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Background

In recent years, the study of cell death process has always been the hot topics in biol-

ogy and medicine [1]. With the development of cell biology and molecular biology, 

the mechanism of cell death has gradually been revealed. Programmed cell death was 

induced by many factors, including external factors such as radiation, drugs and viral 

infections, and internal factors such as tumors, autoimmunity and degenerative diseases 

[2]. It has been reported that the cell viability mechanism could be used to stimulate and 

inhibit the apoptosis of tumor cells through the action of the compounds. Changes in 
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the proportion of apoptosis and abnormal behavior of cell proliferation are highly cor-

related with compound concentration and perturbation time, which is one of the key 

factors for the formation and development of tumor cells [3]. With the emergence of 

more canceromics data, it is still a challenge to apply cell activity mechanisms to design 

the best intervention strategy for the duration of the drug action, and to construct a cell 

signaling model to interpret these data and make accurate predictions [4].

Cell perturbation signatures are closely related to the cell viability with the action of 

the compounds. In the study of drug sensitivity and anticancer drug response predic-

tion, we can predict cell phenotypes from different high-coverage molecular data since 

compounds control the expression and function of target proteins or enzymes in the 

apoptotic pathway and induce abnormal cell apoptosis. Because clinical collection of 

experimental data on patient and drug interactions are expensive and impractical, it was 

expected that the preclinical prediction models based on large-scale pharmacogenom-

ics of cancer cell lines could be applied. In recent years, the prediction model scheme 

designed by machine learning method from the perspective of cell viability research 

has made breakthrough progress. Based on the genomic background of each cell lines, 

Michael P. Menden. et al. trained a neural network model to predict its IC50 distribution 

throughout the cell lines [5]. Due to the high-dimensional and nonlinear nature of the 

omics data, Yongcui Wang et al. proposed a Bayesian Neural Network (BNN) method 

based on the general approximation capability of feedforward neural networks to solve 

this problem. Compared with the deep neural network, each model might be relatively 

weak, but the entire mixed model could still perform well in data fitting and prediction 

[6].�ey found that the sensitivity of cancer cells to drug molecules is driven by the char-

acteristics of cells and drugs. Emdadi, A. and Eslahchi, C. proposed a DSPLMF method 

based on a recommendation system. �e gene expression profile, copy number varia-

tions and single nucleotide mutation information were used to calculate the similarity 

of the cell lines, and the chemical structure was used to calculate the similarity of the 

drugs. And the possibility of cell lines being sensitive to drugs was calculated through 

the logical matrix decomposition to discover the effective characteristics of the cell lines 

and drugs [7]. Similarly, Xie et al. used a deep learning model to predict the response 

and efficacy of different anticancer drugs to the breast cancer, and proposed an unsu-

pervised variational autoencoder model geneVAE and rectified junction tree variational 

autoencoder (JTVAE). GeneVAE and JTVAE were found to have strong robustness in 

drug response prediction of breast cancer cell lines and whole cancer cell lines [8]. Su, 

Ran et al. used genetic information, chemical characteristics and biological context with 

the ensemble optimization strategy, and combined with the weighted model META-

GDBP to predict drug response, which found a high correlation between predicted drug 

response and observed drug response [9]. Sharifi-Noghabi Hossein et  al. proposed a 

deep neural network MOLI algorithm, which took somatic mutation, copy number vari-

ation and gene expression as input data and used a combination of multi-omics meth-

ods and clinical data to predict drug response. Compared with the latest single-omics 

and early integrated multi-omics methods, their proposed method had a significant 

improvement in prediction performance [10]. Similarly, Szalai Bence et al. conducted a 

model prediction analysis based on the correlation between the differentially expressed 

genes measured in the cell lines and the drug sensitivity under the action of the the drug 



Page 3 of 18Lu et al. BMC Bioinformatics           (2021) 22:13  

at a specific concentration, and found that the cell line response was correlated with the 

drug concentration and time. However, the model achieved low accuracy and poor fit-

ting in the prediction process because it ignored the non-linear characteristics between 

differentially expressed genes and the drug sensitivity [11].

In this study, we developed the WRFEN-XGBoost algorithm to predict the cell via-

bility under the drug induction using LINCS-L1000 perturbation signatures. Firstly, we 

screened and matched the three data sets, including perturbation transcriptomics signa-

tures (LINCS-L1000), cancer treatment response portal (CTRP) and cancer dependence 

map database (Achilles), and divided them into nine data subsets. Secondly, we pro-

posed a weighted fusion algorithm based on random forest and elastic nets to effectively 

extract non-linear features between differentially expressed genes and cell viability, and 

completed the selection of key genes. �en, we used the XGBoost algorithm to predict 

the cell viability and analyzed the apoptosis response under the action of drug toxicity 

and gene silencing. At the same time, in order to avoid the problem of tedious parameter 

adjustment, we introduced the FEBPSO algorithm into the XGBoost learning algorithm. 

Finally, in order to measure the feasibility of our method, we completed cross-dataset 

validation between compounds and shRNAs at different perturbation times. In addition, 

we validated the drug sensitivity inference on the two benchmark data sets of CCLE and 

NCI60.

Methods

Dataset collection

We used five datasets in this study, including the perturbation transcriptomics signa-

tures (LINCS-L1000), the Cancer �erapeutics Response Portal (CTRP), the Cancer 

Dependence Map Database (Achilles), the Cancer Cell Line Encyclopedia (CCLE) and 

NCI-60 dataset. LINCS adopted L1000 technology to detect the transcriptome expres-

sion data in human cancer cell lines under various external stimulation. �e expression 

of the whole genome was extrapolated by detecting the expression levels of 978 genes 

[12, 13]. �e differentially expressed signatures corresponding to level five in the LINCS 

project were chosen as the training data set, and the data could be obtained from the 

website https ://www.ncbi.nlm.nih.gov/geo/. To analyze the cellular response of the can-

cer cell lines to specific therapeutic drugs, we used the Cancer Treatment Response Por-

tal (CTRP), which covered the link between compound sensitivity and genetic or lineage 

characteristics in 70,000 cancer cell lines. We selected post-quality-control cell viability 

values as a target for our modeling, which could be downloaded from the website https 

://ocg.cance r.gov/progr ams/ctd2/data-porta l [14]. �e third dataset, Cancer Depend-

ence Map Database, could be obtained from the website https ://porta ls.Broad insti tute.

org/achil les and we selected the log fold scores of effects change before and after shRNA 

treatment for our model analysis [15].

To verify the effectiveness of our prediction model, we used the NCI-60 dataset and 

the Cancer Cell Line Encyclopedia (CCLE) as validation datasets in the end, respectively. 

�e NCI-60 dataset could be downloaded from website https ://dtp.cance r.gov/disco 

very_devel opmen t/nci-60, and we set GI50 value as the evaluation standard for drug 

sensitivity [16]. �e last dataset was the CCLE dataset, which consisted of the responses 

of more than 400 cell lines and 24 compounds at eight concentration points, as well as 

https://www.ncbi.nlm.nih.gov/geo/
https://ocg.cancer.gov/programs/ctd2/data-portal
https://ocg.cancer.gov/programs/ctd2/data-portal
https://portals.Broadinstitute.org/achilles
https://portals.Broadinstitute.org/achilles
https://dtp.cancer.gov/discovery_development/nci-60
https://dtp.cancer.gov/discovery_development/nci-60
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the expression data of 18,926 genes for each cell line. �e CCLE dataset could be down-

loaded from the website https ://porta ls.broad insti tute.org/ccle, and we used the active 

area of the drug as the evaluation standard for drug sensitivity [17].

Dataset preprocessing

We first merged the two-stage perturbation screens LINCS-L1000-PhaseI and LINCS-

L1000-PhaseII, and obtained the genome-wide gene expression levels under various 

perturbations in LINCS-L1000. To further analyze the cell viability of different cell lines 

under the compound perturbation, we correlated it with the cell viability data after drug 

treatment in CTRP. We matched the sample instances based on the same cell line and 

the drug identification number provided by the Broad Institute. We referred to (1) to 

match samples with similar concentrations. For different experimental batches, we took 

the average value of the cell viability which was measured in the same concentration.

where Cdose was the concentration value corresponding to the cancer treatment drug in 

CTRP, and Ldose was the concentration value corresponding to the perturbation signa-

tures in LINCS-L1000.

In the course of the research, in order to enable our training model to be tested inde-

pendently on other datasets to verify the effectiveness of the model, we attempted to use 

similar phenotypic information to the cancer treatment response portal CTRP for fur-

ther research. We associated the merged two-stage LINCS-L1000 perturbation screen 

data with the Achilles project, the cancer dependency map database, to investigate the 

effect of single gene knockdown or knockout on apoptosis or proliferation of cancer cells 

under the action of shRNA. Since the number of cell survival after drug treatment or 

shRNA treatment was proportional to the evaluation indicators in the CTRP project or 

the Achilles project, for simplicity, we referred to the cell phenotypic information in the 

above two data sets as cell viability. �e specific process above was shown in Fig. 1.

Model establishment

�e research framework of this study is shown in Fig. 2. In the first place, we completed 

the selection of differentially expressed genes and predictive analysis of cell viability on 

the perturbation transcriptomics signatures LINCS-L1000 and the cancer treatment 

response portal CTRP dataset. To derive the model’s performance across the datasets, 

we then performed independent screen tests on the cancer dependency map database 

Achilles (only the test process of the CTRP-L1000 model on the data set Achilles-L1000 

is presented here, and vice versa). At the same time, we conducted the model validation 

based on the active area value in the Cancer Cell Line Encyclopedia CCLE dataset and 

the drug sensitivity index in the NCI-60 dataset.

Feature extraction based on random forest and elastic net

Random forest, as a typical representative of the Bagging method in ensemble learning, 

can guarantee the improvement of the regression accuracy and search for a large number 

of non-linear features [18]. It is considered as one of the most successful algorithms to 

describe the correlation between key genes and cell phenotype studies [19]. In this study, 

(1)doseDiff = |log10(Cdose) − log10(Ldose)| ≤ 0.2

https://portals.broadinstitute.org/ccle
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the sample space is randomly divided into different parts by bootstrapping method. For 

each node of the decision tree, several genes are randomly selected from the M-dimen-

sional differentially expressed gene space OriDEGs = (g1, g2, g3, , gM) and then form 

the Z-dimensional gene subspace SubGenes = (i1, i2, i3, , iZ) . �en we select the best 

split node and get the result of the sample by the weak decision tree. To obtain the final 

results, prediction of each weak decision tree is averaged. After obtaining the prediction 

results, we used the Pearson correlation coefficient to evaluate the performance of the 

random forest to prepare for the feature-weighted fusion. We arranged each attribute in 

descending order according to the importance of the genes. �e non-contributing genes 

were removed and the number of remaining genes were recorded after sorting.

Elastic network regression, as a combination of ridge regression and lasso regres-

sion, can not only reduce the prediction variance but also achieve the purpose of 

coefficient shrinkage and variable selection [20]. Therefore, we use elastic net 

regression to select the key genes. We used the Pearson correlation on the valida-

tion set to select the appropriate parameter settings for the model. We evaluated the 

Fig. 1 LINCS-L1000 and CTRP, Achilles data association diagram. The process of data association consisted 

of two parts: perturbation signatures and cell phenotypic information. The LINCS-L1000-PhaseI and 

LINCS-L1000-PhaseII were combined and renamed LINCS-L1000. The compound perturbation signatures and 

shRNA perturbation signatures involved in LINCS-L1000 were respectively associated with CTRP and Achilles 

datasets according to relevant conditions, which were named CTRP-L1000 and Achilles-L1000. The datasets 

were divided into CTRP-L1000-3h, CTRP-L1000-6h, CTRP-L1000-24h, Achilles-L1000-96h, Achilles-L1000-120h 

and Achilles-L1000-144h according to different perturbation time. CTRP-L1000-3h, CTRP-L1000-6h, and 

CTRP-L1000-24h were divided into six subsets according to the concentration factor was considered(S2) or 

not considered(S1)
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contribution of each characteristic gene in the model and ranked them in descend-

ing order of gene contribution.

In order to screen out effective differentially expressed genes (DEGs), we used 

a weighted fusion algorithm of the random forest and elastic network (referred as 

WRFEN) to select key genes.

where RFPearson and ENPearson are the Pearson correlation on the validation set using 

random forest and elastic network algorithms. (DEGs)RF
Rank

 and (DEGs)EN
Rank

 are the fea-

ture importance order of the differentially expressed gene DEGs and the number of 

genes selected in the random forest and elastic network algorithm, respectively.

We ranked the key genes in the random forest and elastic network respectively, 

and use (2) to perform weighted summation. Finally, we ranked the result and the 

optimal number of genes in order of gene contribution. The algorithm flowchart was 

shown in Additional file 1: Fig. S1. More precisely, it was a feature selection method 

based on the combination of random forest and elastic net. It calculated the order of 

each gene in two methods and the performance of the two methods in the prediction 

performance (Pearson correlation) was used as the weight. If the prediction perfor-

mance of the model was better, the more weight it occupied in gene ranking and the 

higher the genes in the final ranking.

(2)W (DEGs)Rank =
eRFPearson ∗ (DEGs)RF

Rank
+ eENPearson ∗ (DEGs)EN

Rank

eRFPearson + eENPearson

Fig. 2 Framework diagram of cell viability prediction
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Cell viability prediction algorithm based on XGBoost and FEBPSO

XGBoost is one of the most competitive prediction algorithm in machine learning. It 

improves the integration of the gradient boosting algorithm and has high performance 

in solving both classification and regression problems [21]. We used the XGBoost algo-

rithm to predict cell viability and obtained a prediction score on the leaf node of each 

decision tree based on the differential expression of genes in each sample. Multiple weak 

estimators are constructed one by one through multiple iterations. �e cell viability pre-

diction result is defined as the sum of the prediction scores of all the trees as follows.

where fk(samplei[DEGs]) represents the prediction score on the k-th decision tree for 

the i-th sample on the selected differentially expressed gene set DEGs. K is the num-

ber of decision trees. �en during the t-th iteration of the sample, the model’s predicted 

value ˆcvi can be described as follows:

In this study, in order to improve the prediction accuracy of cell viability and reduce 

the prediction bias, we used the discrete binary particle swarm optimization with flex-

ible weights algorithm FEBPSO to adaptively adjust the parameters of XGBoost. As a 

typical representative of swarm intelligence algorithms, particle swarm optimization can 

effectively solve nonlinear continuous optimization problems [22]. Meanwhile, it solves 

the problem of too long training time due to a large amount of adjustment parameters 

[23]. In the prediction process of FEBPSO-XGBoost, we first initialized the binary parti-

cle swarm, encoded each parameter as a binary number and transformed the parameter 

optimization into a discrete combinatorial optimization problem. During each itera-

tion, the parameters were converted into decimal numbers within the specified range in 

a group of six. At this time, we calculated the Pearson correlation coefficient of each 

individual particle running in XGBoost algorithm and evaluated the fitness of each indi-

vidual particle. For each particle, we compared the current fitness value with the indi-

vidual’s historical best position or global best position. If the current fitness value was 

higher, the historical best position and global best position would be updated with the 

current position of the particle. At the same time, the particle speed and position infor-

mation would be updated to enter the next iteration until the termination condition has 

been met. Finally, the global optimal value and the best parameter settings would be out-

put at this time. �e particle speed is updated as follows:

where vk
i
 represents the velocity vector of particle i during the k-th iteration, xk

i
 repre-

sents the position vector of particle i during the k-th iteration, c1 and c2 are the accelera-

tion constant, r1 , r2 are the random number, w is the inertial weight, xkpbest,i denotes the 

best position of the individual particle and xkgbest denotes the best position of the global 

particle.

(3)ˆcvi =

K∑

k=1

fk(samplei[DEGs])

(4)ˆcvi
(t)

= ˆcvi
(t−1)

+ ft(samplei[DEGs])

(5)vk+1
i = wvki + c1r1(x

k
pbest,i − xki ) + c2r2(x

k
gbest − xki )
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In order to overcome the shortcomings of premature convergence and falling into 

local extremes of particle swarm optimization, we used the formula shown below to 

update the weights [24].

where α1 =
w2e

ψ
−w1e

2ψ

1−e2ψ
 , α2 =

w1−w2e
ψ

1−e2ψ
 , T denotes the maximum number of iterations, k 

is the current number of iterations, w1,w2 are the minimum inertia weight and maximum 

inertia weight greater than zero, respectively.

We used WRFEN for core gene selection and FEBPSO-XGBoost for predictive analy-

sis. �rough this, we formed a complete prediction model and explained the complete 

apoptotic levels observed in cell lines with specific drugs and concentrations.

Results

Based on the latest transcriptomic perturbation screens in LINCS-L1000, we conducted 

the study with the cell viability after the drug treatment in CTRP and the effect change 

score before and after the treatment with shRNA in the Achilles project, respectively. 

From the perspective of gene regulation, we examined the relationship between key 

genes and drug response. At the same time, the FEBPSO-XGBoost machine learning 

algorithm was used to predict the cell viability of different cell lines with the treatment of 

various drugs or shRNA by using the expression levels of characteristic genes under the 

action of different perturbation times and different drug concentrations.

Analysis of feature selection

In the feature selection process, we firstly selected 40 trees for the establishment of a 

random forest, and the results were ranked according to the variable contribution. Sec-

ondly, the ratio of the lasso penalty term was set to 0.1, 0.2,0.5,0.7,0.95,1 and the coef-

ficient penalty term was controlled to from 0.1 to 1.0 by step 0.1 in the elastic net. �e 

best combination of the parameters was decided on the validation set. �en, we sorted 

the variables according to their contribution and deleted the non-contributing genes. 

Finally, we calculated the selected characteristic genes according to Formula (2), and 

obtained the final genes. �e feature genes selected on each subset (subset names were 

shown in Additional file  1: Table  S1) was ranked according to their contribution. We 

listed the number of feature genes selected and the contribution ranking of the fifteen 

key genes in each subset in Additional file 1: Table S1.

Taking the LINCS-L1000-CTRP-24h dataset as an example, we compared the WRFEN 

with the existing traditional methods FTest [25], MI [26], RFFS [27] and LRFS [28], and 

tested it on multiple predictors at the same time (Additional file 1: Fig. S2). �e results 

showed that the results of the gene selection algorithm in this paper were better than the 

existing single algorithms. It could also be observed that the prediction performance of 

the model would be gradually stabilize as the number of selected feature genes increases.

In order to further understand the biological functions performed by the selected 

characteristic genes, we took the subsets of CTRP-L1000-24h and Achilles-L1000-96h 

as examples to perform analysis on the extracted characteristic genes. We could find that 

they were all closely related to the apoptotic process from Fig. 3 and Additional file 1: 

Fig. S3. �e most significantly enriched pathways, r-has-1640170 and GO:0007346, were 

(6)w(k) = α1e
−ψ∗k

T + α2e
ψ∗k

T
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involved in the regulation of cell cycle and apoptosis, which also confirmed that the dif-

ferentially expressed genes selected in this study after treatment with drugs or shRNA 

constituted the pathway of apoptosis.

Prediction and analysis of drug induced cell viability

We updated and adjusted the parameter combination of XGBoost with the binary dis-

crete particle swarm optimization with flexible weight. We set the number of swarm 

particles to be 25, the dimension of the particles to be 48, the maximum number of itera-

tions in CTRP-L1000 and Achilles-L1000 series models to be 50 and 20 respectively, the 

acceleration constants to be 1.5, the maximum and minimum values of inertia weight to 

be 0.8 and 0.4 respectively, the maximum and minimum values of velocity to be 10 and 

-10 respectively and weight updating formula of parameter ψ to be 2.6. �e correlation 

coefficient between the observed value and the predicted value was used as the model 

evaluation index and the fitness function. At the beginning of the particle swarm optimi-

zation algorithm, the population was generated randomly. When the iteration reached a 

certain number, the optimal solution or approximate optimal solution would be found 

with a high probability. �e experimental results of parameter optimization in XGBoost 

by using FEBPSO algorithm were shown in Fig. 4.

Fig. 3 Enrichment analysis of differentially expressed genes in the CTRP-L1000-24h dataset

Fig. 4 Iterative process of FEBPSO in XGBoost algorithm. a CTRP-L1000 Optimization. b Achilles-L1000 

Optimization
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From the above experimental results, it was obvious that the measurement of cell 

viability in CTRP required a long perturbation time. With the increasement of the per-

turbation time, the reliability of the forecast also continued to rise, and the prediction 

results of the 24-h perturbation time was more reliable. When the concentration factor 

was added in the prediction of the CTRP dataset, the prediction accuracy of the model 

could be improved, which indicated that the cell viability depended on the concentra-

tion of the drug to some extent. In the LINCS-L1000 perturbation screens and cancer 

dependency map database Achilles, the model produced by the 96-h perturbation time 

had the most significant prediction effect. It could be seen from the results that the dis-

turbance time was not necessarily as long as possible.

In the optimization process of the CTRP-L1000 series model, when the number of 

iterations reached about 20 rounds, the prediction performance of the model gradually 

tended to be stable. In the process of Achilles-L1000 series model optimization, when 

the number of iterations reached about 8 rounds, the prediction performance of the 

model also gradually tended to be stable. After we used FEBPSO to adjust the param-

eters of the XGBoost model, the optimal parameter combinations and default values of 

each parameter were shown in Table 1 and Additional file 1: Table S2 below. It could be 

seen that this experiment fully proves the effectiveness of the parameter optimization 

algorithm proposed by this research. Compared with the traditional default parameters, 

using the FEBPSO algorithm to optimize the parameters of the XGBoost model had sig-

nificantly improved the accuracy of model prediction.

Independent dataset validation on CTRP-L1000 and Achilles-L1000

In order to verify the reliability of the model predictions, we used independent data-

sets to verify the model’s prediction capabilities. We had implemented the interactive 

test in the CTRP-L1000 series model and the Achilles-L1000 series model. �e Fig.  5 

showed the experimental results. From the figure above, it could be found that the 24-h 

perturbation time was the best in the CTRP-L1000 data set. �e Pearson correlation of 

the model on this data set was 0.8321, which was better than the 3-h and 6-h perturba-

tion times. In the Achilles-L1000 dataset, the 96-h perturbation time was considered to 

be the best. �e performance of the model on this data set is better than the pertur-

bation time of 120 h and 144 h with 0.5893 Pearson correlation. Similarly, in terms of 

independent set validation, the CTRP-L1000-6h model, CTRP-L1000-24h model and 

Table 1 XGBoost parameters and  best parameter combinations (CTRP-L1000 Series 

Model)

Parameter Name L1000-CTRP-3h (S1/S2) L1000-CTRP-6h (S1/S2) L1000-CTRP-24h (S1/S2)

Learning rate 0.0225/0.0476 0.01/0.0225 0.01/0.035

Gamma 0/0.0317 0.1587/0 0/0

Max depth 6/3 5/5 6/5

Min child weight 4/5 3/13 8/10

Subsample 0.5757/0.7957 0.4343/0.5129 0.2457/0.6700

Colsample_bytree 0.1111/0.0794 0.4286/0.1270 0.4762/0.8095

Lambda 0.01/1.1156 1.2103/0.3259 1.4946/0.7997

Iteration times 4174/1476 5841/3460 4968/4492
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Achilles-L1000-96h model was superior to other models in CTRP-L1000-24h screen 

with 0.7416, 0.8321 and 0.7319 Pearson correlation, respectively. �erefore, we further 

confirmed that the drug could achieve excellent predictive performance after a longer 

perturbation time.

Model validation on the NCI60 dataset

In order to validate the model across the NCI60 dataset, we used the GI50 value as the 

indicator of drug sensitivity evaluation and binarized the GI50 value (50% growth inhibi-

tion). In the NCI60 dataset, when the efficacy was within the range of 50% growth inhi-

bition concentration, it corresponded to the GI50 value in the drug sensitivity evaluation 

index. When the efficacy was not effective within the 50% growth inhibition concentra-

tion range, it was recorded as the highest concentration value. In this study, we would 

define the drug concentration difference variable, which portrayed the efficacy of the 

drugs and was calculated as shown in Formula (7). In other words, when the value of the 

drug concentration difference was less than zero, it meant that the drug was an effective 

drug, otherwise it was an ineffective drug.

where, �drug_conc(dr, cl) was the difference in drug concentration when the cell lines 

cl under the treatment of the specific drug dr. drug_sens(dr, cl) was the drug sensitivity 

value GI50 for cl treated by dr. test_max_conc(dr, cl) was the maximum tested drug con-

centration used in the treatment of cell line cl with the drug dr.

In this study, ROC curve and PR curve were used to measure the contribution of the 

algorithm in evaluating the drug effectiveness. By observing the ROC curve shown in 

(7)�drug_conc(dr, cl) = drug_sens(dr, cl) − test_max_conc(dr, cl)

Fig. 5 Independent dataset validation. Using the Achilles-L1000 series model to predict cell viability in 

CTRP-L1000 data and vice versa
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Fig. 6a, we could find that the prediction made by the Achilles-L1000-96h model is the 

most accurate in the LINCS-L1000-NCI60-24h dataset. When using this model for pre-

diction, the AUC area under the ROC curve reached 0.80, the 95% confidence interval 

ranged from 0.769 to 0.822, and the significance level was less than 0.0001. �e other 

two models also had good performance. Among them, the AUC area under the ROC 

curve of the CTRP-L1000-24h model reached 0.76, and the area under the ROC curve of 

the CTRP-L1000-6h model reached 0.74. In the accuracy-recall evaluation curve shown 

in Fig.  6b, the Achilles-L1000-96h model still surpassed other models with the area 

under the curve AUC = 0.94 . �rough the above analysis, we further confirmed that the 

Achilles-L1000-96h model was effective during the prediction process of the LINCS-

L1000-NCI60-24h data set, and it could be further used for the effectiveness testing of 

other drugs.

Furthermore, we also matched and correlated the LINCS-L1000 perturbation screens, 

CTRP data and NCI60 data according to the matching method described above. �e 

drug with the perturbation time of 24 h was recorded as LINCS-L1000-CTRP-NCI60-

24h. In this experiment, we used CTRP-L1000-6h, CTRP-L1000-24h and Achilles-

L1000-96h models to predict the cell viability in three major data sets, which had drugs 

and cell lines in common. We also binarized the drug sensitivity data in NCI60.

Finally, we used the ROC curve and PR curve to discuss and analyze the experimen-

tal results. As shown in Additional file 1: Fig. S4, when we used the Achilles-L1000-96h 

model, the CTRP-L1000-24h model and the CTRP-L1000-6h model to predict the effec-

tiveness of the drug, the area under the ROC curve achieved 0.78, 0.80 and 0.72, respec-

tively, and the area under the PR curve achieved 0.98, 0.98 and 0.97, respectively. �e 

above results indicated the superior prediction performance of the Achilles-L1000-96h 

model and the CTRP-L1000-24h model.

While predicting the effectiveness of the drugs, we required that the predictors used 

in this study could make effective predictions. In addition, whether the appropriate fea-

tures could be selected during the feature selection stage directly affected the predic-

tive performance of the predictors. To do this, we correlated the selected feature genes 

with the effectiveness of the drug. We observed whether the differential expression lev-

els of selected characteristic genes have significantly different expression patterns under 

the action of effective or ineffective drugs. For this reason, we mapped the differential 

Fig. 6 ROC curve and PR curve of the model evaluation on LINCS-L1000-NCI60-24h dataset. a The graph of 

Receiver Operating Characteristic. b The graph of Precision-Recall
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expression levels of the first 15 differentially expressed genes selected in the feature 

selection stage under the treatment of effective drugs and ineffective drugs. Figure  7a 

was the result of the LINCS-L1000-NCI60-24h dataset and Fig. 7b was the result of the 

LINCS-L1000-CTRP-NCI60-24h dataset. By comparison, in the effective drug group, 

we could find that the expression level of differentially expressed genes had significantly 

up-regulated or down-regulated. However, in the ineffective drug group, there was no 

significant change in the expression level of differentially expressed genes. �erefore, we 

further demonstrated the validity of selected feature genes.

So far, we had completed inferring the effectiveness of the drug from the predicted 

cell viability of each model. To further examine whether there was a significant differ-

ence between the effective and ineffective drugs on the cell viability, we used a non-

parametric Mann Whitney test to analyze the cell viability prediction results, as shown 

in Fig.  8. Different models were predicted on LINCS-L1000-NCI60-24h screen and 

LINCS-L1000-CTRP-NCI60-24h screen respectively. �e results found that using the 

Achilles-L1000-96h model to discriminate between effective drugs and ineffective drugs 

had a significant difference in the mean value, the significance levels were P ≤ 0.0001 

and P = 0.0004 , respectively. In addition, similar results were obtained in the use of 

CTRP-L1000-24h model for inferring drug effectiveness, the significance levels were 

P ≤ 0.0001 and P = 0.0002 , respectively.

Model validation on the CCLE dataset

Our model was also verified on CCLE, and we used the active area as the evalua-

tion criterion of drug sensitivity. In order to achieve binarization of drug sensitivity 

on the CCLE data set, we first normalized the active area in CCLE to zero mean. 

Meanwhile, we defined the active area with 0.8 variance above the mean as an effec-

tive drug, and the active area with 0.8 variance below the mean as an ineffective 

drug. We then searched for common combination pairs of cell lines and drugs in the 

Fig. 7 Heat map of the first fifteen genes. a LINCS-L1000-NCI60-24h. b LINCS-L1000-CTRP-NCI60-24h
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LINCS-L1000 perturbation screen. Since there were only a small number of 24 drugs 

in the CCLE data set, we used the PubChem database to find synonymous drugs. 

We marked the data after matching as LINCS-L1000-CCLE. Similarly, we screened 

the drugs corresponding to the perturbation time of 24 h, which were included in 

LINCS-L1000-CCLE-24h. At the same time, we selected the drugs whose concentra-

tion was greater than or equal to 10 micromoles. In addition, when multiple drug 

perturbation signatures were presented, we choose the lowest cell viability value.

We used the ROC curve shown in Additional file  1: Fig. S5(a) and the PR curve 

shown in Additional file  1: Fig. S5(b) to measure the results of the algorithm. By 

observing the experimental results, we found that when we used the drug sensitivity 

data in CCLE to evaluate the predicted cell viability values, the Achilles-L1000-96h 

model also showed excellent performance in cross-dataset validation. When we used 

Achilles-L1000-96h model to predict the effectiveness of the drug, the area under 

the ROC curve achieved 0.84 and the area under the PR curve achieved 0.88. The 

differential expression on effective and ineffective drugs was shown in Additional 

file  1: Fig. S6. We could see that the LINCS-L1000-CCLE-24h dataset still showed 

the same gene expression pattern as the LINCS-L1000-NCI60-24h dataset. That 

was to say, the differentially expressed genes in the effective drug group were signifi-

cantly up-regulated and down-regulated.

Fig. 8 Box plot. comparison of the effective drug group and the ineffective drug group
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Discussion

In order to evaluate the effectiveness of the algorithm in this paper, we analyzed and 

compared our algorithm with other existing methods including PCA-Lasso, PCA-SVR, 

FTest-RF, MI-KNN, VAE [8] and DAE-NN [29]. �e Principal Components Analysis 

(PCA), Ftest and Mutual Information (MI) were used to extract the features, and the 

Lasso, Support Vector Regression (SVR), Random Forest (RF) and k-nearest neighbor 

(KNN) were used for the final prediction. VAE and DAE-NN are proposed by the recent 

literature in drug response prediction. VAE used the variational autoencoder to predict 

the response of different anti-cancer drugs. DAE-NN used a deep autoencoder to extract 

the features and the neural network was for the final prediction.

In the present paper, we used the Pearson correlation coefficient, coefficient of deter-

mination ( R2 ) and mean squared error of the predicted and actual values to measure the 

prediction performance of the model. In the training process of VAE and DAE-NN algo-

rithms, we used grid search to select the best training parameters for the learning rate 

[0.001, 0.005, 0.01, 0.05, 0.1] and iteration period [30, 90, 150, 220, 300]. �e detailed 

experimental results of these seven algorithms were shown in Additional file 1: Tables 

S3–S5. Taking the CTRP-L1000-24h(S1) dataset as an example, the predicted results 

were shown in Table 2. Our algorithm outperformed other algorithms with the maxi-

mum correlation coefficient 0.8321, the maximum coefficient of determination 0.6922 

and the minimum mean squared error 0.025.

Compared with PCA-Lasso, PCA-SVR, FTest-RF, MI-KNN,VAE and DAE-NN algo-

rithms, Pearson correlation coefficient of our method increased by 5.50%, 5.33%, 

4.77%, 3.32%, 0.39%, 3.59% and R2 increased by 11.45%, 11.45%, 9.80%, 7.92%, 1.45% 

and 12.12%. In terms of the mean squared error, our method decreased from 3.85% to 

21.88% comparing with the other six algorithms above. �e experimental results showed 

that the prediction performance of the proposed algorithm have been further improved. 

For the CTRP-1000-3h, CTRP-L1000-6h, CTRP-L1000-24h, Achilles-L1000-96h, Achil-

les-L1000-120h and Achilles-L1000-144h datasets , the evaluation results of other mod-

els were shown in Additional file 1: Tables S3–S5.

In addition to reliably and effectively inferring cell viability through the predictive 

models, we also needed to correlate our results with the literature on cell viability, as 

shown in Fig. 9. As a member of tumor necrosis factor receptor superfamily, high affinity 

nerve growth factor receptor p75NTR could induce apoptosis and inhibit the growth of 

Table 2 Comparison of  the  algorithm in  this paper with  other algorithms (Taking 

the CTRP-L1000-24h(S1) dataset as an example)

Methods Pearson Correlation R
2 Mean 

Squared 
Error

Our model 0.8321 0.6922 0.025

PCA-Lasso 0.7887 0.6211 0.031

PCA-SVR 0.7900 0.6211 0.031

FTest-RF 0.7942 0.6304 0.030

MI-KNN 0.8054 0.6414 0.030

VAE 0.8289 0.6823 0.026

DAE-NN 0.8033 0.6174 0.032
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prostate epithelial cells. Azacitidine-mediated p75NTR had anti-tumor effects on andro-

gen-independent prostate cancer cells 22Rv1 and PC3 [30]. After Bortezomib treatment, 

the cells with suppressed C/EBPbeta levels showed delayed autophagy activation. �e 

growth of the PC3 cells and xenografts has been decreased with the C/EBbeta gene 

knockdown, which could make PC3 cells sensitive to Bortezomib [31]. Another study 

has tested the effects on three related human glioma cell lines treated by the new epider-

mal growth factor receptor (EGFR) tyrosine kinase Tyrphostin-AG-1478, and found that 

AG-1478 was the relatively specific inhibitor of truncated EGFR. �ey had important 

medical significance because the truncated EGFR occurred frequently in glioblastoma, 

breast, lung and ovarian cancer [32].

Conclusions

In this paper, we managed to predict the drug-induced cell viability from the dif-

ferential gene expression data through the WRFEN-XGBoost algorithm. �e 

study of cell phenotype was firstly correlated with the drugs and shRNA perturba-

tion signatures. In addition, we have completed the selection of key genes based on 

the WRFEN algorithm and proposed a novel FEBPSO-XGBoost machine learning 

method to predict the cell viability. �rough the connection between cell viability and 

Fig. 9 The predicted cell viability for different drugs and cell lines. a–c showed the cell viability of the drugs 

Vorinostat, Bardoxolone-methyl and Tyrphostin-AG-1478 in different cell lines. d–f showed the cell viability of 

the cell lines HUES3, MCF7, PC3 in different drugs
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pharmacogenomics, the establishment of the prediction model trained from pertur-

bation transcriptomics signatures, cell phenotype and drug response data has been 

completed. At the same time, the robustness and effectiveness of our proposed mod-

eling strategy in drug sensitivity analysis were verified on CCLE and NCI-60 datasets. 

�is study could provide help for the biomedical researchers in drug screening and 

promote the analysis of anticancer drugs in pharmacogenomics.

However, in the clinical application of cancer cell lines and anticancer therapies, it 

is urgent to identify the biomarkers that can distinguish between drug-sensitive cell 

lines and drug-resistant cell lines. Firstly, besides gene expression, drug characteris-

tics can be integrated into the model to achieve better accuracy. Secondly, a more 

appropriate supervised machine learning algorithm is hoped to be designed to reveal 

the sensitivity between cancer cell lines and drug treatment. Finally, we will continue 

to reveal new biomarkers that are sensitive and resistant to the cancertherapies. It 

provides more opportunities for exploring the biological behavior of cancer cell lines 

at the cellular level, and it is also the direction of our future research.
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