naive patients with metastatic melanoma. Similar results
were found by Kottschade et al. in a Phase II clinical trial
using nab-PTX and carboplatin in advanced melanoma, in
41 chemotherapy-naive and 35 previously treated melanoma
patients. 	e response rate was 25.6% in the chemotherapy-
naive cohort and was 8.8% in the previously treated cohort.
Despite the severe side e�ects such as neutropenia, throm-
bocytopenia, neurosensory problems, fatigue, nausea, and
vomiting, the authors found that the addition of bevacizumab
to nab-paclitaxel and carboplatin (regimen ABC) shows

promising activity in terms of both median progression-
free survival and overall survival. In another clinical trial
[126], vascular endothelial growth factor (VEGF) antibody
increased the e�ect of nab-PTX [127]. Ott et al. showed
that the combination of a B cell lymphoma protein (Bcl)-
2 antisense oligonucleotide, temozolomide, and nab-PTX
produced a response of 40.6% [128]. Similar side e�ects to
that revealed in Kottschade et al.’s study were also reported.

From these data it, appears that, in the clinical trials, the
side e�ects provoked by nab-PTX had, as a counterpart, a
higher e�ectiveness against the tumor growth. In general,
drug delivery nanoparticles have a higher cytotoxic e�ect
than free drug. Indeed, it was reported that phosphatidyl-
ethanolamine liposomal cisplatin had a higher cytotoxicity
than classic liposomes or free cisplatin and a high level
of intratumoral drug concentration for 72 h and e�ciently
delivered approximately 3.6 times more drug than the free
drug [129]. Moreover, the anticancer therapy combining a
vascular-disruptive drug (combretastatin phosphate, CA4P)
and a liposomal formulation of a chemotherapeutic (doxoru-
bicin) greatly inhibited melanoma proliferation and growth
compared to monotherapies alone [130].

Liposomes containing glucocorticoids were found to
be highly potent in suppressing tumor angiogenesis and
in�ammation at the same time [131]. Liposomal prednisolone
phosphate was able to strongly inhibit endothelial cell pro-
liferation and reduce proangiogenic protein (such as bFGF)
levels, which were related to tumor angiogenesis [132].

Cationic liposome containing polyinosinic-polycytidylic
acid signi
cantly increased tyrosinase related protein (TRP)-
2-speci
c IFN-producing cells and resulted in an augmenta-
tion of the antitumor immune response [133]. 	is showed
another possibility in immunotherapy for melanoma by peri-
tumoral injection.	e functionalized quantumdot-liposome
hybrid o�ered great potential for melanoma imaging due to
its rapid accumulation and retention within the tumor [134,
135]. Liposomal siRNA could decreasemelanoma growth and
metastasis in vivo [136]. Nanotechnology has been used to
deliver certain inhibitors of the MAPK pathway [137].

Given the almost universal dependence of melanomas
from hyper-activation of the MAPK signalling pathway
caused by activating mutation of NRAS, BRAF or loss of
function mutations of the RAS-negative regulator NF1, it
is of particular interest the work reported by Basu and
colleagues [138], which generated and tested nanoparticles
loaded with the MEK1 inhibitor PD98059 and proved its
ability in enhancing the antitumor activity to cysplatinum.
Such study opened a new scenario on the possibility to
combine highly e�ective targeted-therapies in the 
eld of
melanoma such as combinations of BRAF inhibitors, MEK
inhibitors, and PI3K inhibitors with the optimal delivery
of the drugs also in di�cult to reach sites such as brain
metastasis.

Another potentially powerful application of nanoparti-
cles involves the use of RNA interference based approaches.
	e possibility of tumor-selective delivery of small RNA
or DNA molecules makes this application the most �exible
and potentially powerful anticancer approach given that, on
theory, every transcribed gene can be targeted.
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A chitosan nanoparticle was used to deliver the VEGF
siRNA and was demonstrated to improve the therapeutic
e�ect. Functional graphene oxide delivered a plasmid-based
STAT3 siRNA and showed signi
cantly reduced xenogra�ed
tumor growth [139]. Indeed, STAT3 is considered to be a
key mediator in melanoma which promotes brain metas-
tasis [140]. Inhibition of phosphorylated STAT3 has been
shown to increase e�cacy of tumor necrosis factor- (TNF-)
alpha for melanoma [141]. A nanoparticle has also been
designed to carry siRNA against the oncogene c-Myc to
target melanoma cells B16F10 and demonstrated e�ectiveness
against melanoma [142]. Tran et al. prepared a nanoparticle
to contain both siRNAs against BRAF and Akt3 which
markedly increased the anticancer e�ect [143]. Recently,
Pizzimenti et al. demonstrated that the inclusion complex of
4-hydroxynonenal, a toxic aldehyde derived from the lipid
peroxidation, with a polymeric derivative of 	-cyclodextrin
enhances the antitumoral e�cacy of the aldehyde in sev-
eral tumor cell lines and in a three-dimensional human
melanoma model [144].

Nanotechnology has been found to increase the thera-
peutic e�ect of Bcl-2 inhibition. In nude mice, oblimersen
(an antisense oligonucleotide against Bcl-2) decreased
xenogra�ed melanoma growth [145]. 	e dual application
of oblimersen with DTIC in patients in a Phase III clinical
trial resulted in increased e�ectiveness compared with DTIC
alone (9 versus 7.8 months, respectively, for overall survival;
2.6 versus 1.6 months, respectively, for progression-free
survival; 13.5% versus 7.5%, respectively, for overall response;
2.8% versus 0.8%, respectively, for complete response; and
7.3% versus 3.6%, respectively, for durable response) [146].
A nanoparticle was made to carry Bcl-2 siRNA (as well as
Myc and VEGF) for the treatment of melanoma [147]. It was
shown that this resulted in Bcl-2 reduction in bothmessenger
ribonucleic acid (mRNA) and protein levels. 	is increased
the anticancer e�ects both in vitro and in vivo. Oblimersen
has been used in a Phase I clinical trial in combination with
temozolomide and nab-PTX and proved to be more e�ective
in patients with advanced melanoma [128].

Nanoparticles have been used to deliver immunotherapy
drugs, to reduce side e�ects [148, 149]. Yao et al. prepared
a novel nanoparticle containing IL-2 and tested it in a
mouse model with xenogra�ed melanoma. 	e nanoparti-
cle was made from low-molecular weight polyethylenimine
(600Da), which was linked to 	-cyclodextrin, conjugated
with folate, and further mixed with IL-2 plasmid. 	e new
formulation inhibited tumor growth and prolonged the
survival of the melanoma bearing mice [150]. Biodegradable
polymer, poly(polycaprolactone), was prepared to make a
nanoporous miniature device for local delivery of cytokine
IFN-alpha and showed constant slow release of IFN-alpha
[151]. Speiser et al. prepared a nanoparticle containing a
cytosine-phosphodiester-guanine- (CpG-) loaded virus-like
particle carrying melanoma antigen recognized by T cells
1 (Mart-1) to target melanoma cells, and this nanoparticle
produced a strong immune response against melanoma,
including increased cytotoxic CD8 T cell responses [152].

Camerin et al. used nanoparticles to carry Zn[II]-
phthalocyanine disul
de (C11Pc) to test photodynamic ther-
apy treatment e�cacy in a mouse model of xenogra�
melanoma. It was found that a gold nanoparticle-associated
C11Pc had more e�ective treatment outcomes. 	e nanopar-
ticle had greater accumulation than did free C11Pc, and the
ratio of C11Pc between melanoma and skin increased from
2.3 to 5.5 [153].

Sato et al. designed amagnetite nanoparticle by conjugat-
ingN-propionyl-cysteaminylphenol withmagnetite and used
this in a B16F1 xenogra� mouse model. Electron microscopy
demonstrated that this particle appeared only in melanoma
cells. It was shown that the melanoma cells were degraded
a�er the application of an external alternating magnetic

eld to increase the temperature in the tumor to 43∘C. 	e
nanoparticle had a 1.7- to 5.4-fold greater e�ect than the used
alone magnetite did. A recent study showed that curcumin
further increased the e�cacy of magnetite nanoparticles
[154].

In conclusion, drug delivery appears to be a promising
approach for a better e�ective melanoma therapy.
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