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Purpose: The goal of this retrospective analysis was to assess how well predictive models could 

determine which patients would develop liver chemistry signals during clinical trials based on 

their pretreatment (baseline) information.

Patients and methods: Based on data from 24 late-stage clinical trials, classification models 

were developed to predict liver chemistry outcomes using baseline information, which included 

demographics, medical history, concomitant medications, and baseline laboratory results.

Results: Predictive models using baseline data predicted which patients would develop liver 

signals during the trials with average validation accuracy around 80%. Baseline levels of 

individual liver chemistry tests were most important for predicting their own elevations dur-

ing the trials. High bilirubin levels at baseline were not uncommon and were associated with 

a high risk of developing biochemical Hy’s law cases. Baseline γ-glutamyltransferase (GGT) 

level appeared to have some predictive value, but did not increase predictability beyond using 

established liver chemistry tests.

Conclusion: It is possible to predict which patients are at a higher risk of developing liver 

chemistry signals using pretreatment (baseline) data. Derived knowledge from such predictions 

may allow proactive and targeted risk management, and the type of analysis described here could 

help determine whether new biomarkers offer improved performance over established ones.
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Introduction
According to the US Food and Drug Administration (FDA) Guidance for Industry on 

Drug Induced Liver Injury (DILI),1 the liver chemistry tests that are primarily evaluated 

in clinical trials are alanine aminotransferase (ALT), aspartate aminotransferase (AST), 

alkaline phosphatase (ALP), and total bilirubin (TBL). ALT and AST are sometimes 

grouped together as aminotransferase (AT). These established liver chemistry tests 

possess unbalanced sensitivity and specificity as indicators for severe DILI. The most 

specific signal is obtained when liver chemistry tests are combined into Hy’s law,1,2 

with elevations of both AT and bilirubin, but the sensitivity of Hy’s law is poor. While 

AT elevation .฀3 × upper limits of normal (ULN) might be the most sensitive signal, 

its specificity is low.1,3 Nevertheless, regular measurements of these liver chemistry 

tests are current practice in clinical trials for detecting DILI, and their elevations above 

certain thresholds, such as multiples of ULN, are liver chemistry signals of DILI as 

defined by the FDA guideline.1

We have shown baseline values of liver chemistry tests were predictive for 

their postbaseline elevations during clinical trials in healthy volunteers treated 
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with placebo.4 The current analysis addresses a follow-up 

question, which is whether the same pattern exists for 

patients treated with investigational drugs in clinical  trials 

in late-stage drug development, especially in Phase III 

clinical trials. The specific goal of the current analysis is 

to explore available clinical data in an attempt to answer 

the following questions: (1) can any baseline biomarkers 

or factors differentiate between patients who developed 

and those who did not develop liver chemistry signals? 

(2) Can any baseline biomarkers or factors differentiate 

between patients who had biochemical Hy’s law versus 

those who did not? (3) Are there different temporal profiles 

of liver chemistry signals in biochemical Hy’s law cases 

(ie, patients with ALT/AST . 3 × ULN, TBL . 2 × ULN, 

and ALP , 2 × ULN)?

Considering the difficulty of inferring causality on 

adverse events from historical clinical trials, it was not 

attempted in this analysis to either assess whether any of 

the liver chemistry signals, including biochemical Hy’s 

law cases, were actually related to the investigational drugs, 

or to conclude if any of the liver chemistry signals were 

actually due to real liver injury. Both questions are beyond 

the purpose of this analysis, which is only to predict and 

examine liver chemistry test results.

Materials and methods
Data
In total, 22 historical Phase III studies (projects A, B, D, 

and E) and two Phase II studies (project C) were included 

from five drug projects (Table 1), all selected based on 

the availability of standard data elements and known 

occurrences of liver chemistry signals. These projects 

targeted different therapy areas: central nervous system 

(project A), cardiovascular (projects B and E), gastro-

intestinal (project C), and respiratory and inflammation 

(project D). Data across the 24 trials were standardized and 

integrated in an Oracle database based on the Study Data 

Tabulation Model (SDTM) from  Clinical Data Interchange 

Table 1 Patient demographics of included clinical trials

Project Study Age Sex, n (%) Race, n (%)

Mean (SD) Median Min Max Male Female White Other

A A.3 68.4 (12.1) 71 20 97 941 (55.4) 758 (44.6) 1555 (91.5) 144 (8.5)

A.4 68.9 (12.9) 71 21 98 1750 (54.8) 1442 (45.2) 2664 (83.5) 528 (16.5)

Total 68.7 (12.6) 71 20 98 2691 (55) 2200 (45) 4219 (86.3) 672 (13.7)

B B.1 57.5 (11.4) 58 18 90 766 (51.5) 721 (48.5) 1298 (87.3) 189 (12.7)

B.2 56.7 (11.2) 57 19 86 1399 (50.6) 1368 (49.4) 2394 (86.5) 373 (13.5)

B.3 57.8 (10.4) 58 20 87 864 (54.9) 709 (45.1) 1247 (79.3) 326 (20.7)

B.4 60.6 (11.1) 61 26 92 312 (54.9) 256 (45.1) 358 (63) 210 (37)

B.5 56.1 (10.5) 56 20 83 301 (54.4) 252 (45.6) 417 (75.4) 136 (24.6)

B.6 57.8 (11.4) 58 20 86 416 (50.7) 405 (49.3) 0 (0) 821 (100)

B.7 56.8 (9.4) 57 29 82 130 (53.9) 111 (46.1) 0 (0) 241 (100)

B.8 62.9 (10.8) 63 29 93 183 (58.3) 131 (41.7) 0 (0) 314 (100)

Total 57.6 (11.1) 58 18 93 4371 (52.5) 3953 (47.5) 5714 (68.6) 2610 (31.4)

C C.1 46.8 (12.7) 47 18 72 963 (63.2) 561 (36.8) 1346 (88.3) 178 (11.7)

C.2 46.2 (12.9) 47 18 73 590 (40.1) 880 (59.9) 1195 (81.3) 275 (18.7)

Total 46.5 (12.8) 47 18 73 1553 (51.9) 1441 (48.1) 2541 (84.9) 453 (15.1)

D D.1 33 (12.4) 32 12 74 232 (40.4) 279 (48.6) 434 (75.6) 140 (24.4)

D.2 34.3 (11.7) 32 18 69 171 (51.8) 159 (48.2) 279 (84.5) 51 (15.5)

D.3 30.3 (12.2) 29 12 76 158 (40.8) 229 (59.2) 329 (85) 58 (15)

Total 32.5 (12.2) 31 12 76 561 (43.5) 667 (51.7) 1042 (80.7) 249 (19.3)

E E.1 70.4 (8.6) 71 29 93 2515 (68.6) 1150 (31.4) 3206 (87.5) 459 (12.5)

E.2 66.2 (10.3) 68 25 93 1132 (38) 1846 (62) 2948 (99) 30 (1)

E.3 66 (10.2) 67 20 101 1109 (37.8) 1823 (62.2) 2910 (99.2) 22 (0.8)

E.4 71.9 (9.2) 73 30 97 3170 (64.9) 1462 (30) 4410 (90.4) 471 (9.6)

E.5 68.1 (10.2) 69.5 24 94 260 (35) 482 (64.9) 680 (91.5) 63 (8.5)

E.6 65.6 (11.4) 66 21 94 507 (42.7) 681 (57.3) 1186 (99.8) 2 (0.2)

E.7 64.6 (13) 67 19 93 960 (46.9) 1081 (52.9) 1923 (94) 122 (6)

E.8 68 (9.7) 69 24 89 1008 (38.6) 1603 (61.4) 2493 (95.5) 118 (4.5)

E.9 67 (9.6) 68 26 92 1012 (36.4) 1760 (63.3) 2606 (93.7) 175 (6.3)

Total 68.1 (10.3) 70 19 101 11673 (49) 11888 (49.9) 22362 (93.9) 1462 (6.1)

Abbreviation: SD, standard deviation.
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Standards Consortium.5  Common data types included 

laboratory results,  demographics, concomitant medica-

tions, adverse events, and medical history. Demographics 

are shown in Table 1.

Two classes of patients, normal and abnormal, were 

defined and predictive models were developed to predict 

the class of individual patients. Normal subjects were those 

with no elevations of AT, ALP, or TBL, while abnormal 

subjects had liver signal elevations above the cutoffs 

derived from the FDA guideline1 at any time point after 

baseline (see Table 2 for frequencies). Those subjects 

whose liver chemistry values were elevated above normal 

ranges, but did not exceed the cutoffs above, were excluded 

from the dataset. Variables used for predicting the patient 

class included  demographics, concomitant medications, 

medical history in addition to all laboratory test results. 

Variables that were considered to be predictive features 

were analyzed further to determine how they differed 

between abnormal and normal subjects. This was done 

by visualizing the differences in distribution between the 

two classes.

Because causality inference, including possible rela-

tion to drug treatment, is outside the scope of this analysis, 

placebo-treated subjects were included in both classes 

together with drug- and/or comparator-treated subjects. 

Another reason for this is that we could not find treatment 

information to separate drug- and placebo-treated subjects 

for all studies, especially not for some very old studies. 

Nevertheless, based on data from studies (13 out of the 

24 studies) that had individual treatment details, either no 

or very few abnormal subjects came from placebo-treated 

arms.

In these trials, normal subjects greatly outnumbered 

abnormal subjects. In order to avoid bias in models towards 

the larger class (ie, the normal subjects), 15 balanced subdata-

sets were created by randomly sampling an equal number of 

Table 2 Liver signal frequencies

Project Study Number of subjects AT ALP TBL Biochemical Hy’s law

Total Normal .3 .5 .8 .1.5 .2 .3 .1.5 .2

A A.1 1699 693 42 14 6 50 21 8 65 21

A.2 3192 1288 80 20 10 76 35 5 111 37 3

Total 4891 1981 122 34 16 126 56 13 176 58 3

B B.1 1487 841 11 1 13 2 1 10 1

B.2 2767 1527 20 10 6 37 11 1 21 2 1

B.3 1573 920 7 1 11 2 11 5

B.4 568 275 6 2

B.5 553 304 2 1 1 7 2 2

B.6 821 574 3 1 1 14 3 1 5 1

B.7 241 160 1 1 1 5 1 2

B.8 314 243 1 1

Total 8324 4844 44 15 9 94 22 3 53 9 1

C C.1 1524 871 13 4 3 22 6 1 13 1

C.2 1470 921 9 5 5 26 11 3 22 6

Total 2994 1792 22 9 8 48 17 4 35 7 0

D D.1 574 393 6 3 1 2 15 4

D.2 330 117 1 13 2 1 5 1

D.3 387 234 10 4 8 3

Total 1291 744 7 3 1 25 6 1 28 8 0

E E.1 3665 1860 57 20 5 130 49 15 184 56 3

E.2 2978 2305 7 19 6 2 13 3

E.3 2932 1069 63 10 2 268 123 37 29 3

E.4 4881 2850 70 25 15 171 66 20 229 60 9

E.5 743 503 3 1 41 20 9 9 3

E.6 1188 684 11 3 2 80 34 2 13 1

E.7 2045 1144 28 8 1 125 54 14 9 3

E.8 2611 1712 10 5 1 152 73 18 24 4

E.9 2781 1840 7 2 1 159 56 16 19 5

Total 23824 13967 256 74 27 1145 481 133 529 138 12

Total 41324 23328 451 135 61 1438 582 154 821 220 16

Note: Data sets with less than 10 abnormal subjects were indicated with italics and were not used in predictive modeling for the corresponding liver signals.

Abbreviations: ALP, alkaline phosphatase; AT, aminotransferase; TBL, total bilirubin.
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subjects from the normal class as in the respective abnormal 

class. The results of each dataset are therefore presented with 

average and standard error across the 15 subdatasets.  Datasets 

that had less than 10 abnormal subjects were discarded due to 

robustness issues, as indicated by italics in Table 2. Prior to 

building a random forest model (see Methods) on a dataset, 

variables with more than 10% missing values in either of 

the two classes were removed in order to limit the impact of 

imputation. The remaining missing values were imputed with 

the imputation function from the random forest package (see 

Methods). All lab values were normalized with the ULN.

Methods
The random forests method,6 available as an R-project library, 

was chosen to develop classification models because of the fol-

lowing features: (1) relative high accuracy among current algo-

rithms with an internal unbiased estimate of the generalization 

error (out-of-bag error), (2) high efficiency on large datasets 

with thousands of input variables, (3) able to rank the variables 

that are important in the classification or regression, (4) an 

effective method for estimating missing data, and (5) can be 

saved for future predictions on other data.

The random forest models were analyzed in two aspects, 

their predictive performance and their variable importance 

(predictive features). The predictive performance was 

assessed using accuracy and receiver-operating characteristic 

(ROC) curves, while variable importance was analyzed using 

the built-in procedure in the random forest method. The vari-

able importance information is a relative measure. It is a score 

that gives the mean decrease in accuracy when the information 

of a variable is destroyed using permutation. The importance 

score should only be interpreted in relation to the rest of the 

variables. A P-value for the most important variable was 

derived in a straightforward fashion by simulating a null 

distribution where the class labels had been  permutated. 

A reasonably correct null distribution for not top-ranked 

 variables is not easily obtained, and consequently a P-value 

was not calculated for those variables. For a top-ranked vari-

able to be evaluated further, the model accuracy must be above 

50%, and the P-value of the variable less than 0.05.

Predictive features of liver signal elevations were evaluated 

on study, project and cross-project level by pooling datasets 

accordingly. For each liver signal type, trends of predictive 

features were evaluated in terms of commonness across 

all studies within a project, as well as commonness across 

projects. The purpose with this procedure was twofold; (1) to 

investigate the degree of predictive generalizability across 

studies, projects, and therapy areas and (2) collect enough 

abnormal subjects to distinguish trends for liver signal types 

of low  incidence (eg, Hy’s law cases). A leave-one-project-out 

(LOPO)  validation approach was used to assess predictive 

performance and predictive features of models across  projects. 

This was done by training a model on four projects and validat-

ing it on the fifth project. When pooling data across projects, 

bias introduced by different population sizes and project-

specific elevation patterns must be considered. To address this 

bias, two different settings of the LOPO validation approach 

were tested: (1) using balanced datasets not stratified by the 

 number of subjects in a project, and (2) using balanced datasets, 

 stratified by the number of subjects in a project.

Results
Frequencies of liver signals observed
The frequencies of liver signals from the five projects, includ-

ing 24 clinical trials, are shown in Table 2. In order of frequency, 

they were ALP elevations .฀1.5 × ULN (3.48%), ALP elevations 

.฀2 × ULN (1.41%), TBL  elevations .฀1.5 × ULN (1.99%), 

ALT or AST (AT) elevations .฀ 3 × ULN (1.09%), TBL 

elevations .฀2 × ULN (0.53%), ALT or AST (AT)  elevations 

.฀5 × ULN (0.33%), ALT or AST (AT) elevations .฀8 × ULN 

(0.15%), and biochemical Hy’s law cases (0.04%). As would 

be expected, the use of higher thresholds resulted in lower 

frequencies of occurrence. The elevations of ALP and bili-

rubin levels were more common than AT elevations.

The elevation rates of ALT (1.09% .฀3 × ULN) and ALP 

(1.41 .฀2 × ULN) in the current analysis were higher than 

those previously reported from late phase clinical trials.7 

This could be due to trial selection criteria. The previous 

report excluded trials in diseases with a risk of underlying 

liver abnormalities in addition to trials in which study com-

pounds had liver or renal toxicity. In our analysis, instead, 

we focused on late phase trails in which study compounds 

produced liver chemistry signals.

Prediction accuracies of random forest 
models
In applying random forest models, our goal was to predict ret-

rospectively which patients would develop liver chemistry sig-

nals during clinical trials based on their pretreatment (baseline) 

information. The accuracies of random forest classification 

models varied across different liver chemistry signals and dif-

ferent projects. The ALP .฀1.5 × ULN and TBL .฀1.5 × ULN 

signals were better predicted, compared to AT .฀3 × ULN. 

On datasets pooled by project, these  models had an average 

accuracy of 79% and 78%, respectively for ALP and TBL 

signals. AT signals (ALT and AST as individual models or 
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merged) had considerable lower accuracy with an average of 

65% on pooled datasets. All model accuracies took advantage 

of the built-in cross-validation mechanism of random forest 

methodology, which is based on out-of-bag error.6

To address directly how applicable the models are across 

projects, a LOPO validation approach was used to assess the 

ability of these types of models in predicting liver signals in 

future studies. The LOPO validation accuracies using bal-

anced and nonstratified datasets (See Methods) are shown in 

Figure 1. When project E was included in the training set, all 

models, including the models to predict AT signals, had a high 

accuracy (both sensitivity and specificity around 80%) when 

tested on a fifth project. When project E was not included in 

the training set, but used as a test set instead, all models had a 

lower accuracy as indicated by a lower area under the curve.

The observed performances, ranging from low accuracy for 

models at individual study level (data not shown), to interme-

diate accuracy for models at individual project level (ie, from 

data pooled by project), and up to the high accuracy for models 

at cross-project level (ie, models in Figure 1), suggest that 

an increase of sample size (in terms of numbers of subjects, 

studies, and projects) will improve future predictions. This 

observation was particularly true in the case of predicting AT 

signals, for which prediction accuracy improved from 65% 

at individual project level to 80% at cross-project level. This 

is also consistent with the observed higher model accuracies 

when project E, which had a large number of patients, was 

included in the training set. Therefore, the predictability of 

baseline lab tests and other baseline patient characteristics for 

liver signals could further improve if more data from other 

projects is included in the training data.

Predictive baseline variables for individual 
liver signals
Out of the variables used for predictions (demographics, 

concomitant medications, medical history, and all laboratory 

results), the important variables for predicting individual 

liver signals were identified based on the variable importance 

scores derived from the random forest classification models 

(see Methods). Table 3 lists variables that were predictive 

across multiple projects as well as those that were specific to 

one project. The predictive variables are listed in the order of 

0
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Figure 1 receiver-operating characteristic curves showing validation accuracy of random forest models across projects. Average true positive rates (sensitivity) were plotted 

against false positive rates (1-specificity) of 15 random subdatasets (see Methods) from each of the five projects (rows) for predicting the three liver signals (columns). 
Standard error is given as error bars. Column headings show the liver signals being predicted, and row headings (A–E) on the right show the projects left out in leave-one-

project-out validation, eg, in row A, models were trained on projects (B–E) and tested on project A.

Abbreviations: ALP, alkaline phosphatase; AT, aminotransferase; TBL, total bilirubin.
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importance from high to low for each type of liver signal. The 

baseline variables that were predictive in multiple projects 

were further examined and their baseline level distributions 

are shown in Figure 2.

The baseline values of ALT and AST were clearly 

important for determining a later AT elevation above 

3 × ULN during treatment in all five projects (Table 3), while 

ALP and γ-glutamyltransferase (GGT) were important in 

only some projects. When investigating the actual values 

(in multiples of ULN) of AT and ALP at baseline, there is a shift 

towards higher levels for abnormal subjects (Figure 2). Also, 

GGT was important in the two projects where it was measured 

(Table 3). The importance of GGT is also supported when AT 

and ALP were removed from the training set. It is clear that 

GGT appears to be correlated with AT, which is consistent with 

previous publications.8,9 Whether it adds any predictive value 

to ALT and AST was further investigated below.

The only clear pattern at baseline for predicting TBL 

elevations above 1.5 × ULN is baseline bilirubin. This is 

a common feature of all studies and all projects. The dis-

tribution of bilirubin values at baseline is shifted towards 

higher levels for abnormal subjects, and the majority 

of the abnormal subjects already had a value above the 

ULN at baseline (Figure 2). Furthermore, AST, ALT, and 

ALP also seemed to shift slightly towards higher levels. 

Three other laboratory tests were ranked high in terms 
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Figure 2 Baseline distribution of lab tests important for predicting post-baseline liver signals. 

Notes: Predicted liver signal is indicated by the heading. The dashed vertical line indicates the upper limits of normal (ULN) of the predictive lab test. Normal subjects are 

indicated in blue, abnormal in pink and the overlay of the two distributions is indicated in purple.

Abbreviations: ALP, alkaline phosphatase; AT, aminotransferase; TBL, total bilirubin.

Table 3 important variables for predicting post-baseline liver 

signals

Liver signals Predictive baseline variables

AT elevation . 3 × ULN ALT*, AST*, GGT, ALP

TBL elevation . 1.5 × ULN TBL*, AST, PPC, CrP, HG

ALP elevation . 1.5 × ULN ALP*, ALT*, AST*, GGT, TBL, CrP, LDH

Note: *Predictive variables common to all projects.

Abbreviations: ALP, alkaline phosphatase; AT, aminotransferase; TBL, total 

bilirubin; ALT, alanine aminotransferase; AST, aspartate aminotransferase; 

GGT, γ-glutamyltransferase; PPC, platelet particle count; CrP, C-reactive protein; 

HG, Mercury; LDH, lactate dehydrogenase.
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of importance (Table 3), two of them, C-reactive protein 

(CRP) and hepatoglobulin, were project-specific and could 

not be confirmed when the model was trained without the 

established liver chemistry tests. The third test, platelet 

particle count, was confirmed by distribution plots (data 

not shown) to have a weak association with TBL elevation 

during treatment.

ALP level at baseline was the most important variable for 

predicting ALP elevations during the trials (Table 3). This 

was a common pattern for every study in all five projects, 

which was also supported by random forest regression models 

(data not shown). The AT levels also seemed to be important 

(although less than ALP) in all projects. TBL, which was 

collected in all studies, was only important in a few studies 

for predicting ALP elevations. Interestingly, baseline GGT 

was collected in only two projects, but for all studies in these 

two projects, it was almost as important as baseline ALP. 

There is a clear shift of the distribution of ALP values in 

abnormal subjects towards higher baseline values (Figure 2). 

A similar shift is seen also in AT and GGT, although not as 

distinct as for ALP. Whether GGT adds any predictive value 

is investigated below. A shift of the bilirubin distribution 

was not observed (not shown). Other potentially predictive 

variables were CRP and lactate dehydrogenase, but both were 

only collected in one study.

Did baseline GGT add any predictive 
value?
It is important to investigate further the importance of baseline 

GGT in the prediction models of AT and ALP elevation. Also, 

considering that GGT was not a routine laboratory test in our 

clinical trials, it is crucial to determine whether GGT adds pre-

dictive value to the routine liver chemistry tests (ie, AT, ALP, 

and TBL). In order to test this, predictive models for liver 

signals were built on studies in projects B and E where GGT 

was measured. The accuracies of predictive  models, which 

included GGT in training sets, were compared to those of 

models that excluded GGT in training sets.  However, GGT 

did not increase predictability on top of already established 

liver chemistry tests (AT, ALP, and TBL), as measured by 

average prediction accuracy.

Predicting biochemical Hy’s law cases 
from baseline
There were only a few biochemical Hy’s law cases 

(Table 1), therefore, data were pooled from all f ive 

 projects to build predictive models. Altogether, 16 subjects 

with the biochemical Hy’s law criteria (AT .฀ 3 × ULN, 

TBL .฀ 2 × ULN, and ALP ,฀ 2 × ULN) were used to 

develop the random forest models. The models had an 

average accuracy of 75%.  Bilirubin was the most important 

laboratory test at baseline for predicting biochemical Hy’s 

law cases (Figure 3). Counts of basophiles, platelets, and 

lymphocytes were also found somewhat  important. Baseline 

value distribution (data not shown) show that biochemi-

cal Hy’s law cases had higher (usually above the normal 

range) bilirubin levels, but lower platelet,  lymphocyte, and 

basophile counts at baseline. Any interpretation of the small 

shifts in these cell counts should be done with caution due 

to the small number of biochemical Hy’s law cases in this 

analysis.

A range of concomitant medications was also identi-

fied by variable importance ranking (Figure 3), but remain 

 inconclusive. Anesthetics, laxatives, psychoanaleptics, 

muscle relaxants, and antianemic preparations were not 

taken by any of the 16 subjects who had biochemical Hy’s 

law, but were taken by some patients with normal liver 

chemistry values (normal subjects). Antithrombotic agents, 

cardiac therapy, and beta-blocking agents were relatively 

more frequent among biochemical Hy’s law cases than 

normal cases. Note that all these observations were made 

from only 16 abnormal subjects, so no statistical or clinical 

significance should be inferred. For instance, the concomi-

tant medications found as potential factors here could be 

simply due to the fact that the majority of biochemical Hy’s 

law cases came from cardiovascular trials, in which most 

patients took those medications for their cardiovascular 

conditions.

Temporal profiles of biochemical Hy’s law cases
The biochemical definition of Hy’s law was used in the 

analysis (AT .฀3 × ULN, TBL .฀2 × ULN, ALP ,฀2 × ULN 

during treatment) and hence these cases are referred to as 

biochemical Hy’s law. The time course of the established liver 

chemistry tests for all 16 biochemical Hy’s law cases was 

examined, and a few types of temporal profiles were identi-

fied (Figure 4), as following: (A) high TBL (.1 × ULN) at 

baseline for almost half of the cases (7 of 16), which stayed 

high or went higher later when AT elevations occurred in the 

same patients; (B) simultaneous elevations of AT and TBL 

(4 of 16); (C) AT elevation preceding TBL elevation (4 of 16); 

and (D) TBL elevation preceding AT elevation (1 of 16), even 

though bilirubin was normal at baseline.

Baseline bilirubin levels, biochemical Hy’s law cases,  

and potential Gilbert’s syndrome

Out of the total of 41,324 patients, 1552 (3.8%) had baseline 

bilirubin levels .฀1 × ULN, and 338 (∼1%) had baseline 
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bilirubin levels .฀1.5 × ULN. Out of the 338 patients with 

baseline bilirubin levels .฀1.5 × ULN, only six of them had 

Gilbert’s syndrome recorded in their medical history, but 

none of the six developed into Hy’s law cases during the 

trials (Figure 5). The small number of recorded Gilbert’s 

syndrome can be partially explained by that fact that Gilbert’s 

syndrome is usually underdiagnosed both in general practice 

and during the screening stage of clinical trials.

Out of the 338 patients, six (1.8%) developed into bio-

chemical Hy’s law cases during the trials, while only nine 

(0.02%) out of 39,772 patients with normal baseline bili-

rubin reached the biochemical Hy’s law criteria  (Figure 5). 

The occurrence of biochemical Hy’s law cases during the 

trials for subjects with baseline bilirubin .฀ 1.5 × ULN 

(1.8%) was 78 times more likely than for those with nor-

mal baseline bilirubin (0.03%). In other words, the relative 

risk of a patient with a high baseline bilirubin developing 

biochemical Hy’s law was 78 times that of patients with 

a normal baseline bilirubin, even though the absolute risk 

(1.8%) was low.

The outcome of liver chemistry signals is also shown in 

Figure 5 for the 16 biochemical Hy’s law cases. In total, 10 of 

the 16 were not shown to have recovered, since they still met 

the biochemical criteria of Hy’s law cases at the last visit. It’s 

interesting to note that three of the six cases (Figure 5) that 

had bilirubin levels above 1.5 × ULN at baseline recovered 

(ie, not meeting biochemical criteria of Hy’s law) in later 

visits, while the majority of (seven of nine) cases that had 

normal bilirubin levels at baseline did not recover (ie, still 

meeting biochemical criteria of Hy’s law at the last visit). 

Also, during the trials, the trajectory of bilirubin changes 

seemed to be independent of ALT changes in those six cases 

(Figure 4), which had bilirubin levels above 1.5 × ULN at 

baseline. With a small number of cases here, however, it 

is not possible to test the statistical significance of these 

 findings. Also, we didn’t obtain sufficient postelevation data 

to fully understand the recovery patterns, such as any actions 

taken on the investigational drug (eg, stopping treatment or 

changing dose).

Discussion
Retrospectively, predictive models using baseline data 

were able to predict which patients would develop liver 

signals during the trials with average validation accuracy 

around 80% (Figure 1). This finding supports an approach 

to identify at baseline what patient subpopulation has a high 

relative risk of developing liver signals during clinical trials. 

We plan to validate this finding with a prospective analysis 

in the future, since the predictability of baseline data will 

further improve when future projects are included in the 

analysis. Based on our finding that the more diverse data 

is pooled for analysis the better predictive models perform, 

we advocate more cross-pharma data sharing and analyses 

to address common questions regarding DILI signals in drug 

developments. Two examples are the Predictive Safety Test-

ing  Consortium10 and the Safer And Faster Evidence-based 
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Translation  Consortium.11 More generalizable knowledge 

could be derived from such collaborations to inform decision 

making in diverse clinical programs.

Specifically, such knowledge might allow more proac-

tive and targeted risk management for individual patients, 

especially when liver injury is a potential risk of the inves-

tigational drug. In addition, such information can make 

cost-effective clinical sampling possible for novel biomarker 

research. Collecting frequent clinical samples from all 

patients in a clinical trial may result in excessive costs and 

burden to patients, but selective sampling on high-risk patient 

groups might limit costs while enabling better safety monitor-

ing and prospective research for novel biomarkers.

High bilirubin levels at baseline were found to be not 

uncommon, highly predictive of subsequent bilirubin eleva-

tions in clinical trials, and associated with higher risk of 

developing biochemical Hy’s law. Whether these high base-

line values came from conjugated (direct) or unconjugated 

(indirect) bilirubin could not be determined because direct 

bilirubin was not routinely measured in these historical trials. 

Although none of the six patients who were documented to 

have Gilbert’s syndrome developed Hy’s law cases during 

the trials (Figure 5), we cannot totally rule out potential 

involvement of Gilbert’s syndrome in the category A profile 

of biochemical Hy’s law (Figure 4), considering that it could 

be underdiagnosed clinically.12,13 In future clinical trials, if 

TBL is elevated at baseline or any time during the trial, the 

sample can be fractionated to test for the contribution of 

direct and indirect bilirubin in the increase in total  bilirubin. 

If there is an elevation of indirect bilirubin, Gilbert’s syn-

drome should be considered, though in that case, bilirubin 

should not rise above 4 mg/dL and AT should not increase. 

If there is a question of drug association and hemolysis is 

ruled out, then it is possible to genotype these patients to 

confirm Gilbert’s syndrome as the source of the increase in 

indirect bilirubin.

Among the four categories of temporal patterns observed 

from the biochemical Hy’s law cases, it is arguable whether 

category A should be even considered for potential Hy’s 

law. However, the current definition of Hy’s law1 doesn’t 

explicitly exclude such cases. While category D is a rare 

case, category C is common and is consistent with the clini-

cal teaching, that transaminase elevation usually precedes 

bilirubin elevations in hepatocellular damage, the hallmark 

of a Hy’s law case. In category B, elevations of transami-

nase and bilirubin cannot be temporally separated, which 

could be due to infrequent lab testing. Whether or not these 

biochemical Hy’s law cases were true DILI cases was not 

determined by this analysis. Nevertheless, it would be helpful 

to clarify in Hy’s law definition: (1) whether a patient that 

had a bilirubin elevation before the ALT elevation should 

be disqualified from being considered a Hy’s law case; 

(2) whether a patient with a bilirubin elevation at baseline 

should be always excluded; and (3) if there should be a upper 

limit of the time interval between the ALT elevation and 

bilirubin elevation.

This study clearly showed an association between high 

baseline levels and subsequent elevation in liver chemistry 

tests, while no patient characteristics, such as  demographics, 

concomitant medications, and medical history, appeared 

to be consistently associated with liver chemistry signals 

across different datasets. This suggested that the baseline 

pretreatment liver condition might be an important factor in 

determining how the liver reacts to the treatment as reflected 

by the liver chemistry tests. Related to this finding, there is 

a common practice to exclude patients from clinical trials 

because of baseline liver test abnormalities or a history of 

liver disease, to which the FDA guideline to the industry1 

(page 10) commented that “there is no well-established 

reason to do this, except perhaps to avoid confusion between 

the previous disease and an effect of the test drug”, and that 

“patients with acute viral, autoimmune, alcoholic, or other 

types of hepatitis are unstable and generally not appropriate 

subjects for clinical trials other than trials of treatments for 

their acute illness.”

The FDA guideline1 (page 10) advised that “patients with 

stable liver disease generally should be included in at least 

some Phase III trials if they are likely to be treated with the 

drug if it is marketed.” The basis for the advice seems to be 

that “preexisting liver disease has not been thought to make 

patients more susceptible to DILI,14,15 but it may be that a 

diminished liver reserve or the ability to recover could make 

the consequences of injury worse.” Consistently, if benign 

conditions like Gilbert’s syndrome can be ruled out, frequent 

high baseline bilirubin levels (.1.5 × ULN) found here could 

be an early sign of liver metabolic or excretory function 

impairment,16 which made those patients more vulnerable to 

developing biochemical Hy’s law cases during clinical trials. 

Whether or not these biochemical Hy’s law cases were true 

DILI cases was not determined by this analysis. Nevertheless, 

any biochemical Hy’s law cases in clinical trials would trigger 

close examination of the case to determine if it is a real Hy’s 

law case by ruling out reasons other than the investigational 

drug, which is not the purpose of this analysis.

A final point related to our current study is the potential 

utility of this approach for assessing new biomarkers. 
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The traditional markers for monitoring drug-induced liver 

injury as described here have been available for over 50 years 

and, although useful, they have limitations. As a result, many 

efforts are now underway to discover and develop improved 

biomarkers for monitoring DILI. Numerous new candidate 

biomarkers have been described ranging from small molecules 

to proteins to microRNAs, and commercial vendors are begin-

ning to market these new biomarkers, often in panels contain-

ing multiple biomarkers. A significant challenge associated 

with these new assays, however, is to determine what added 

value they provide over existing assays. As described here, 

our analysis of GGT formally demonstrates that while results 

using this marker can be informative, there is little advantage 

provided by adding this assay versus using AT and bilirubin 

alone. As new, exploratory biomarkers make their way into 

clinical trials, similar approaches could be taken to assess these 

new biomarkers.

Conclusion
The baseline levels of individual liver chemistry tests were 

most important for predicting their own elevations during the 

trials. High bilirubin levels at baseline were not uncommon 

and were associated with a high risk of developing biochemi-

cal Hy’s law cases. Baseline GGT level appeared to have 

some predictive value, but did not increase predictability 

beyond using established liver chemistry tests.

In conclusion, it is possible to predict which patients are 

at a higher risk of developing liver chemistry signals using 

pretreatment (baseline) data. Derived knowledge from such 

predictions may allow proactive and targeted risk manage-

ment, and the type of analysis described here could help 

determine whether new biomarkers offer improved perfor-

mance over established ones.
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