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Drug-induced Torsades de Pointes is a rare, unpredictable, and life-threatening serious adverse event. It can be caused by both cardiac and
non-cardiac drugs and has become a major issue in novel drug development and for the regulatory authorities. This review describes the
problem, predisposing factors, and the underlying genetic predisposition as it is understood currently. The future potential for pharmaco-
genomic-guided and personalized prescription to prevent drug-induced Torsades de Pointes is discussed. Database searches utilized reports
from www.qtdrugs.org up to January 2012, case reports and articles from www.pubmed.com up to January 2012, and the British National
Formulary edition at www.bnf.org.
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Drug-induced arrhythmia:
pharmacogenomic prescribing?

The problem
Drug-induced ventricular arrhythmias and sudden deaths are un-
common events that occur in an unpredictable or idiosyncratic
fashion. Their epidemiological importance has been poorly under-
stood due to reliance upon spontaneous reports and anecdotal
accounts. In addition, the clinical complexity of retrospective diag-
nosis has hampered the accurate ascertainment of cases and the
attribution of suspicious events to drug therapy.1

The majority of recognized drug-induced ventricular arrhythmia
is related to medications that affect cardiac repolarization and con-
sequently prolong the QT interval causing drug-induced Torsades
de Pointes (DITdP). A recent Phenotype Standardization Project
sponsored by the international Serious Adverse Events Consor-
tium (iSAEC) has aimed to establish a universally acceptable defin-
ition of the phenotype for DITdP to support research into
pharmacogenomic markers of risk.2 The minimum proposed
requirements for a case are as follows:

(i) The DITdP event must have occurred during treatment with a
known QT-prolonging drug, including amiodarone, and/or a
drug suspected as causing QT prolongation.

(ii) Upon drug withdrawal, arrhythmias and symptoms abate and
there is at least partial resolution of QT prolongation that is
clinically significant in the opinion of an arrhythmia specialist.

(iii) Arrhythmia documentation must be reviewed by an appropri-
ately experienced physician or electrophysiologist.

Three clinical sub-phenotypes for suspected DITdP were also
defined to cover all potential presentations:

(i) ‘Classical DITdP’ where the pause-dependent onset of poly-
morphic VT (at least five beats) with associated QT prolonga-
tion is documented with or without resuscitation and/or
subsequent VF and cardiac arrest.

(ii) ‘Probable DITdP’ where polymorphic VT and/or VF have
been documented but the typical onset of TdP has not
been seen. QT prolongation must nonetheless have been
documented.

(iii) ‘Possible DITdP’ where ventricular arrhythmia has not been
documented but a history of unexplained syncope without
vagal or neurological features has been elicited with severe
QT prolongation on the ECG (QTc .550 ms).

Most of the burden of DITdP has been due to anti-arrhythmic drug
therapy. Early studies estimated risks of DITdP in up to 1–3% of
patients receiving quinidine and sotalol, as well as newer drugs
such as ibutilide and dofetilide.3– 5 A multitude of medications
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Table 1 Drugs reported to be associated with QT prolongation and/or Torsades de Pointes with postulated levels of
risk based upon reports and the literature

Drug group High risk: frequent
reports of DITdP

Moderate risk:
reported to cause
DITdP

Low risk: DITdP only likely
if associated with overdose,
other culpable drugs, or
concomitant risk factors

Low risk: associated with QT
prolongation only or rarely
with DITdP usually with
other risk factors

Anti-arrhythmics

Class I Quinidinea, procainamidea,
Disopyramide,
dihydroquinidinea

Flecainide,
propafenone,
pirmenola,
cibenzolinea,
ajmalinea

Class III Sotalol, d-sotalola, dofetilidea,
azimilidea, Ibutilidea,
sematilidea, ersentilidea,
almokalanta, nifekalanta,
terikalanta

Amiodarone Dronedarone

Anti-anginals and
vasodilators

Prenylaminea, terodilinea,
lidoflazinea, bepridila

Vardenafil, ranolazine

Anti-hypertensives Indapamide Nicardipine, isradipine, moexipril/
hydrochlorthiazide

Anti-histamines Terfenadinea, astemizolea Ebastinea Diphenhydramine Mizolastine, bilastine

Serotonin agonists
and antagonists

Cisapridea, ketanserina, Dolasetron Ondansetron, granisetron

Anti-microbials

Macrolides Erythromycin, spiramycin Azithromycin,
clarithromycin

Roxithromycina Telithromycin

Gatifloxacina,
levofloxacin,
Sparfloxacina,
moxifloxacin,
grepafloxacina

Fluoroquinolones Ciprofloxacin Gemifloxacina, ofloxacin,
gatifloxacin,

Anti-fungals Ketoconazole, fluconazole,
itraconazole, voriconazole

Posaconazole

Anti-malarials Halofantrinea Chloroquine Quinine artemether with lumefantrine,

Others Pentamidine Amantadine, cotrimoxazole, Foscarnet, atazanavir,

Trimethoprim, ritonavir Saquinivir, telaprevir

Psychiatric

Tricyclic
anti-depressants

Amitriptyline, nortriptyline,
desipraminea, clomipramine,
imipramine, trimipramine,
doxepin, protriptylinea,

Serotonin
re-uptake
inhibitors

Citalopram Fluoxetine, paroxetine,
sertraline, zimeldinea,
amoxapinea

Venlafaxine, escitalopram

Anti-psychotics Thioridazinea,
chlorpromazine,
haloperidol, droperidola

Pimozide,
mesoridazine,
sertindole

Amisulpiride, ziprasidone,
risperidone

Trifluoperazine,
prochlorperazine,
Paliperidone, quetiapine,
flepentixol, fluphenazine,
zuclopenthixol

Others Maprotiline,trazodone Lithium

Anti-cancer Arsenic trioxide Tacrolimus,
geldanamycina,
vandetanib

Nilotinib, tamoxifen, sunitib,
lapatinib, vinflunine, erubilin,
pazopanib, fingolimob,
capecitabine

Continued
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(Table 1), including non-cardiac drugs, have since been described as
prolonging the QT interval, although only a proportion have been
associated with the development of TdP.6,7 Non-cardiac drugs
culpable for DITdP include anti-psychotics (e.g. thioridazine, chlor-
promazine, and haloperidol),8– 10 anti-histamines (e.g. terfenadine
and astemizole),11,12 anti-infectives (e.g. some macrolides, quino-
lones, imidazole anti-fungals),13 and gastrointestinal drugs (e.g. cisa-
pride and domperidone).13 The estimated incidence of DITdP and
sudden death with non-cardiac drugs is much lower than that for
anti-arrhythmics, 1–10 per 100 000.14–17 Nonetheless, the abso-
lute numbers of individuals exposed to risk are significant, as up
to 3% of all prescriptions world-wide are of potentially
pro-arrhythmic agents.18 DITdP has, therefore, become an

important public health and regulatory issue leading to market
withdrawal of a number of highly prescribed drugs (for example,
thioridazine, astemizole, cisapride, grepafloxacin, terfenadine) and
to restriction of use of several others (for example, droperidol,
haloperidol, sertindole, citalopram).19,20 Unfortunately, there are
proarrhythmic drugs that are essential to medical practice and
cannot be withdrawn: for example, halofantrine for drug-resistant
malaria and macrolide antibiotics for penicillin-sensitive individuals.
Most neuroleptics are associated with at least some risk of QT
prolongation and DITdP but are vital for the treatment of psychot-
ic illnesses. New-drug development has also been complicated by
the need to ensure minimal risk of DITdP.18–21

QT-prolonging agents have also been reported to cause DITdP
in combinations with each other or with other medications affect-
ing drug elimination, such as inhibitors of specific cytochrome P450
isoforms,7,10,13,17,22,23 discussed further below. They are commonly
prescribed to individuals with other predisposing risk factors
known to increase the risk of DITdP (Table 2): female gender,
structural cardiac disease, metabolic abnormalities (hypokalaemia,
hypomagnesaemia, and hypocalcaemia), specific conditions (liver
disease, diabetes mellitus, obesity, and anorexia nervosa), and
ECG abnormalities (bradycardia and conduction disease).24

Indeed, a very common feature of DITdP is acute bradycardia
and/or pauses leading to pause-dependent initiation of tachycardia
(Figure 1).25

Mechanisms and predispositions
The known clinical risk factors for DITdP (Table 2) serve to segre-
gate patients into high- or low-risk subgroups, but do not identify
risk in an individual subject. This unpredictable nature provides one
rationale for pursuing a genomic contribution to risk. Another is
that TdP is an unusual arrhythmia and is also characteristic of
the congenital long-QT syndrome. Finally, small studies have sug-
gested increased susceptibility to QT prolongation among first-
degree relatives of patients with DITdP exposed to QT-prolonging
drug challenge.26 An understanding of the pharmacokinetic and
electrophysiological mechanisms predisposing to DITdP is one
starting point for genetically informed studies of risk.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Continued

Drug group High risk: frequent
reports of DITdP

Moderate risk:
reported to cause
DITdP

Low risk: DITdP only likely
if associated with overdose,
other culpable drugs, or
concomitant risk factors

Low risk: associated with QT
prolongation only or rarely
with DITdP usually with
other risk factors

Others Probucol, domperidone,
cisapride, methadone

Vasopressin,
tizanidine, alfuzosin,
amantadine,
levomethadyla,
lofexidine

Organophosphatesa,
galantamine, solifenacin,
clobutinola, chloral hydrate,
sevoflurane

Felbamatea, fosphenytoin,
degarelix, perflutren,
octreotide, oxytocin,
galantamine, retigabine,
tizanidine, tolterodine,
alfuzosin, isolfurane

Derived from Yap et al.,24 reports from www.qtdrugs.org up to January 2012, case reports from www.pubmed.com up to January 2012, the British National Formulary edition 63
at www.bnf.org. Adapted from ‘Acquired Repolarisation Disorders’.20

aUnlicensed, withdrawn, or suspended in UK.

Table 2 Common clinical risk factors for
drug-induced QT prolongation and Torsades de Pointes

Female gender

Conditions predisposing to heightened QT prolongation and risk of
arrhythmia

Heart disease

Congestive heart failure
Left-ventricular hypertrophy
Hours following conversion of atrial fibrillation to sinus rhythm

Congenital long-QT syndrome (may be clinically unrecognized)

Bradycardia and conduction disease

Increased drug bioavailability

Altered function of specific cytochrome P450 (CYP450) isoforms
(for liver metabolized drugs) Genetic variants

Concomitant inhibitory drugs
Liver disease
Altered renal or liver function (for renally or hepatically excreted
drugs)

Electrolyte imbalance

Hypokalaemia

Hypomagnesaemia

Hypocalcaemia (possible)
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Variable plasma concentrations and
DITdP
For most drugs, the risk of DITdP is plasma concentration-related.
Thus, genetic or other mechanisms that contribute to high-plasma
concentrations for specific drugs are also risk factors for DITdP.
Sotalol and dofetilide are renally excreted, and failure to decrease
the dose in patients with renal dysfunction receiving these drugs
will increase plasma levels and the associated risk of DITdP.3,4 Simi-
larly, overdose with QT prolonging drugs such as sotalol or terfena-
dine,27– 29 leads to high plasma concentrations and increased risk.
Terfenadine is a potent QT-prolonging/IKr blocking compound,
but is ordinarily very rapidly eliminated by metabolism accomplished
by a specific hepatic cytochrome P450, CYP3A4; CYP3A4-mediated
terfenadine metabolism results in a metabolite fexofenadine that
retains the anti-histamine activity in the parent drug, but lacks its
QT-prolonging liability. In patients receiving terfenadine and
strong CYP3A4 inhibitors such as ketoconazole or erythromycin,
risk for DITdP was markedly increased.29– 31 Indeed, it was the
risk for DITdP and the availability of the downstream metabolite
that retains the desired pharmacological effect, but largely lacks
the toxicity that led to terfenadine’s withdrawal from the market.
The biological activity of CYP3A4 and related enzymes (CYP3A5,
CYP3A7) vary substantially among individuals, and genetic variants
mediating this variability in enzymatic activity have been identified.
However, to date, none have been clearly linked to increased risk
for DITdP. The anti-psychotic agent thioridazine is bioinactivated
by metabolism accomplished by a separate enzyme, CYP2D6. In
5–10% of Caucasian and African subjects, CYP2D6 activity is
absent on a genetic basis; these subjects are homozygotes (or com-
pound heterozygotes) for loss-of-function alleles in the gene. In
such poor metabolizers receiving thioridazine, an increased risk
for QT prolongation, and perhaps DITdP, has been described.32

There are exceptions to the general rule that increasing plasma
concentrations confers increased risk for DITdP. For example,

quinidine markedly prolongs action potentials in vitro at low con-
centrations but at higher ones this action potential effect is
blunted. It is thought that block of outward current, notably
outward IKr (discussed subsequently), accounts for action-potential
prolongation at low concentrations while block of peak inward
current, mediated by sodium channels, accounts for action-
potential shortening at higher concentrations. Similarly, the
calcium-channel blocker verapamil is a potent IKr blocker in vitro,
but QT prolongation is virtually never seen since the drug’s
major clinical effect is to block calcium channels and thereby
limit QT prolongation by IKr block.

Electrophysiological mechanisms in
DITdP
Prolongation of the QT interval on the surface electrocardiogram
directly indicates that action potentials in at least some portion of
the ventricle must be prolonged. There is an abundant literature
that has implicated dispersion of action-potential durations in the
ventricle as a key component of QT-interval morphology (e.g.
time from the peak of the T-wave to the end of the T-wave) as
well as susceptibility to TdP and perhaps other arrhythmias. One
school of thought contends that such dispersion is transmural,
with marked prolongation of action-potential durations in the mid-
myocardium (M cell) layer,33 while others maintain that normal
cell-to-cell coupling cannot generate large transmural heterogene-
ities and rather, if heterogeneities exist, they must be apical to
basal.34 In either case, any effort to understand the molecular
and cellular basis of QT-interval prolongation must start with a
consideration of repolarization of Purkinje and ventricular action
potentials.

There are two major repolarizing potassium currents in heart,
IKr and IKs. The two currents are the products of separate genes,
and display different activation and deactivation kinetics and sensi-
tivities to activation by intracellular signalling systems and to block

Figure 1 An example of second-degree heart block (Mobitz type 2) with severe QT prolongation associated with sotalol therapy. A probable
ventricular ectopic occurs (arrowed) with associated severe QT prolongation and a bizarre T-wave followed by a late coupled initiation of
Torsades de Pointes.
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by drugs. Normal cardiac repolarization is accomplished by a time-
dependent increase in net outward current during the action po-
tential, and this, in turn, is generated by increasing outward potas-
sium currents (IKr and IKs) as well as waning inward current through
calcium, and to some extent sodium, channels. This is a first ap-
proximation: other channels contribute directly or indirectly by
contributing inward or outward current to the repolarization
process or by modulating these currents, e.g. by changing diastolic
and systolic intracellular calcium concentration mediated predom-
inantly by altered calcium influx and efflux and thereby affecting
second messenger-related signalling for repolarizing currents.
With unusual exceptions, the common mechanism underlying
action potential and QT prolongation seen in DITdP is drug
block of IKr, the rapid component of the delayed rectifier current
(Figure 2).35 Recent studies have implicated reduced PI3K (phos-
phoinositide 3-kinase) signalling as a modulator of multiple ion cur-
rents to prolong action potentials.36

Importantly, simple action potential prolongation cannot explain
the development of TdP. Experimental studies have suggested that
the heterogeneities of repolarization presented earlier predispose
to unstable re-entry.37 A second possibility is raised by in vitro
studies38 that demonstrate that when action potentials are mark-
edly prolonged, notably in conduction tissue (such as Purkinje
fibers), secondary upstrokes, termed early afterdepolarizations
(EADs), often result. Early afterdepolarizations are generated in
vitro by factors very similar to the risk factors for TdP in vivo: hypo-
kalaemia, bradycardia, drug exposure. Thus, the initiation of TdP,
or perhaps even its maintenance, may be due to this form of ab-
normal automaticity.39

The complexity of cardiac repolarization, and the interaction
among the various components that control it, suggests that alter-
ation in function of individual components, through genetic or
acquired mechanisms (e.g. due to disease) can modulate the QT
interval and, in turn, risk for DITdP. On the other hand, the very
complexity of the system may allow changes in the function of
its individual components to be well-buffered, allowing the entire
repolarization process to display some ‘reserve’. The concept of
‘repolarization reserve’40 thus suggests that lesions in the individual
components of the complex repolarization process may them-
selves be well tolerated, but that multiple lesions (e.g. a
loss-of-function in one component combined with drug block of
a second) may be sufficient to elicit marked QT prolongation
and susceptibility to TdP.41,42

Identification of genetic variants
increasing the risk for DITdP

Congenital long-QT syndrome disease
genes
The accumulation of case series of DITdP identified small numbers
of subjects in whom the diagnosis of congenital long-QT syndrome
was only made after the culprit drug exposure and arrhythmia.43,44

This observation is consistent with the current concept that some
patients with congenital long-QT syndrome display little
QT-interval prolongation at baseline45 but may be more suscep-
tible to developing marked QT interval prolongation upon chal-
lenge with a QT-prolonging drug. The identification of disease
genes for the congenital long-QT syndrome has allowed systematic
surveys of the extent to which unrecognized congenital long-QT
syndrome is a risk factor for DITdP cases.46– 50 On average,
around 10% of subjects with DITdP have rare variants in the con-
genital long-QT syndrome disease genes and thus are thought to
represent incompletely penetrant congenital long-QT syndrome
(Table 3). These studies have focussed on commoner disease
genes for the congenital syndrome and have not surveyed rarer,
newly reported ones.51

Common polymorphisms in ion-channel
genes
The identification of congenital long-QT syndrome disease genes
led to a catalog of genetic variation across these genes. Most var-
iants studied to date have been ‘non-synonymous’ (i.e. they change
an amino acid) and often data relating function of variant channels
to those of wild-type channels can be generated in vitro, e.g. in
heterologous expression systems. One variant, resulting in
S1103Y (i.e. substitution of a tyrosine for a serine at position
1103 in the cardiac sodium channel) is relatively common in
African subjects, with a minor allele frequency of �13%, but
very unusual in subjects of other ethnicities. Functional expression
of S1103Y has demonstrated increased late sodium current espe-
cially under acidotic conditions.52 It has been implicated as a risk
factor for DITdP and other arrhythmias, including sudden infant
death syndrome, in African-Americans.53 A survey of a large collec-
tion of patients with DITdP compared with drug exposed patients

Figure 2 The diagram illustrates the timing of the ventricular
myocyte action potential and the surface ECG with associated
inward and outward currents. Blockade of the rapid rectifier
current (IKr) is the most common mechanism for drug-induced
QT prolongation and Torsades de Pointes.
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with minimal QT interval prolongation and to population controls
implicated the polymorphism resulting in D85N in KCNE1, an im-
portant subunit for IKs function, as a risk factor.54 The allele fre-
quency of D85N was �8% among subjects with DITdP, and 1–
2% in the controls, and this confers an odds ratio of 9–12.

Genome-wide association studies and
DITdP
The genome-wide association studies (GWAS) paradigm searches
for genetic loci, tagged by common single-nucleotide polymorph-
isms, associated with human phenotypes. While most GWAS
studies include thousands, or tens of thousands, of patients,
those focussing on rare adverse drug events do not (by defin-
ition) study very large numbers of cases but nevertheless have
sometimes been successful in identifying associated genomic vari-
ation with only a few (several dozen) cases and controls; the
most notable examples have been immunologically mediated
adverse reactions (such as Stevens– Johnson syndrome or
drug-induced liver injury).55,56 Preliminary reports of a DITdP
GWAS suggest that very large signals are unlikely,57 suggesting
that common variants do not strongly modulate risk across a
population.

The GWAS paradigm has also been used to study variability in
baseline QT interval.58–60 These studies, encompassing tens of
thousands of individuals, have identified multiple loci at which
common variation influences variability in the QT interval. Some
of these are in ion-channel genes, suggesting that rare variants in
these genes can cause diseases like the congenital long-QT syn-
drome, whereas common variants modulate the baseline QT inter-
val. One of the strongest signals to emerge from GWAS analysis of
baseline QT interval is variation at the NOS1AP locus in chromo-
some 1. The gene encodes an ancillary protein for neuronal
nitric oxide synthase, and in vitro and in vivo studies suggest that
it modulates both potassium- and calcium-current function.61

These results are the starting point for the exploration of the
role of QT-modulating genes in DITdP and other traits. NOS1AP
variants have been implicated as modulators of arrhythmia risk in
congenital long-QT syndrome,62,63 and in sudden death in the
general population.64 Most recently, variation in the NOS1AP
locus was strongly associated with a roughly five-fold increased

risk of DITdP among patients in whom amiodarone was the
culprit drug.65

Rare variants in ion-channel genes
Newer approaches to sequencing may enable examination of the
potential role of rare variants in DITdP. One recent study rese-
quenced 79 candidate arrhythmia genes in a small number of sub-
jects with diLQTS (n¼26 Caucasians) and identified a very high
proportion of individuals with rare variants, compared with back-
ground rates observed in control sets such as the 1000
Genomes project or the Exome Sequencing project.51

Identifying the role for genetic variation in DITdP will require
further accumulation of well-characterized cases across different
ethnic groups receiving different drugs. This is the goal of the
iSAEC phenotype standardization project described earlier.2

Approaches to implementation
One goal of studies identifying genomic markers of individuals at
increased risk for unusual drug responses is implementation of
this information in clinical workflow. One approach is to genotype
patients for risk alleles at the time a drug is prescribed. Thus, for
example, genotyping for NOS1AP variants or for KCNE1 D85N
could be undertaken when a prescription for sotalol or amiodar-
one is written. A difficulty with this ‘reactive’ approach is that
results must be turned around very rapidly and reliably. The cum-
bersome nature of this genotyping, the associated costs and time
involved, and the nuanced nature of the advice (‘this patient is at
increased risk for’) all likely contribute to resistance on the part
of practitioners to adopt pharmacogenomic testing for DITdP
and in many other settings. Exceptions at this point to this gener-
alization are in the uptake of HLA testing for use of drugs such as
abacavir or carbamazepine; here, the adverse event is serious and
prospective randomized trials have indicated that genetic testing
can virtually eliminate the adverse event.66,67

An alternate view, propelled by the rapidly decreasing costs of
genotyping and resequencing, is to embed information on clinically
relevant genomic and pharmacogenomic variation into patients’
electronic medical records, and then to develop informatics-based
systems to deliver advice to physicians at the point of care. In this
vision, the record of a patient receiving a prescription for sotalol or
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Table 3 Long QT-syndrome mutations detected in drug-induced Torsades de Pointes cases

Study Wei et al.;49 Sesti et al.;50

Yang et al.48
Paulussen et al. 47 Mank-Seymour et al. 70 Itoh et al. 46 Overall

Ethnicity White White White Japanese

KCNQ1, % 1 (0.5) 0 1 (1.5) 2 (10) 4 (2.2)

KCNH2, % 1 (0.5) 1 (1.5) 0 5 (25) 7 (3.9)

KCNE2, % 3 (1.6) 0 0 0 3 (1.7)

SCN5A, % 3 (1.6) 0 1 (1.5) 1 (5) 5 (2.8)

Total mutation carriers, % 8 (8.7) 1 (3.1) 2 (5.9) 8 (40) 19 (10.7)

Total cases 92 32 34 20 178

The overall frequency of long QT syndrome associated mutations is given in bold.
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amiodarone would be interrogated for variants such as those in
NOS1AP or KCNE1, and if such variants were present, advice
would be delivered to the prescriber that the patient may be at
increased risk. Adopting this ‘preemptive’ approach to pharmaco-
genomic testing has the potential advantage of reducing costs
and of exploiting advances in information technology to minimize
disruption in the workflow of healthcare.

There are significant issues that must be addressed before such a
pre-emptive vision of genotype-based healthcare can start to be
implemented. These include: the strength of evidence associating
genetic variation with variable drug outcomes; the interaction
with non-genetic risk; mechanisms to develop that evidence; the
reliability of genotyping assays; the variable effects of genetic var-
iants across ancestries; development of sophisticated informatics-
capable electronic medical-record systems; and physicians’ and
patients’ attitudes. Pharmacogenetic data may then be able to influ-
ence the clinical management process by either indicating closer
monitoring of the patient while receiving medication, an alteration
of drug dosage, complete avoidance of therapy in that patient or
replacement with a similar drug of lower risk. The experience
with other cardiovascular drugs such as warfarin and clopidogrel
and genetic variation in drug metabolism indicate that much
work is still required to validate promising findings in research
before they may have clinical application.68 Indeed the need for
pharmacogenetic stratification may often be removed by develop-
ing a new safer drug that will eventually replace old such as prasu-
grel for clopidogrel or the novel oral anti-coagulants for warfarin.
This is less likely to be the case for DITdP as risk transcends indi-
vidual medication and indication and drugs from certain therapeut-
ic classes such as anti-psychotics and anti-arrhythmics are
associated, inevitably, with some degree of risk. While some of
the variability in specific drug-associated DITdP risk may relate
to genetic variability in metabolism pathways, this remains to be
demonstrated. Much relates, however, to the downstream effects
of the drug on repolarization reserve, such as IKr blockade.

Pilot studies have therefore been initiated to develop and valid-
ate these approaches, based on multiplexed genotyping in at-risk
patients.69 As the evidence accumulates implicating genomic vari-
ation in DITdP risk, incorporating such risk predictors into pre-
emptive genotyping strategies may become a reality.
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