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Abstract

Magnetic nanoparticles have been investigated for biomedical applications

for more than 30 years. In medicine they are used for several approaches

such as magnetic cell separation or magnetic resonance imaging (MRI). The

development of biocompatible nanosized drug delivery systems for specific

targeting of therapeutics is the focus of medical research, especially for the

treatment of cancer and diseases of the vascular system. In an experimental

cancer model, we performed targeted drug delivery and used magnetic iron

oxide nanoparticles, bound to a chemotherapeutic agent, which were attracted

to an experimental tumour in rabbits by an external magnetic field (magnetic

drug targeting). Complete tumour remission could be achieved. An important

advantage of these carriers is the possibility for detecting these nanoparticles

after treatment with common imaging techniques (i.e. x-ray-tomography,

magnetorelaxometry, magnetic resonance imaging), which can be correlated to

histology.

1. Introduction

Magnetic nanoparticles may open up a wide field of possible applications in medicine.

Up to now, magnetic nanoparticles have been used in medicine for magnetic separation

techniques [1–9] as contrast agents in magnetic resonance imaging [10–13], for local

hyperthermia [14–17] or as magnetic targetable carriers for several drug delivery

systems [18–21].

For application in biological organisms, these particles have to be biocompatible. It

could be shown that, generally, starch-coated magnetic iron oxide nanoparticles are tolerated

quite well [22, 23]. Because of this, and because of the fact that these kinds of particles

are produced as commercial contrast agents for MRI investigations (Combidex®, Resovist®,
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Figure 1. Chemotherapeutic treatment with magnetic drug targeting on tumour-bearing rabbits.

Complete tumour remission could be achieved with only 20% of the regular systemic dose: therapy

group, n = 5; control group, n = 2 [28].

Endorem®, Sinerem®), iron oxide nanoparticles seem to be a convenient carrier material for

drug targeting systems. This class of particles show superparamagnetic properties and can be

attracted by an external magnetic field. Furthermore, nanosized particles are small enough

to prevent occlusions of the vascular system, especially the capillaries. The required size

of the particles probably has to be smaller than 5 µm [24]. On the other hand, magnetic

nanoparticles should not be too small, because of their attractability by an external magnetic

field gradient. Investigations of the size-dependent body distribution of these particles have

shown that particles larger than 100 nm in diameter are intercepted more by cells of the MPS

(mononuclear phagocyte system) than smaller particles [25]. After intravenous application (the

regular administration of parenteralia), the magnetic particles can be found in macrophages of

the liver, spleen and lung, because of the so-called first-pass effect [26, 27].

To avoid this effect, we performed our approach for local cancer chemotherapy with starch-

coated iron oxide nanoparticles, dispersed in deionized water, with intra-arterial application

into the tumour-supplying artery. The magnetic particles were coupled to the chemotherapeutic

agent mitoxantrone and attracted and held in the tumour region by a strong external magnetic

field gradient after application (magnetic drug targeting). In previous studies, it could be

shown that this drug delivery system can cause complete tumuor remission in tumour-bearing

rabbits [28–31]. In addition to that, the applied dose of the drug could be diminished to 20% of

the regular systemic dose. Tumour remission was achieved without any negative side-effects,

which are common after regular cancer chemotherapy (figure 1). These results indicate the

great advantage of this magnetically guided drug delivery system, which is caused by the

reduction of the given chemotherapeutic agent and the focused application protecting healthy

tissue [21, 32–35].

Investigations of the distribution of the particles showed a high accumulation of magnetic

particles in the tumuor region, in contrast to other body compartments (i.e. liver or spleen).

This was performed by measurements of 59Fe-nanoparticles, x-ray tomography pictures and

magnetorelaxometry of the relaxation signal by superconducting quantum interference detector

(SQUID) sensors in correspondence to histological examinations [27, 36, 37].
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tumour

Figure 2. Radioactive 59Fe-distribution 60 min after intra-arterial 59Fe-ferrofluid application;

i.a. 59Fe-ferrofluids with external magnetic field (n = 2); i.a. 59Fe-ferrofluids without external

magnetic field (n = 1); ts. = tumor side [27].

Figure 3. X-ray picture of a VX2-tumour tissue

sample embedded in paraffin after magnetic drug

targeting (MDT). The nanoparticles are visible in

the vascular system of the tumour [36].

Investigations concerning the particle distribution showed a high accumulation of the

magnetic particles in the tumour region in contrast to other body compartments, i.e. liver or

spleen. In experiments using radioactive 59Fe-nanoparticles, 114 times more activity could be

detected in the tumour region after magnetic drug targeting compared to the control without a

magnetic field [27] (figure 2).

X-ray-tomography pictures show the iron oxide nanoparticles after magnetic drug targeting

in the vascular system of the tumour (figure 3).

The corresponding histological cross sections show the nanoparticles after intra-arterial

application in the vascular system of the tumour (figure 4). SQUID-based magnetorelaxometry
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Figure 4. (a) VX2-tumour tissue after magnetic drug targeting embedded in paraffin. (b) Synoptic

picture of the corresponding histological slide stained with Prussian blue. The nanoparticles are

visible as blue pigment in the vessels of the tumour [36].

Figure 5. (a) Magnetic field distribution of magnetic nanoparticle relaxation after magnetization.

The centre of the circular-shaped field distribution corresponds to the tumour position. (b) Single

channel relaxation signal of the magnetic nanoparticles [37].

measurements of the relaxation signal of the nanoparticles proved non-invasively that a high

amount of magnetic nanoparticles (∼85%) was accumulated in the tumour region, together

with a much smaller accumulation in the liver region [37] (figure 5). The observed slow time

decay of the magnetization (figure 5(b)) was attributed to Néel relaxation, indicating that the

particles in the tumour were immobilized.
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Figure 6. Proof of DNA-intercalated mitoxantrone in cultivated VX2 squamous cell carcinoma cells

by fluorescence microscopy. Left side: phase contrast microscopy pictures of the cell culture. Right

side: fluorescence pictures of the same areas; arrows: tumor cell conglomerates; magnification:

200× [38].

Additionally the distribution of the chemotherapeutic drug which is the therapeutic agent

in this cancer treatment was investigated [27].

In vitro studies with fluorescence labelling of tumour cell culture have shown the direct

binding of mitoxantrone to the cell nucleus, the required place of drug interaction [38].

Comparing different application modes, high pressure liquid chromatography analysis

of the chemotherapeutic agent after magnetic drug targeting proved a 75 times higher

concentration of the chemotherapeutic agent in the tumour region compared to the regular

systemic administration [27, 39, 40].

In VX2 tumor cell culture incubated with mitoxantrone for one hour, only DNA-coupled

mitoxantrone in the tumour cells was fluorescence positive (figure 6). Fibroblast-like cells in

the cell culture do not show any fluorescence [38].

Despite in vitro and animal experiments, it is necessary that nanoparticles for in vivo

applications in human patients need to be manufactured and analysed under the guidelines of

pharmaceutical regulations. This is realized for commercially available iron oxide nanoparticle

suspensions used as contrast agent in MRI. But these nanoparticle suspensions have to be

administered strictly intravenously and highly diluted in deionized water to avoid embolization

caused by the loss of the colloidal stability and the formation of bigger conglomerates [24]. The

coating and the charge state of nanoparticle suspensions are responsible for their compatibility

in the biological organism [26, 41]. With the application of an external magnetic field after

intra-arterial drug delivery, a local accumulation of nanoparticles occurs with a potential

increase in conglomerate formation and the risk of vessel occlusions.

Therefore we investigated the colloidal stability of the iron oxide nanoparticles used in

our experiments under conditions of different physiological and injectable solutions by particle

sizing, measurements of zeta potential, electron microscopy and with an in vitro artery model.
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Figure 7. Schematic drawing of the

artery model: 1, top of the pole shoe;

2, reservoir of the circulating fluid; 3,

pump; 4, circulation; 5, artery; 6, buffer.

2. Material and methods

2.1. Magnetic nanoparticles

The nanoparticles were manufactured by Chemicell (Berlin, Germany) and consist of iron

oxides covered by phosphated starch polymers for colloidal stabilization in deionized water.

2.2. Magnetic field

For the experiments, we used a powerful electromagnet with a maximum magnetic field

strength of 1.7 T and a magnetic field gradient of 10 T m−1.

2.3. Mitoxantrone (MTX)

The chemotherapeutic agent that was used, coupled to the magnetic nanoparticles, is the

anthracendion derivative MTX-HCL (Mitoxantrone, Novantron®; Lederle, Wyeth-Pharma,

Germany). It inhibits DNA and RNA syntheses and causes DNA-strand breaks by intercalation.

2.4. Colloidal stability

2.4.1. Particle sizing. Particle suspension were diluted 1:100 with distilled water. The

size was determined with dynamic laser scattering (DLS, Nicomp 380 ZLS, Santa Barbara,

CA, USA). Further DLS investigations were performed with the same dilution in 0.9%

NaCl solution, Ringer buffer and physiological electrolyte solution (Tutofosin) to simulate

physiological or probable injection parameters.

2.4.2. Zeta potential. Zeta-potential measurements were performed with the Zeta option of

the DLS equipment. Dilutions were the same compared to DLS measurements. Additional

to the above-mentioned conditions, the zeta potential was determined in electrolyte-albumine

solution (bovine serum albumine, Sigma, Germany) as a potential serum substitute.

2.4.3. Electron microscopy. Ferrofluids in different solutions (distilled water, 0.9% NaCl)

were fixed in 2% Agar (Merck, Darmstadt, Germany). After dehydration with ethanol (Merck)

and acetone, the samples were embedded in Epon (Epoxyd resin, Roth, Karlsruhe, Germany).

2.4.4. Artery model. For this model, we used freshly isolated bovine femoral arteries. The

artery is mounted in a tempered circuit (figure 7). As a flow medium, we used Krebs–Ringer
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Table 1. Volume-weighted size determination by DLS under different dilution conditions.

Different batches of Medium particle size in Medium particle size in

nanoparticle suspensions H2O 0.9% NaCl

1 125.0 nm (45.5%) 207.6 nm (4.2%)

345.4 nm (54.5%) 1897.4 nm (95.8%)

2 80.0 nm (80.4%) 137.2 nm (5.3%)

207.3 nm (19.6%) 2023.3 nm (94.7%)

3 81.5 nm (65.9%) 107.1 nm (7.8%)

280.3 nm (34.1%) 2958.7 nm (92.2%)

4 76.3 nm (86.4%) 77.8 nm (7.4%)

188.8 nm (13.6%) 6191.3 nm (92.6%)

5 178.4 nm (57.1%) 110.9 nm (14.2%)

471.9 nm (42.9%) 1279.2 nm (85.8%)

Table 2. Zeta-potential determinations of different nanoparticle suspensions corresponding to

table 1.

Different produced

nanoparticle suspensions H2O 0.9% NaCl Tutofosin Tutofosin/BSA

1 −28.79 mV −1.77 mV 0.58 mV 1.22 mV

2 −34.47 mV −2.65 mV 0.43 mV Not measured

3 −28.07 mV 0.32 mV −0.22 mV −0.34 mV

4 −38.29 mV −0.73 mV −0.83 mV 0.23 mV

5 −28.59 mV −3.16 mV 1.01 mV 0.90 mV

buffer pH 7.4 substituted with 0.625% albumine. The artery was placed near the tip of the

electromagnet. Nanoparticle suspensions were applied by a side inlet under pulsatile flow.

Using a pump, it is possible to simulate different flow velocities and different vessel

pressures.

After the magnetization procedure, the outflow was collected. Differences in particle

agglomerate diameter were measured by DLS.

3. Results

We detected an increasing instability of the particle suspension in the presence of physiological

salt solutions in the size determination by DLS (table 1) and with zeta-potential measurements

(table 2) in comparison to measurements in deionized water.

The results could be confirmed by electron microscopy pictures of the particles suspended

in deionized water versus physiological 0.9% NaCl (figure 8).

The same phenomenon was observed in the artery model. The decrease in the zeta

potential in the physiological surrounding (Krebs–Ringer buffer pH 7.4 substituted with

0.625% albumine), combined with the applied magnetic field, leads to total decomposition

of the nanoparticle suspension (figure 9).

4. Conclusions and discussion

Investigations of the distribution of the magnetic nanoparticles after intra-arterial infusion and

magnetic targeting showed that this drug delivery system is suitable for attracting magnetic

iron oxide particles to a respective body compartment (i.e. tumour). This was examined after
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Figure 8. Electron microscopy of the same nanoparticle suspension in deionized water (a) and in

0.9% NaCl (b).

Figure 9. Artery model: a precipitate

of nanoparticles in the circuit after the

application of magnetic force at the outlet of

the artery (a).

an extensive manufacturing procedure with radioactive 59Fe-particles. In a pilot study, we

could show that this is also possible non-invasively with common imaging techniques like x-ray

tomography and magnetorelaxometry. The results of these imaging techniques were confirmed

by histological cross sections. This allows the control of a successful particle accumulation

directly after treatment with this form of local chemotherapy.

HPLC studies of tissue samples proved that the distribution of the chemotherapeutic

agent follows distribution of the applied nanoparticles and excludes the assumption that the

chemotherapeutic agent desorbs too early before the drug carrier reaches the site of action (i.e

tumour region). In addition to that, we demonstrated the direct binding of the chemotherapeutic

agent in tumour cells with fluorescence detection of the intercalated DNA.

The efficacy of this treatment was only observed after intra-arterial application of the

nanoparticles and not after intravenous particle administration [27].
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Due to the intra-arterial application of magnetic nanoparticle suspensions, other facts have

to be taken into consideration. All intra-arterial interventions are associated with a potential

thrombotic risk, more than after intravenous application. In previous studies, we already

had indications for a partial defragmentation of ferrofluid suspensions in vivo due to particle

enrichment in the lung [27]. Two possible mechanisms for a thrombotic event after intra-arterial

delivery are imaginable. First, the surface of the particle suspension causes a direct activation

of the thrombotic system. This mechanism is also present after intravenous application and

depends on the interaction of the particle surface with the activators of the coagulation cascade.

Second, instability of particle solution with the formation of greater agglomerates may lead

to an occlusion of capillaries proximal to the application side and a subsequent occlusion of the

artery, which may lead to life-threatening situations. This mechanism is much more relevant

after intra-arterial application. Therefore nanoparticle suspensions for tumour treatment in

humans have to be stable under physiological conditions.

To achieve pharmaceutically acceptable drug delivery systems for this promising

therapeutic concept, further modifications of the particle surface and colloidal stability are

necessary to apply this cancer therapy in human patients.
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