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RNA therapies can manipulate gene expression or pro-
duce therapeutic proteins, making these drugs suitable 
for pathologies with established genetic targets, includ-
ing infectious diseases, cancers, immune diseases and 
Mendelian disorders (including neurological disorders). 
Moreover, the ability to sequence hundreds of thousands 
of genomes, analyse gene expression at the single- cell 
level, and manipulate genes with programmable nucle-
ases is driving the discovery of new targets for gene 
therapies. Yet the ability to manipulate these targets, 
especially non- coding DNA and the 85% of the genome 
that might be undruggable using small molecules1,  
is lessened without the capacity to deliver therapeutic 
RNA to diseased cells. In this Review, therapeutic RNA 
refers to antisense oligonucleotides (ASOs), such as gap-
mers, which contain DNA nucleotides flanked by RNA2, 
small interfering RNAs (siRNAs), or large RNAs, such as 
messenger RNA (mRNA) (Fig. 1). These RNA therapies 
act by targeting RNA or proteins, by encoding missing 
or defective proteins, or by mediating DNA or RNA 
editing. Irrespective of their therapeutic mechanism of 
action, the large size of some therapeutic RNAs, such 
as mRNAs, their anionic charge, and their susceptibility 
to RNases present in both the bloodstream and tissues 
make it difficult for therapeutic RNA to enter cells 
efficiently and function on its own.

To overcome the barriers to safe and effective RNA 
delivery, scientists have developed both viral- vector- 
based and non- viral delivery systems that protect 
the RNA from degradation, maximize delivery to 
on- target cells and minimize exposure to off- target 
cells. Viral gene therapies3 have generated success-
ful clinical readouts4–9, but the effectiveness of these 
approaches can be limited by pre- existing immunity10, 
viral- induced immunogenicity11, unwanted genomic 

integration12, payload size constraints13, the inabi-
lity to re- dose, complications involved in upscaling14, 
and expensive vector production. Although scien-
tists are overcoming some of these limitations15, they 
have fuelled the search for alternative drug delivery 
vehicles. Concurrent advances in the development 
of synthetic materials that encapsulate RNA, such as 
polymers, lipids and lipid nanoparticles (LNPs), have 
invigorated research into non- viral- based delivery sys-
tems, leading to US Food and Drug Administration 
(FDA) approval of subcutaneously administered 
N- acetylgalactosamine (GalNAc)–siRNA conjugates 
that target hepatocytes16–18, intravenously administered 
LNP- based siRNA drugs that target hepatocytes19, and 
emergency use authorization (EUA) and FDA approval20 
for intramuscularly administered LNP- based mRNA  
COVID vaccines21,22. These approvals suggest that 
improved delivery to non- liver tissues (also known 
as extrahepatic tissues) as well as local delivery to the 
central nervous system, eye and ear could result in new 
drugs. Nanoparticle- based drug delivery systems may 
also be useful for non- viral DNA delivery, which has 
been reviewed elsewhere23.

Here, we detail the expanding number of therapeu-
tic RNA payloads and highlight how the downstream 
biochemical mechanism of action influences delivery. 
After reviewing the chemistries commonly used in drug 
delivery systems as well as the approaches to targeting 
specific cells, we describe the series of experiments used 
to characterize nanoparticles in preclinical studies (here-
after referred to as the nanoparticle discovery pipeline) 
and identify opportunities to improve the efficiency of 
this pipeline. Finally, we describe the advantages, dis-
advantages and hallmarks of existing FDA- approved and 
EUA- approved RNA delivery systems.
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Therapeutic RNA payloads
RNA drugs are often classified by the biochemical 
mechanism of action used to manipulate genes or gene 
expression (Fig. 1). When designing drug delivery vehi-
cles, it is important to consider how these mechanisms of 
action influence the requirements for clinically relevant 
drug delivery. Oligonucleotide drugs, such as ASOs and 
siRNAs, that utilize enzymes endogenous to eukaryotic 
cells, such as RNAse H1 or the RNA- induced silenc-
ing complex (RISC), respectively, facilitate delivery by 
not requiring the delivery of large enzymes. Important 
improvements have been made in recent years in terms 
of the delivery of small molecules and macromolecules24, 
but most therapeutic oligonucleotides must still be 
maintained at high concentrations over time in order  
to manipulate the target gene25. For example, givosiran16 
is administered subcutaneously at 2.5 mg/kg monthly, 
and lumasiran18 is administered subcutaneously at 
3.0 mg/kg monthly for 3 months, then 3 mg/kg once 
every 3 months. More promising, however, is inclisiran26, 

which is administered as a 284 mg dose given subcuta-
neously as a single injection on day 1, day 90 and every 
6 months thereafter. With additional improvements to  
delivery or siRNA design, it may become feasible  
to inject patients annually, which could coincide with a 
yearly checkup. By contrast, DNA nucleases, including 
many clustered regularly interspaced short palindromic 
repeat (CRISPR)- based systems, can cause long- term 
effects in cells even if the construct is only expressed 
transiently27. MicroRNAs (miRNAs) recruit RISC to 
complementary mRNA sequences, thereby facilitating 
targeted RNA interference. As a result, miRNA mimics, 
which are designed to increase native miRNA activity, 
and anti- miRNAs or antago- miRNAs, which inhibit 
miRNA activity, have been studied in animal models 
and used in clinical trials28. One phase I clinical trial 
investigated the use of MRX34, which uses liposomes 
to deliver a double- stranded miRNA-34a mimic, for the 
treatment of advanced solid tumours29. In a phase II clini-
cal trial, the anti- miRNA-122 miravirsen, which binds 
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Fig. 1 | The expanding universe of therapeutic RNA payloads. a | One 
class of RNA therapeutics requires delivery of small RNA molecules. Small 
interfering RNAs (siRNAs) can reduce gene expression via RNA- induced 
silencing complex (RISC)- mediated mRNA degradation, antisense 
oligonucleotides (ASOs) can alter isoforms by binding to splice sites, and 
adenosine deaminase acting on RNA ASOs (ADAR- oligonucleotides) can 
edit RNA. In all three cases, these small RNAs can be designed with 
site- specific chemical modifications using solid- phase synthesis and can be 
delivered using nanoparticles or conjugate delivery systems. In this figure, 
the blue molecule represents the small therapeutic RNA being ferried  
into the cell. b | A second class of RNA therapeutics requires delivery of large 

RNA molecules. In vitro transcribed mRNA consists of a 5′ cap, 5′ and  
3′ untranslated regions (UTRs), an open reading frame encoding antigen(s), 
and a 3′ poly(A) tail. c | mRNA payloads can encode nucleases that mediate 
DNA or RNA editing. mRNA can also be used to replace dysfunctional 
protein or encode antigens that confer longer- term immunity to a 
pathogen, such as SARS- CoV-2. mRNAs are transcribed in vitro and thus 
cannot currently be made with site- specific chemical modifications. In this 
figure, the blue molecule represents the protein encoded by the mRNA. Cas, 
CRISPR- associated protein; crRNA, CRISPR RNA; dCas9, dead Cas9; GFP, 
green fluorescent protein; pegRNA, prime editing guide RNA; sgRNA; 
single- guide RNA.
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miRNA-122 and leads to its subsequent inactivity, was 
tested for the treatment of hepatitis C30. Using a similar 
approach, RG-101, which antagonizes miRNA-122, was 
reported to reduce viral load by several logs in patients 
with chronic hepatitis C in a phase Ib clinical trial31. 
However, RG-101 was discontinued after the drug was 
found to cause hyperbilirubinaemia32. Finally, mRNA 
drugs promise a simple and flexible way to treat a lit-
any of diseases; these therapeutics encompass antigen 
production, including the COVID-19 vaccine, protein 
replacement therapies and genome engineering.

siRNA. One biochemical mechanism of action that has 
been safely used in humans is siRNA- mediated gene 
silencing. These double- stranded RNAs with a mole cular 
weight of approximately 13 kDa suppress protein transla-
tion by recruiting RISC to mRNA via Watson–Crick base 
pairing (Fig. 1a). Through the action of the catalytic RISC 
protein Ago2, a member of the Argonaute family, the tar-
get mRNA is cleaved. Alternatively, other Ago proteins 
(Ago1, Ago3 and Ago4) catalyse endonuclease- mediated 
nonspecific mRNA degradation by localizing the bound 
mRNA in processing (P)- bodies33,34. siRNA can reduce 
the expression of any protein- coding gene and has been 
approved by the FDA or the European Medicines Agency 
(EMA) in the form of the following drugs: patisiran, 
which is used to treat hereditary transthyretin- mediated 
amyloidosis (hATTR)19; givosiran, which is used to treat 
acute hepatic porphyria16; lumasiran, which is used to 
treat primary hypero xaluria type 118; and inclisiran, which 
is used to treat hypercholesterolaemia17. In addition, the 
FDA has accepted a new drug application for vutrisiran35, 
an investigational RNA interference (RNAi) therapeutic 
for the treatment of hATTR amyloidosis with polyneuro-
pathy in adults, following a successful phase III clinical 
trial36. The FDA approved the first siRNA drug 20 years19 
after the first report of RNAi in eukaryotic cells37. This 
speedy clinical implementation of siRNA has been made 
easier by three traits. First, its small number of nucleo-
tides enables scientists to use solid- phase synthesis to 
manufacture siRNA with site- specific chemical modifi-
cations, usually in the phosphate backbone and sugar 
rings. A whole suite of chemistries has been developed 
for a variety of ribose modifications, such as 2′- O- methyl  
(2′- OMe), 2′- methoxyethyl (2′- MOE), 2′- fluor (2′- F), 
locked nucleic acid oligonucleotides, constrained ethyl 
oligonucleotides (cEt), and tricyclo- DNA oligonucleo-
tides (tc- DNA)38. Complementing these modifica-
tions are phosphate backbone modifications including 
phosphorothioates, phosphorodiamidate morpholino 
oligonucleotides (PMO), peptide nucleic acid oligonu-
cleotides (PNA), and nucleobase modifications, such 
as 5- methylcytosine (m5C). Changing the combina-
tion of different chemical modifications of the siRNA 
has enabled scientists to improve the pharmacokinetic 
properties, innate immune response and stability39. 
Second, siRNA utilizes RISC, which is endogenous to 
eukaryotic cells and thus does not require the delivery 
of large enzymes with nuclease domains. Finally, given 
that siRNA interferes with mature mRNA, it requires 
only cytoplasmic delivery, which is easier to achieve than 
nuclear delivery.

Antisense oligonucleotides. ASOs are a second class 
of RNA therapeutics, and are oligonucleotides with a 
molecular weight of 6–9 kDa (reF.40). ASOs have the same 
manufacturing advantages as siRNA and have been 
approved by the FDA to treat familial hypercholestero-
laemia41, hATTR amyloidosis with polyneuro pathy42, 
specific subtypes of Duchenne muscular dystro-
phy43,44, and infantile- onset spinal muscular atrophy45.  
ASOs can act through three mechanisms of action 
(Fig. 1a). First, similar to siRNAs, ASOs bind mRNA 
via Watson–Crick base pairing, but unlike siRNAs, the 
ASO DNA–RNA heteroduplex recruits RNase H1 rather 
than RISC. RNase H1- dependent ASOs are also known 
as gapmers and lead to cleavage of the target RNA46. 
Second, ASOs can also interfere with splicing machi-
nery by interacting with pre- mRNA, thereby promot-
ing alternative splicing46 and increasing target protein 
expression47. Thus, unlike siRNA, which silences target 
genes, ASOs can be used to increase protein activity in 
diseases including Duchenne muscular dystrophy and 
spinal muscular atrophy. However, these two mecha-
nisms require nuclear delivery so that the ASO–RNase 
H1 complex can interact with pre- mRNA. The third 
mode, which causes downregulation of mRNA expres-
sion, is the translational arrest of the targeted protein 
through binding with the translation initiation codon 
of the target mRNA48.

ASO chemical modification can influence the mech-
anism of action, as well as the target sequence binding 
affinity. Gapmers have a general chimeric structure of 
regions of five nucleotides of RNA- like residues flank-
ing a central 10- nucleotide DNA region49. The gapmer 
can improve hybridization and nuclease resistance, 
while still retaining RNase H1 activation. As described 
above, other modifications, such as locked nucleic acid 
oligonucleotides, can be used instead of the 2′- modified 
designs, but although these modifications can improve 
potency, they can also increase toxicity50,51. The ASOs 
that involve steric blocking are RNAse H1- independent 
and are entirely made of RNA bases, and not DNA. 
Notably, ASOs often have a full phosphorothioate 
backbone, which can facilitate their transport into  
the nucleus52,53.

Chemically modified oligonucleotides with an 
antisense target binding motif have been designed 
with an engineered hairpin domain that recruits the 
endogenous RNA- editing enzyme adenosine deami-
nase acting on RNA (ADAR)54,55 (Fig. 1a). These ADAR- 
oligonucleotides, which have a molecular weight of 
approximately 10–35 kDa and can be manufactured 
with site- specific chemical modifications, use their 
single- stranded RNA domain to bind a target mRNA via 
Watson–Crick base pairing. The other domain recruits 
ADAR to the RNA, where ADAR converts adeno-
sines to inosines; the inosines are subsequently read as 
guanosine by the endogenous translational machinery, 
leading to A to I to G RNA editing. A to I to G editing 
can occur on mature mRNA, suggesting that cytoplas-
mic delivery of ADAR- oligonucleotides can be suffi-
cient to achieve an effect. Thus, ADAR- oligonucleotides  
represent an emerging class of oligonucleotides for 
treating genetic disease56.
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mRNA. Another type of RNA therapeutic is mRNA, 
which can encode proteins that have therapeutic acti-
vity. Because of their size, mRNAs are in vitro transcribed 
and cannot currently be made with site- specific chemi-
cal modifications using solid- state synthesis (Fig. 1b). 
mRNA can be used to replace protein, using replacement 
therapies57; to reduce protein levels, using Cas9 cutting 
approaches58; or to repair protein mutations at the DNA 
level, using base editing59,60. In 2021, researchers reported 
the successful use of LNPs encapsulating Streptococcus 
pyogenes Cas9 (CRISPR- associated endonuclease Cas9) 
mRNA and a CRISPR guide RNA in six patients with 
hATTR amyloidosis with polyneuropathy; a single 
0.3 mg/kg dose resulted in a mean reduction from base-
line of blood transthyretin (TTR) levels of 87% at 28 days  
post- dose58. The gene product TTR is responsible for 
transporting vitamin A and thyroxine throughout the 
body, and mutations in this gene cause hATTR58. This 
milestone for a new therapeutic modality comes along-
side the remarkable success of the now FDA- approved20, 
mRNA- based vaccine against SARS- CoV2 (Box 1)61,62. 
Other clinical examples of mRNA- mediated protein 
replacement include efforts to treat cystic fibrosis as 
well as ornithine transcarbamylase deficiency. Translate 
Bio is continuing its trial of mRNA- mediated protein 
replacement for cystic fibrosis, despite not showing much 
improved lung function in patients with cystic fibrosis63, 
and discontinuing its trial for ornithine transcarbamylase 
deficiency, owing to an undesirable pharmacokinetic and 
safety profile64. Similarly, Arcturus Therapeutics have 
received regulatory approval to initiate a phase II clinical 
trial of an mRNA therapeutic to treat ornithine transcar-
bamylase deficiency65. In addition to gene replacement, 
transient expression of myelin oligodendrocyte glycopro-
tein has led to immunological tolerance and subsequent 
treatment of experimental autoimmune encephalo-
myelitis in mice66. The antithesis of this tolerance mech-
anism is mRNA- mediated expression of an antigen to 
generate long- lasting immunity against the antigen, the 

so- called mRNA vaccines. Fundamental mRNA vaccine 
research67 focused on viruses such as Zika68, HIV69 and 
influenza70, or diseases such as melanoma71.

Intramuscular injections of human carcinoembry-
onic antigen mRNA have been used to induce antigen- 
specific immune responses in mice as far back as 
1995 (reF.72). Since then, strides have been made and 
multiple therapeutic cancer vaccines are currently 
undergoing clinical trials. BNT111 from BioNTech’s 
FixVac plat form targets a fixed combination of four 
mRNA- encoded melanoma- associated antigens 
(NY- ESO-1, MAGEA3, tyrosinase and TPTE). Phase I 
trials of BNT111 in patients with advanced melanoma 
showed partial responses and shrinkage of metastases 
after eight vaccinations given via intravenous injec-
tions73. Aside from vaccination, mRNA can be used to 
deliver co- stimulatory immune checkpoint molecules, 
such as OX40L for the treatment of solid tumours74. 
mRNA-2416 from Moderna was injected intratumorally 
every 2 weeks for up to 12 doses and was shown to be 
tolerable with increased OX40L protein expression and 
elevated pro- inflammatory acti vity and PD- L1 levels in 
patients with locally advanced, recurrent or metastatic 
solid malignancy or lymphoma74.

mRNA can also transiently express zinc finger nucle-
ases, transcription activator- like nucleases, or nucleases 
derived from CRISPR–Cas systems75. Nucleases that are 
designed to manipulate DNA are particularly well suited 
for mRNA- based therapeutics, which produce protein for 
hours to days76 instead of weeks, as would be the case with 
DNA- based therapeutics; a short- lived DNA nuclease can 
create a long- lived gene editing event77. A clinical trial of 
an adeno- associated viral vector- based SaCas9 has been 
initiated78, but two arguments suggest that mRNA- based 
or protein- based transient Cas expression might be pre-
ferable in cases when the enzyme is an active DNA nucle-
ase. First, long- term expression of an active DNA nuclease 
might lead to increased editing events in off- target 
loci27. Second, adeno- associated viral vector- based Cas9 
delivery has been reported to lead to vector integration 
following DNA double- stranded breaks79.

Cas enzymes are also amenable to three types 
of biochemistry- driven improvements that expand 
their possible therapeutic potential80. In the first 
type of improvement, Cas enzymes can be rationally 
designed81 or evolved82 to target DNA next to diffe-
rent protospacer- adjacent motif sites. A second type 
of improvement is that Cas enzymes evolved to make 
double- stranded cuts in target DNA can be mutated in 
one or two inactive nuclease domains, leading to ‘nick-
ases’ or ‘dead’ Cas (dCas9) enzymes, respectively. A third 
type of improvement is that Cas enzymes can be appended 
with domains that lead to transcriptional activation83,  
epigenome editing84,85, base editing86, changes to mito-
chondrial DNA87, reverse transcriptase- mediated 
gene insertion88, and transposition89. Notably, these 
changes can also be made to Cas12a enzymes90, which 
can require a shorter guide RNA and lead to staggered 
double- stranded cuts.

Complementing these DNA nucleases are RNA 
nucleases that bind and cleave RNA91,92 or, alternatively, 
can be engineered with an ADAR domain to enable RNA 

Box 1 | mRNA vaccines against SARS- CoV-2

Intramuscular injections of lipid nanoparticles (lNPs) carrying mRNa encoding 
full- length, stabilized SaRS- Cov-2 spike proteins reduce infection, morbidity and 
spread caused by CovID-19 (reFs61,62). Both of the CovID-19 mRNa vaccines, created 
by moderna and acuitas/BioNTech/Pfizer, are groundbreaking for three reasons.  
First, they were developed in months rather than the years that is typical for drug 
development255. Second, the vaccines were tremendously effective, reducing viral  
load in patients infected after vaccination256, reducing infection by as much as 95% 
in clinical trials61,62, and substantially reducing disease under real- world conditions257. 
The mechanisms responsible for this efficacy require further study, but intramuscular 
administration can result in lNPs transfecting high numbers of immune cells, including 
antigen- presenting cells258. once antigen- presenting cells transfected by lNPs 
produce the SaRS- Cov-2 spike protein, the antigen is degraded and presented in 
complex with major histocompatibility complex (mHC) class I or class II, thereby 
activating T cell subsets259 and promoting B cell- mediated humoral immunity260.  
Third, evidence suggests that mRNa vaccines protect against emerging SaRS- Cov-2 
variants, including those with viral spike protein mutations261. Given that the lNP 
remains the same, it has been estimated that mRNa- based vaccines encoding a 
novel variant could be produced in as little as 6 weeks262. This ability to respond to  
an emerging SaRS- Cov-2 variant without the need to massively re- engineer the lNP–
mRNa formulation, manufacturing or distribution procedures is critical, especially as 
evidence of CovID vaccine breakthrough infections appears263 and, more generally,  
as the frequency with which zoological viruses infect humans increases264.
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base editing93,94 (Fig. 1c). Compared with DNA- editing 
nucleases, non- viral- mediated delivery of an RNA 
nuclease facilitates transient, shorter- lived changes in 
gene expression93. Thus, whereas DNA nucleases may  
be well suited for chronic diseases, RNA nucleases may be  
more useful for short- term diseases, such as transient 
inflammation, or diseases driven by RNA pathogens 
such as coronaviruses95,96. Delivering CRISPR therapeu-
tics is challenging because both the Cas protein and the 
single- guide RNA (sgRNA) must be present at sufficient 
concentrations to form intracellular ribonucleo proteins. 
In preclinical studies, this two- payload problem has been  
solved by concurrently delivering mRNA and sgRNA in 
nanoparticles77,96–104, by constitutively expressing sgRNA 
via adeno- associated virus (AAV) before injecting 
LNPs loaded with Cas9 mRNA105, or by injecting pre- 
complexed RNPs106–108. An alternative solution is to 
reduce the size of the Cas enzyme, which might make 
it easier to package alongside the sgRNA in the same 
delivery system. Several compact nucleases have 
been reported, including a Cas12j (termed Casϕ)109, 
Cas12f 110,111, Cas13bt112 and Cas13ct112.

Synthetic vehicles for RNA delivery
Although different RNA payloads can have different 
biochemical mechanisms of action, all of them must 
avoid clearance by off- target organs, must access the 
correct tissue, must interact with the desired cell type in 
a complex tissue microenvironment, must be taken up 
by endocytosis, and must exit the endosome, without 
eliciting a deleterious immune response113. Although 
small oligonucleotide RNA therapeutics, including 
ASOs, siRNAs and ADAR- oligonucleotides, can be 
modified using stable chemistries and delivered using 
conjugates, mRNA- based and DNA- based therapeutics 
require a vehicle for entry into a cell. To facilitate this 
process, scientists have developed several RNA delivery 
systems using a range of materials, including polymers 
and LNPs.

Lipids and lipid- based nanoparticles. LNPs are a key 
class of drug delivery system that includes nanoparti-
cles approved by the FDA for liver siRNA delivery19 and 
for mRNA vaccine delivery61,62. On the basis of the size 
of the hydrophilic head group relative to the size of the 
hydrophobic tail or tails114, lipids form distinct structures 
including micelles, liposomes and LNPs (Fig. 2a). FDA- 
approved LNPs contain variations of four basic compo-
nents: a cationic or ionizable lipid, cholesterol, a helper 
lipid, and a poly(ethylene glycol) (PEG)- lipid (Fig. 2b,c). 
Scientists have investigated the structure of lipid- based 
delivery systems complexed with nucleic acid115,116 and 
demonstrated that lipid structure alters how LNPs inter-
act with cells117. Given that lipid structure influences 
delivery and that lipids can be easily synthesized using 
chemistries including Michael addition- based, epoxide-  
based and alcohol- based reactions, scientists have 
created libraries of dozens to thousands of chemically 
distinct lipid delivery systems118,119. Many of these efforts 
focused on improving siRNA delivery to hepatocytes in 
mice120. This work, along with a more rational approach 
to lipid design117, reduced the dose required for robust 

in vivo hepatocyte gene silencing in mice from approxi-
mately 1.0 mg/kg (reF.121) to 0.002 mg/kg (reF.122). Key 
lipids that delivered siRNA in non- human primates 
included C12-200, which was synthesized using epoxide– 
amine chemistry120; cKK- E12, a peptide- like lipid 
compound122; DLin- KC2- DMA, an ionizable lipid iden-
tified using rational design117; and DLin- MC3- DMA123, 
which was used in patisiran to treat hATTR19 (Fig. 2c,d).

LNPs have also delivered mRNA to the liver in mice, 
in non- human primates and in humans. In some cases, 
LNPs utilized lipids previously developed for siRNA 
delivery. For example, in mice, LNPs formulated with 
cKK- E12124,125, C12-200126, and DLin- MC3- DMA127 
delivered mRNA to the liver. Newer lipids reported, such 
as LP0177(Intellia Therapeutics), Lipid H128(Moderna), 
and FTT5103(Ohio State and Beam Therapeutics), 
have also delivered mRNA to the mouse liver. 
Recently, two LNPs formulated with an unreported 
cationic or ionizable lipid, PEG- lipid, cholesterol and 
1,2- distearoyl- sn- glycero-3- phosphocholine (DSPC) 
delivered mRNA encoding a base- editing Cas9 and 
sgRNA targeting PCSK9 to the liver in non- human 
primates59,60. A single LNP administration led to months 
of sustained PCSK9 silencing. Moreover, long- term 
PCSK9 silencing mediated by antibodies129 or siRNA17 
has shown beneficial effects in cardiovascular disease in 
humans. Separately, Beam Therapeutics reported that 
LNP- mediated delivery of base editors led to sustained 
effects in the liver of non- human primates130. In addition 
to these preclinical studies, Intellia has released data in 
patients dosed with its NTLA-2001, used to inactivate 
the TTR gene. Inactivation of TTR has also previously 
been validated in humans; siRNA or ASOs targeting 
TTR slowed the progression of hATTR amyloidosis with 
polyneuropathy36,42.

In addition to the RNA payload, the Alnylam, 
Moderna and Pfizer/BioNTech/Acuitas LNPs com-
prise four components: the cationic or ionizable lipids 
DLin- MC3- DMA (Alnylam), SM-102 (Moderna), or 
ALC-0315 (Pfizer/BioNTech/Acuitas), cholesterol, the 
PEG- lipids PEG-2000- C- DMG (Alnylam), PEG-2000-  
DMG (Moderna), or ALC-0159 (Pfizer/BioNTech/
Acuitas), and DSPC (Fig. 2b–d). Although most preclini-
cal studies have evaluated how the structure of the cati-
onic or ionizable lipid influences delivery, the other three 
components can also affect delivery131,132. For example, 
by changing the cholesterol, PEG- lipid or ‘helper’ lipid, 
an LNP that delivered siRNA to pulmonary and cardio-
vascular endothelial cells in mice133 and non- human 
primates134 was retargeted to deliver siRNA135, sgRNA136 
or mRNA99 to bone marrow, hepatic and splenic 
endothelial cells after intravenous administration as well 
as lung epithelial cells after nebulization137. In additional 
examples, changing the PEG- lipid structure or its molar 
percentage altered LNP pharmacokinetics and liver 
siRNA delivery138 in mice and affected delivery within 
the eye139. Both the PEG and lipid components of the 
PEG- lipid affect how it interacts with the LNP and cells: 
the lipid ‘anchors’ the PEG- lipid into the LNP, while the  
hydrophilic PEG interacts with water in the blood, 
thereby creating an aqueous barrier similar to other 
PEGylated nanomedicines140. Likewise, although most 
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LNPs have been formulated with unmodified cho-
lesterols, LNP delivery in cell cultures and in mice 
has been shown to be improved by use of oxidized 
cholesterols124, esterified cholesterols136, or cholesterol 

analogues such as phytosterols116. Although the mech-
anism behind cholesterol- mediated improvements in 
delivery remains unknown, incorporating modified 
cholesterol into LNPs can change their structure141. 
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Researchers have demonstrated that replacing DSPC 
with other lipids can promote LNP delivery to the spleen 
or lungs125,142. Similarly, by adding another lipid to the 
LNP, thereby changing the LNP from a four- component 
system to a five- component system, LNPs were targeted 
to the lung and spleen in a process termed selective 
organ targeting101. Finally, both Intellia143 and Beam 
Therapeutics130 have shared information that LNPs can 
be made to deliver mRNA to haematopoietic stem and 
progenitor cells in mice, with the hope of developing 
in vivo haematopoietic stem cell- targeting therapies.

Polymers and polymer- based nanoparticles. Many non-  
viral RNA delivery systems also utilize polymers and 
polymeric nanoparticles144 (Fig. 3a). Chemists can vary 
polymer traits including charge, degradability and 
mole cular weight, all of which influence how polymers 
deliver RNA into cells145,146. One frequently used poly-
mer is poly(lactic- co- glycolic acid) (PLGA). PLGA drug 
delivery systems have been approved by the FDA for  
the delivery of small- molecule drugs but not for the 
deli very of nucleic acids147. At neutral pH, PLGA does 
not have the positive charge required to complex the 
anionic RNA phospho diester backbone. Thus, to utilize 
PLGA as an RNA delivery system, scientists have added 
cationic chemical groups such as chitosan to deliver 
siRNA in mice148.

Polymers that contain amine groups that can 
become cationic, such as polyethylenimine (PEI) 
and poly(l- lysine) (PLL), can complex with RNA via 
electro static interactions and deliver it into cells149,150. 
However, unmodified PEI and PLL are not always well 
tolerated151, and PEI transfection capability and toxicity 
increase with molecular weight152. Thus, PEI and PLL 
have been chemically modified to improve in vivo effi-
cacy and tolerability. For example, nanoparticles made 
with PEG- grafted PEI have been used to deliver mRNA 
to immune cells in the lungs153, and cyclodextrin- PEI 
conjugates have been used to deliver an mRNA vaccine 
in vivo154. Similarly, iron oxide nanoparticles were 

surface- modified with PLL to deliver genes to the central 
nervous system in mice155.

Another cationic polymer class is the poly(beta-  
amino ester)s (PBAEs), which are synthesized by conju-
gating amine monomers to diacrylates. These polymers, 
which were designed to have improved biodegradation 
and cytotoxicity relative to PEI and PLL156, contain cat-
ionic amines as well as biodegradable ester bonds157. 
Early research used Michael addition chemistry to syn-
thesize hundreds of chemically distinct PBAEs and then 
evaluated how these nanoparticles delivered DNA158,159 
and RNA in cell culture160. These PBAE ‘libraries’ ena-
bled researchers to study how PBAE chemical structure 
influences drug delivery, thereby generating design 
rules for subsequent PBAEs161,162. Initial design rules 
suggested that effective polymers were almost always 
hydrophobic, had monoalcohol or dialcohol side groups, 
and had linear bis (secondary) amines161. A follow- up 
study using these design criteria showed that top poly-
mers were all formed from amino alcohols and were 
similar chemically, only differing by one carbon162. 
More generally, these studies established the feasibi-
lity of high- throughput chemical synthesis followed by 
high- throughput drug delivery studies, which has been 
applied to other nanoparticle chemical classes, includ-
ing LNPs118. PBAEs have been used for the delivery of 
DNA vectors to pulmonary cells after nebulization163, 
the delivery of mRNA intranasally164, and the delivery 
of siRNA to a human orthotopic glioblastoma tumour 
model in mice165. More recently, researchers have  
also used PBAE- based polymers to deliver Cas13a 
mRNA and to guide RNA to the respiratory tract of 
mice and hamsters via nebulization for the treatment  
of SARS- Cov-2 (reF.96).

Researchers have also synthesized lipid–polymer  
hybrids and found that adding lipids to PBAEs improved 
serum stability and delivery166,167. An additional poly-
mer class used for RNA delivery is dendrimers, which 
consist of a defined number of branched monomers 
emanating from a central core molecule (Fig.  3b).  
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Dendrimers synthesized with cationic groups, such as 
poly(amido amine) (PAMAM) or PLL, can form com-
plexes and deliver RNA into cells. Dendrimers have 
delivered RNA to the central nervous system168, acted 
as intramuscular vaccines against the Ebola and H1N1 
viruses169, and deli vered siRNA to hepatic endothelial 
cells170. Dendrimer structure has also been modified to 
protect nucleic acids from enzymatic degradation171 and 
to enhance endosomal escape172.

Active versus passive tissue targeting
Passive tissue targeting. As outlined in the section ‘Lipids 
and lipid- based nanoparticles’, research has demon-
strated that LNPs originally developed for liver siRNA or 

mRNA delivery can be redirected to other organs with-
out the need for antibody fragments, peptides, aptamers 
or other active targeting ligands that bind specific recep-
tors on the surface of target cells173. For the purposes of 
this Review, we define such retargeting, probably driven 
by interactions between the nanoparticle and serum 
proteins in endogenous trafficking pathways, as a pro-
cess termed ‘passive targeting’ or ‘endogenous targeting’ 
(Fig. 4a). As a sphere becomes smaller, its surface area to 
volume ratio increases; as a result, nanoparticles have 
large surface areas174 and when a nanoparticle comes 
into contact with a biological milieu, many biomole-
cules can coat its surface175. By covering the nanopar-
ticle surface, these coronas (proteins that bind to the 
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nanoparticle surface) change the chemical and biologi-
cal molecules at the surface of the nanoparticle, thereby 
altering how the nanoparticle interacts with immune 
cells176 and on- target tissues177. In one clinical example178, 
apolipoprotein E (ApoE) adsorption was required for 
ionizable, but not cationic, lipids to deliver siRNA to 
hepatocytes179. Researchers have found LNPs that can 
be trafficked via an albumin- dependent mechanism180 as 
well as LNPs with variable dependence on low- density 
lipoprotein (LDL), very low- density lipoprotein (VLDL) 
and caveolin-1 receptors136,181. In addition to the effect 
that the protein corona can have on LNP tropism, LNP 
size can also contribute to passive tissue targeting.  
In one example, nanoparticle size influenced the potency 
of siRNA- based LNPs in vivo182. In another example, 
nanoparticle size governed the frequency with which an 
LNP was cleared by immune cells in the lymph node183. 
Similarly, several groups have demonstrated that LNP 
charge can affect delivery. In one example, scientists 
developed a lipoplex that delivered mRNA to the spleen 
by altering its charge142. Similar systems have delivered 
therapeutic mRNA in different animal models66,184. 
Likewise, by adding a cationic lipid to the LNP, scien-
tists retargeted an LNP with liver tropism to the lung125. 
These splenic and pulmonary delivery datasets were sub-
sequently observed using LNPs that facilitated mRNA 
delivery and Cas9- mediated gene editing101.

Active targeting. RNA can also be ferried into on- target 
cells using ‘active targeting’. In this strategy, a ligand that 
binds a specific biomolecule is added to the delivery 
system (Fig. 4b–d). The most clinically validated exam-
ples are GalNAc–siRNA and GalNAc–ASO conjugates, 
which have led to the FDA- approved drugs givosiran16 
and lumasiran18, as well as the EMA- approved drug 
inclisiran17. GalNAc is a carbohydrate- derived triva-
lent ligand that binds the asialoglycoprotein receptor 
(ASGPR) (Fig. 4b). ASGPR is an ideal receptor for active 
targeting: it is highly expressed on target cells (in this 
case hepatocytes), not expressed on other cell types, 
leads to rapid endocytosis upon GalNAc binding, and 
is rapidly recycled to the cell surface following endo-
cytosis. GalNAc also exhibits several traits that make 
it an ideal targeting ligand. First, it has a molecular 
weight of <2 kDa, which is many times less than the 
molecular weight of the ASO or siRNA it delivers185. 
This low molecular weight ensures that most of the drug 
being administered is siRNA and not GalNAc. Second, 
improvements can be made to its chemical structure 
to enhance silencing in vivo185,186, and its interactions 
with serum proteins are well understood187; in addition, 
site- specific modifications made to the ribose and phos-
phate moieties have reduced nuclease- mediated siRNA 
degradation as well as off- target mRNA binding187–189. 
The combination of this ideal receptor and optimized 
ligand has resulted in subcutaneous delivery of siRNA 
and ASO at doses far below those that cause toxicity in 
large- animal models190,191.

Small ligands have also been developed for extra-
hepatic delivery. Specifically, by measuring the bio-
distribution and delivery mediated by a library of 
different siRNA–lipid conjugates, researchers found 

that hydrophobic conjugates accumulated in the liver, 
whereas less hydrophobic conjugates accumulated in 
the kidneys192. In the same study, the authors found 
that when compared with cholesterol (a well studied 
hepatic conjugate), both dichloroacetic acid alone 
and dichloroacetic acid with a phosphocholine polar 
head group improved siRNA delivery to extrahepatic  
tissues such as the lung and heart and, to a lesser degree, 
improved siRNA delivery to skeletal muscle and fat.  
In a follow- up study, researchers identified two lipid 
transport pathways that could be guiding delivery: 
hydrophobic siRNA conjugates tended to spontaneously 
associate with LDL, an association known to improve 
trafficking to the liver, whereas less- hydrophobic con-
jugates bound to high- density lipoprotein (HDL), 
part of the reverse cholesterol transport pathway193.  
A 2021 study reported that cholesterol- functionalized 
DNA–RNA heteroduplexes were capable of crossing 
the blood–brain barrier in mice and rats after systemic 
administration. Once again, the chemical structure of 
the lipid and conjugate was critical for cell targeting, 
gene silencing and pharmacokinetics194. RNA aptamers, 
which are RNAs that fold into defined three- dimensional 
structures195, have also emerged as ligands for specific 
cell- targeted delivery of RNAi- based therapeutics. In one  
example, researchers conjugated an siRNA- targeting 
STAT3, a key regulator of glioblastoma, to the receptor 
tyrosine kinase anti- PDGFRα RNA aptamer. This deli-
very system inhibited the expression of target genes and 
showed strong reduction of cell viability in vitro196.

A distinct targeting mechanism requires the use of 
antibody fragments or antibodies to target cell types.  
For example, siRNA and ASO have also been delivered 
to extrahepatic tissues using antibody–siRNA conjugates 
(Fig. 4c). In one example, an anti- CD71 antibody frag-
ment delivered siRNA to the heart and skeletal muscle, 
leading to extended on- target gene silencing197. Data 
using either anti- CD71 fragments197 or monoclonal 
antibodies198 have demonstrated long- term muscle 
silencing in preclinical models, including 12 weeks 
of silencing in non- human primates after a single 
administration198. As a result, Avidity Biosciences initi-
ated a phase I/II clinical trial delivering siRNA against 
myotonic dystrophy protein kinase to treat myotonic 
dystrophy type I in 2021.

Although ASOs and siRNAs are small enough to be 
delivered using a small conjugate or antibody, mRNAs 
are too large. For this reason, mRNA has been formu-
lated inside nanoparticles that are decorated with 
antibodies (Fig. 4d). Researchers have developed a cell-  
targeting platform known as Anchored Secondary scFv 
Enabling Targeting (ASSET) that used mono clonal 
antibody- coated LNPs to deliver siRNA or mRNA. This 
system relies on a membrane- anchored lipoprotein 
within the LNP that binds to an antibody’s fragment (Fc) 
domain; switching out the variable region enables spe-
cific targeting to different cell subsets199. ASSET was used 
to facilitate LNP binding to extrahepatic cell types for 
the purpose of treating inflammatory bowel disease200. 
These approaches can also be targeted to receptors in 
specific conformations, as demonstrated by recent data 
using ASSET to deliver LNPs to a specific, high- affinity 
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conformation of α4β7 (reF.201). Finally, LNPs covalently 
conjugated to an antibody that binds to plasmalemma 
vesicle- associated protein have been used to target 
lung cells by facilitating specific caveolin- mediated 
endocytosis202, and LNPs conjugated to mannose have 
been used to immunize mice against H1N1203.

The pathway to clinical RNA delivery
Independently of their chemical structure or target-
ing mechanism, nanoparticle- based RNA delivery 
systems are selected for clinical trials using a series of 
preclinical experiments here termed ‘the nanoparti-
cle discovery pipeline’. This pipeline often starts with 
initial high- throughput studies in cell culture. Based on 
these in vitro delivery data, which are used to optimize 
nanoparticle traits, a small number of nanoparticles  
is selected for mouse studies before a smaller number is  
tested in rats and, finally, an even smaller number in 
non- human primates (Fig.  5a). If the nanoparticle 
has a sufficiently safe toxicity profile in non- human 

primates, the delivery system can then be considered 
for subsequent clinical trials.

High- throughput nanoparticle discovery pipeline. 
Although the nanoparticle discovery pipeline has 
identified nanoparticles that deliver RNA to immune  
cells after intramuscular administration21,22 and hepato-
cytes after systemic administration19, opportunities 
do exist to improve the efficiency of the pipeline. For 
example, chemists can synthesize thousands of nano-
particles, but running a multi- thousand- mouse exper-
iment is infeasible. As a result, nanoparticles are first 
evaluated in cell culture, even though delivery in cell 
culture can poorly predict delivery in vivo204. To address 
this problem, DNA barcoding assays to test thousands 
of nanoparticles in vivo have been developed205–208. In 
these assays, LNP-1 is formulated to carry DNA bar-
code 1 and a nucleic acid (such as siRNA or mRNA), 
whereas LNP- N is formulated to carry DNA barcode 
N and the same nucleic acid. After pooling the LNPs 
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together and administering them to mice, cells in which 
functional RNA delivery occurs — such as mRNA- 
mediated protein production99 or siRNA- mediated gene 
silencing135 — are isolated and all N barcodes are quan-
tified. This approach has been used to deliver RNA to 
non- hepatocytes without targeting ligands99,124,136,209–211. 
A second way to improve the nanoparticle discovery 
pipeline is to understand which small animals best 
predict delivery in a non- human primate. Species 
variability can derive from physiologi cal differences 
in basal metabolic rates212, which can affect nanopar-
ticle delivery213–215, or differences in serum lipids216, 
which can affect the colloidal stability, biodistribu-
tion, cellular interactions, toxicity and clearance of the 
resulting nanoparticle coronas217. Additional species 
variability probably derives from the mass of a given  
tissue, relative to the total animal weight, which is not 
conserved (Fig. 5b). For example, mouse218–222 and rat223 
livers are larger, normalized to overall body mass, than 
those of non- human primates224 and humans225–228. These 
differences may increase the effective off- target liver 
delivery in mice and rats, relative to non- human pri-
mates and humans. To address some of these concerns, 
researchers have developed species- agnostic nano-
particle delivery screening (SANDS)229. Using SANDS, 
the authors tested how dozens of LNPs delivered mRNA 
to normal mice, mice with primatized livers, and mice 
with humanized livers. After quantifying the correlation 
between delivery in murine, non- human primate and 
human cells in vivo, and observing species- dependent 
delivery, the authors used RNA sequencing to identify 
genes that might differentiate delivery across species. 
This approach might enable scientists to compare how 
many chemically distinct nanoparticles deliver drugs 
across different species.

Hallmarks of clinically relevant delivery systems. As the  
nanoparticle pipeline continues to improve, next- 
generation delivery vehicles might benefit from recapitu-
lating traits shared among current clinical RNA delivery 
vehicles. For example, as part of its clinical trials, detailed 
pharmacokinetic and clearance studies of patisiran in 
humans have been published230,231. In addition to describ-
ing sustained gene silencing over several months, these 
studies demonstrated that patisiran had consistent mean 
serum concentration and dynamics over 18 months with 
repeated administration. Similarly, the FDA Center for 
Drug Evaluation and Research report on patisiran232 
describes the accepted animal models, toxicology read-
outs and time points used in the approval process. These 
data provide a roadmap for the clinical characterization 
of nanoparticle RNA drugs. More generally, the three 
RNA drug delivery systems approved by the FDA19,20 or 
granted an EUA21 to date tend to share six character-
istics that taken together could constitute hallmarks of 
approved delivery vehicles (Fig. 6).

First, clinical delivery systems tend to be synthesized 
using scalable chemistry that is often biodegradable.  
For example, adding ester bonds, which can degrade 
in water, to ionizable lipids improved LNP safety233; the 
Moderna, Acuitas and Alnylam lipids used in humans 
contain esters (Fig. 2c). Second, the drug delivery system 

should be chemically simple enough to be manufactured 
at human scale; for example, in a hypothetical clinical 
trial injecting 100 kg patients with 6 mg/kg lipid and 
0.3 mg/kg RNA (that is, a lipid:RNA mass ratio of 20:1), 
assuming lipid loss during the synthesis and formulation 
process, nearly 1 g of lipid would need to be synthesized 
per injection. GalNAc conjugates can be synthesized and, 
separately, conjugated to siRNAs or ASOs at human scale  
(that is, with large- batch manufacturing capability that is 
compliant with Current Good Manufacturing Practice). 
We note that clinically approved LNPs have so far included 
four lipid components and have not included targeting 
ligands. Determining the advantages and dis advantages 
of adding targeting ligands in clinical nanoparticles will 
be important234. Third, the drug deli very system must 
have an acceptable ratio of on- target to off- target deli very. 
On- target and off- target delivery should be measured 
both as biodistribution (that is, where does the delivery 
system go?) and as function (that is, where does the pay-
load affect cell function?). As over 95% of RNA can be 
retained in endosomes235, biodistribution is necessary, 
but not sufficient, for functional cytoplasmic RNA deli-
very. Research has also shown that small copy numbers of  
siRNAs are sufficient for gene knockdown in vitro236, 
implying that siRNA acts in a catalytic manner. Fourth, the 
dose required for RNA efficacy must be substantially lower 
than the dose at which toxicity occurs. Ideally, this finding  
is observed in non- human primates, as mice have histo-
rically not been rigorous models of RNA toxicity, for 
yet- to- be- determined reasons. Fifth, the activity of the 
drug should be consistent across many batches, even after 
shipping. To this end, scientists are developing methods of 
stabilizing mRNA drugs; a CureVac mRNA platform was 
active after lyophilization and storage at 40 °C for up to 
6 months and room temperature for 3 years237. However, 
for LNP- encapsulated mRNA, lyophilization might 
decrease stability by promoting lipid crystallization, 
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unless cryoprotectants such as sucrose are used238.  
For example, by adding 10% sucrose, lipid nanoparticles 
complexed with RNA can be lyophilized and stored at 
room temperature for ≥8 months239. Sixth, in most clinical 
settings, re- dosing the RNA drug without losing efficacy  
or safety will be necessary to maintain the biological effect or  
‘dose to effect’. siRNA drugs have been safely re- dosed 
in patients when doses have been given 3 weeks apart19. 
mRNA vaccines have been safely dosed twice, with doses 
either 3 weeks or 4 weeks apart21,22. Re- dosing mRNA 
weekly has been reported to reduce its efficacy in mice240, 
with this effect being driven by a subset of B lymphocytes.

FDA- approved and EMA- approved RNA therapeutics. 
Although the criteria constituting hallmarks of approved 
delivery vehicles make clinically relevant delivery chal-
lenging, the number of successful RNA drugs is increas-
ing. A leading example is the GalNAc–siRNA conjugates, 
which have demonstrated efficacy and safety in patients. 
Like the mRNA- LNP vaccines, GalNAc–siRNA conju-
gates can easily be redesigned to treat different diseases, 
since only the siRNA sequence needs to change. As a 
result, the GalNAc–siRNA conjugates givosiran, which 
treats acute intermittent hepatic porphyria, and luma-
siran, which treats primary hyperoxaluria type 1, have 
been approved by the FDA. Inclisiran, a subcutaneous 
therapeutic used to treat hypercholesterolaemia or mixed 
dyslipidaemia by inhibiting hepatic synthesis of propro-
tein convertase subtilisin–kexin type 9 (PCSK9)17, has 
been approved by the EMA, but not by the FDA (which 
delayed approval owing to issues at a manufacturing 
plant). The GalNAc–siRNA conjugates fitusiran and 
vutrisiran have also been used to generate promising 
clinical data. Fitusiran is used to treat haemophilia A 
or B241 by targeting antithrombin mRNA in the liver241. 
Vutrisiran (see above) is used to treat hATTR amyloido-
sis with polyneuropathy in adults, and generated positive 
top- line results in a phase III study242. Arrowhead, Silence 
Therapeutics and Dicerna are also utilizing GalNAc–
siRNA conjugates in ongoing phase I/II trials for the 
treatment of hepatitis B, hereditary haemochromatosis, 
and primary hyperoxaluria, among other diseases62, and 
Ionis Pharmaceuticals is using GalNAc to deliver ASOs243.  
For all of these drugs, long- term gene silencing medi-
ated by GalNAc conjugates is important for their even-
tual clinical use and to improve patient compliance. 
For example, inclisiran reduces PCSK9 levels for up to 
6 months after administration in humans26.

Conclusions
In the past decade, preclinical and clinical data have 
hinted at the potential for RNA therapies to treat 
disease. However, to fully reach their potential, several 

advances are needed. One advance will be to under-
stand how RNA payloads interact with delivery vehicles  
and how these interactions affect targeting and toler-
ability. For example, emerging evidence suggests that 
nanoparticle tropism can change with RNA payload99. 
This effect may be caused by changes in the nanoparticle 
and therefore the biomolecules with which it interacts in 
the body. Alternatively, payload- dependent tropism may 
be affected by cell state244, since a cell that is optimized 
for the production of exogenous mRNA might not be 
optimized for siRNA- based mRNA silencing. Similarly, 
although LNP interactions with ApoE are known to 
drive liver delivery178, a need remains to identify traf-
ficking mechanisms that promote delivery to extrahepa-
tic tissues; it is feasible that disease- specific trafficking 
could be exploited to enhance extrahepatic delivery. One 
potential approach is to use naturally occurring systems 
such as PEG10, which package mRNA in human cells245 
or extracellular vesicles, which are outside the scope of 
this manuscript and have been reviewed elsewhere246. 
Another related advance is the need to understand 
how chemical modifications made to the RNA payload 
influence RNA stability, avoidance of intracellular 
off- target effects, such as binding based on partial 
complementarity247, or activation of the innate immune 
system248. For example, CureVac recently reported that 
its mRNA vaccine, which utilizes unmodified mRNA, 
did not provide robust protection against COVID-19249. 
Unmodified mRNA programmes led by Translate Bio 
have also been ineffective when nebulized to treat cystic 
fibrosis63 or systemically administered to treat ornithine 
transcarbamylase deficiency64. These findings, along-
side evidence that chemical modification patterns boost 
siRNA and ASO efficacy250 and that the untranslated 
regions of mRNA can be engineered for improved251 or 
cell- type- specific activity252, suggest that mRNA payloads 
can be improved in future therapies. Finally, we need an 
improved understanding of how efficacy and tolerability 
in smaller animal models (such as mice and rats) predict 
efficacy and tolerability in non- human primates and 
humans. Given the major ethical issues with testing many 
potential drug delivery systems in non- human primates, 
one key advance would be the identification of smaller 
animal models that are maximally predictive of delivery 
in non- human primates253. In cancer biology, researchers 
identified genetically engineered mice that more accu-
rately recreated clinical outcomes from human trials 
carried out in parallel254. If we are thereby able to expand 
our understanding of how the RNA drug, drug delivery 
system and body all interact with one another, patients 
will benefit from effective next- generation gene therapies.
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