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Abstract

Increased R & D spending and high failure rates exist in drug development, due in part to 

inadequate prediction of drug metabolism and its consequences in the human body. Hence, there is 

a need for computational methods to supplement and complement current biological assessment 

strategies. In this review, we provide an overview of drug metabolism in pharmacology, and 

discuss the current in vitro and in vivo strategies for assessing drug metabolism in preclinical drug 

development. We highlight computational tools available to the scientific community for the in 

silico prediction of drug metabolism, and examine how these tools have been implemented to 

produce drug-target signatures relevant to metabolic routes. Computational workflows that assess 

drug metabolism and its toxicological and pharmacokinetic effects, such as by applying the 

adverse outcome pathway framework for risk assessment, may improve the efficiency and speed of 

preclinical drug development.
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I. INTRODUCTION

Small-molecule drug development remains an economically risky endeavor. New drug 

development spending is constantly increasing, currently at over $1.5 billion per drug [1] 

with a timeline spanning 10–15 years depending upon the complexity of the disease and 

pipeline [2]. Unfortunately, the failure rate is extremely high, reaching above 90% [3]. Drugs 
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can fail at various stages of the drug development pipeline spanning the preclinical and 

clinical phases. Inaccurate and imprecise prediction of drug metabolism can play a major 

role in such failures.

In the last decade, there has been significant progress in large-scale in vitro drug screening 

technologies such as automated cell proliferation assays and enzyme binding and kinetics [4, 

5]. In vivo automated drug screening such as the zebrafish assay are also gaining visibility 

[6]. However, such methods are focused on drug efficacy measured by a change in pathology 

(e.g. halting tumor cell growth) while lacking other relevant physiologic parameters. In the 

preclinical phase, drug absorption, distribution, metabolism and excretion (ADME) 

pharmacokinetic properties are as important as efficacy and drug lead optimization. Route of 

exposure, subsequent bioavailability, and metabolic biotransformation affect the ability of a 

drug to reach the intended target in the desired bioactive form as well as its toxicity.

Drug metabolism poses a unique optimization problem in preclinical development. 

Metabolism exhibits heterogeneity among organs as well as between patients. Chemical 

modifications include hydroxylation, reduction, and hydrolysis, among others. These 

reactions are mediated by proteins which are differentially expressed in different organs (e.g. 

liver hepatocytes predominantly expressing cytochrome P450 enzymes) and may have a 

wide range of nucleotide polymorphisms [7]. Furthermore, the drug must make contact with 

these proteins for biotransformation to occur. Consideration of drug metabolism also 

encompass drug transport into and out of target cells. Transport is mediated by diffusion 

dynamics as well as specialized proteins such as P-glycoprotein for drug efflux and organic 

anion transporters (OATs) for drug uptake [8]. Thus, metabolism of small-molecule drugs is 

an important aspect of the drug discovery pipeline.

This review will focus on clinical aspects of metabolism in human physiology and discuss 

current state-of-the-art in vitro and in vivo tools for studying drug metabolism in the 

preclinical setting. We also discuss the importance of in silico strategies to overcome 

bottlenecks in the discovery pipeline and survey current computational methods and tools 

employed in academic and industry settings for modeling drug metabolism.

II. DRUG METABOLISM IN CLINICAL HUMAN PHARMACOLOGY

Drug metabolism is the metabolic process in which the chemical structure (parent 

compound) of a drug is converted into metabolites to facilitate elimination from the body. 

The principal sites of drug metabolism are the gut and liver due to high levels of metabolic 

enzymes in these tissues.

Drug enzyme metabolism involves Phase I reactions (oxidation, reduction and hydrolysis), 

with subsequent Phase II (conjugation) reactions. The primary goal of this enzymatic 

activity is to make the drug easier to excrete. Phase I reactions involve the termination of 

drug activity or the conversion of a prodrug into its active form. Phase I provides a reactive 

functional group on the compound that inactivates the drug, while a Phase II reaction 

consists of a conjugation reaction with an exogenous substance (i.e. glucuronic acid, sulfate, 

glycine). Metabolites that stem from Phase II reactions are more readily excreted in the urine 
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(by the kidneys) and bile (by the liver) than those formed in Phase I. It is important to note 

that the Phase designation reflects functional, not sequential, classification.

Pharmacokinetics is generally defined as what the human body does to a drug. 

Pharmacokinetics consists of the study of the time course of drug absorption, distribution, 

metabolism, and excretion (ADME). The ADME scheme is broken down into the following 

components: absorption deals with the process of a substance entering blood circulation; 

distribution deals with the dissemination of a substance to various tissues and organs of the 

body; metabolism deals with biotransformation; excretion consists of the removal of the 

substance from the body. Figure 1 shows a general schematic representation of oral drug 

absorption and metabolism en route to hypothetical lung tumor cells, which also contain 

their own unique metabolic enzymes and transporters that alter drug efficacy and toxicity.

In the preclinical setting of drug development, clinicians utilize pharmacokinetics to assess 

drug levels (i.e. toxicity) in order to optimize drug therapy. During preclinical development, 

a common optimization problem deals with heterogeneity in the rate at which humans 

metabolize drugs. In some cases, humans can metabolize a drug so rapidly that the desired 

therapeutic blood and tissue concentrations are not met, while in other cases, the metabolism 

may occur so slowly that the dose leads to toxic effects. Normal changes in human 

physiology can affect the metabolism of a drug. An individual’s drug metabolism rate is 

influenced by genetic factors, comorbid conditions (i.e. chronic liver disorder and heart 

failure) and drug interactions (i.e. induction or inhibition of metabolism).

Cytochrome P450 (CYP450) enzymes are primarily located in the liver and intestine and 

metabolize the majority of drugs through oxidation. CYP450 enzymes can either be induced 

or inhibited by various drugs and substances, which results in drug interactions that lead to 

toxicity or reduction in therapeutic effect. The alteration of ADME characteristics during 

inflammation can often be attributed to an enzymatic change in drug metabolism. The 

decrease in the expression of CYP450, which is the primary drug metabolizing enzyme in 

the liver, following inflammation would be an example of this [9].

Tissue-specific extracts from liver or muscle can be utilized to investigate the role of a 

transporter in energy related metabolism [9]. Common transporters involved with the 

alteration of a drug’s ADME consists of P-gp, BCRP, OATP1B1/1B3, OAT1/3, OCT1 and 

OCT2 [10]. The unique expression level and transporting state of a transporter may be 

modified in relation to a systemic response (i.e. immune response) to an exogenous or 

endogenous stimulant [9]. The alteration of compound ADME during inflammation can also 

be attributed to transporter changes in drug metabolism. For example, recent in vitro and in 

vivo studies showed that inflammatory conditions caused the down regulation of MDRs, 

MRPs and OATPs. For this reason, the ADME of drugs, which are substrates of these 

transporters, are affected overall [11].
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III. BIOLOGICAL ASSESSMENT OF DRUG METABOLISM IN PRECLINICAL 

DRUG DISCOVERY

The metabolic biotransformation of drugs is a key determinant of elimination and toxicity in 

humans. The primary goals of drug metabolism assessment at the preclinical stage are to 

resolve metabolic stability, identify and quantify primary metabolites, pinpoint metabolic 

routes by enzyme catalysis as well as inhibition and induction, and measure the potential for 

drug-drug interactions [12]. Because the major site of drug metabolism is the liver, most in 

vivo and in vitro drug metabolism assessments center around hepatic models. Drug 

metabolism nonetheless occurs in other organs and tissues, such as the lungs, kidneys, and 

intestine, as illustrated in Fig. (1), with varying consequences on the pharmacokinetic profile 

of a drug [13]. Therefore, comprehensive biological evaluation of drug metabolism will 

require both hepatic and extra-hepatic models.

Here, we assess to what extent tools and models can pinpoint the kinetics of a drug, thus 

helping to derive its biological mechanism and inform both pharmacology and toxicology. In 

addition, we consider practical factors such as cost and complexity.

In vitro tools have particular advantages in assessing some variables of drug metabolism, 

even when compared to in vivo models. Traditionally used in vivo models have low and 

often fleeting biofluid concentrations of xenobiotic metabolic intermediates that require 

highly sensitive analytic techniques to capture and characterize [14]. In vitro tools, by 

contrast, allow for precise cellular exposure to a given drug without consideration of how 

global ADME mechanisms will limit the utility of bioactivity assays and metabolite 

profiling techniques. One obvious benefit of an in vivo animal model is the ability to 

reproduce the interplay of tissues and organ systems that maintain homeostasis in humans. 

There are, however, interspecies physiological disparities that cause unanticipated failures in 

the drug development process, which in vitro models may avoid by the use of human cell 

cultures. Comparative cross-species studies of drug metabolism in vitro can in fact highlight 

human-specific metabolic routes and ultimately improve drug safety estimates [15]. 

Importantly, in vitro tools do not present the ethical concerns that limit the scope and long-

term usability of in vivo models. While in vitro models may never become stand-alone tools 

for characterizing drug metabolism, they are practical and economical proxies for in vivo 

models, and are a mainstay in informing the latter stages of preclinical and clinical drug 

development.

Subcellular Fractions

Microsomes are subcellular fractions derived from the endoplasmic reticulum, and present a 

simple, reproducible, and long-lasting source of membrane-bound metabolic enzymes from 

which metabolic activity can be assessed on an enzyme-specific level. Implicated enzymes 

cover multiple stages of metabolism and can include those involved in oxidation, reduction, 

hydrolysis, and conjugation, but microsomes are primarily useful for the CYP superfamily 

of enzymes and uridine 5′-diphospho-glucuronosyltransferase (UGT) [16, 17]. Microsomes 

can easily be derived from any organ- and species-specific tissues, but during preparation, 

high-lability enzymes can be negatively affected and others require the addition of cofactors 
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during the preparation process [18]. Nonetheless, models such as human liver microsomes 

(HLMs) are a reasonably good way to assess inter-individual and demographics-driven 

differences in enzyme kinetic activity [19]. Such findings can in turn reliably predict the 

metabolic profile variations that will occur in in vivo and clinical studies due to individual or 

population physiological variations. HLMs are also useful for evaluating intrinsic clearance 

of drugs, which can predict to what extent metabolism dictates elimination in vivo, and are 

often more reliable than hepatocyte cultures in this regard [20]. To resolve consequential 

drug-drug interactions, wherein one drug affects the activity of another in either synergistic 

or antagonistic ways, HLMs can provide a framework for enzyme inhibition assays that 

indicate how the metabolic routes of other drugs will be suppressed [21]. Enzyme induction 

similarly modifies the metabolic routes and clearance of chemical compounds, having 

implications for drug-drug interactions that HMLs can illuminate in preclinical stages [22]. 

Enzyme induction typically exhibits high inter-species variability [23], underscoring the 

usefulness of subcellular fractions or other human-derived in vitro approaches. S9 fractions 

are subcellular fractions that contain both cytosolic and membrane-bound metabolic 

enzymes, thereby benefitting from a greater breadth of Phase I and Phase II mechanisms 

from which to assess metabolic stability [24]. Subcellular fractions, including HLM, S9, and 

cytosolic models are often used in conjunction due to variations in enzyme concentrations 

that in isolation can render some metabolites undetectable [22, 25].

Cell-based Models

At the preclinical stage, two critical characteristics of a proper drug metabolism assessment 

model are (1) consistency in its bioactivity and reproducibility, and (2) a human-like 

enzymatic profile as it relates to drug metabolism. In cell-based in vitro models, these are 

often conflicting features. Primary human hepatocytes (PHHs), for example, maintain 

enzymatic capacity when cultured and are therefore ideal for reflecting bioactivity in the 

human liver [26]. PHHs are essential tools in the assessment of drug transporters, a feature 

of drug metabolism that subcellular fraction models do not address [27, 28]. Unfortunately, 

PHHs lose proliferative ability in isolation and have significant variability in enzyme 

expression, causing cell source limitations [29]. Nevertheless, there have been a number of 

promising efforts to induce PPH culture expansion [30, 31]. Liver cell lines such as HepaRG 

and HepG2, as well as stem cell-derived models such as hepatocyte-like cells (HLCs), 

exhibit consistent metabolic parameters, are readily available, and have unlimited 

proliferative potential [32, 33]. Unfortunately, the transformation or immortalization of 

hepatic cells causes shifts in CYP metabolism and distinct morphological changes [33]. One 

solution to the difficulty of long-term maintenance of PHHs is the co-culturing of these cells 

with other cell types, such as non-parenchymal cells of the liver, which has been reported to 

promote an in vivo-like microenvironment, increasing long term applicability and 

assessment of hepatotoxicity [34]. An important benefit of cell culture models in this light is 

the ability to reflect both physiological and pathophysiological states, which may serve to 

illuminate contraindications and the effects of homeostatic imbalance on drug metabolism 

[35]. This particular dimension of drug metabolism is logistically difficult and uneconomical 

in in vivo approaches. An area where in vivo models have the advantage is in multi-organ 

and inter-organ interactions, but innovative cell-culture systems for liver-based multi-organ 

models are beginning to have an impact, as reviewed by Bale et al. [29].
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3D cell culture, especially using multiple cell types, is a major attempt to mitigate the 

disadvantages of 2D PHH models in evaluating drug metabolism. By increasing longevity 

and mimicking native cell-cell interactions, cell-matrix interactions, and cell polarity, 3D 

culture shows promise as a standard for drug metabolism assessments [36]. Costa et al. 

provide a recent description of cutting-edge 3D environment strategies as they relate to drug 

metabolism [14]. Tissue slice cultures (TSCs) are more representative of in vivo conditions 

and maintain the native cell-cell and cell-matrix interactions, as well as functional structures, 

that are necessary to preserve the phenotype of a tissue engaged in drug metabolism [37, 38] 

However, TSCs have presented difficulties in evaluating metabolism in the long term due to 

limited viability and loss of metabolic properties [39]. TSCs have been proven especially 

useful to assess multi-organ parameters and pathophysiological states in the context of drug 

metabolism, especially when associated cell culture models are unavailable or limiting, 

which is typically the case for extrahepatic purposes [40–42].

In vivo Models

Although in vitro preclinical drug metabolism assessments can provide useful results that 

inform our understanding of how certain cell and tissue types modulate a given drug, in vivo 

biological testing most closely predicts toxicity and many other ADME parameters, and is 

required for the approval of a drug for clinical use. Developments in in vivo assessments, 

such as an increased understanding of interspecies differences [43], as well as the 

implementation of chimeric animal models, are improving the predictive power of 

preclinical drug development. For example, Nishimura et al. demonstrated recently that 

using a chimeric mouse model with a humanized liver improved the accuracy of preclinical 

drug assessment as it relates to metabolic profiling and drug-drug interactions [44]. In-vitro-

in-vivo extrapolation (IVIVE), which entails models for the deduction of in vivo model 

response from in vitro parameters, are now well-established in pharmacology, especially for 

hepatic clearance and for predicting drug-drug interactions [45]. Computational models can 

be employed to substitute or complement traditional in vitro and in vivo methods for 

assessing drug metabolism at the preclinical stage [46]. Moreover, strategic biological 

assessments are crucial for the validation of in silico-derived molecular interactions 

involving drugs and their metabolites, as well as computational platforms that seek to 

reproduce or expand one or more aspects of the current drug metabolism paradigm.

Metabolomics

Biological assessments of drug metabolism often require high-precision analytical methods 

to identify and quantify metabolites that arise from the biotransformation of a drug [47]. 

Metabolomics is most commonly used to characterize the metabolic footprints of 

pathophysiological states, elucidating disease biomarkers and providing evidence for the 

discovery of disease perturbation mechanisms [48]. While targeted metabolomics is applied 

to identify and quantify known and often endogenous metabolites [49], untargeted 

metabolomics entails a comprehensive analysis of metabolites in the context of a given in 

vitro or in vivo model, including unknown compounds. The latter application is most suited 

to drug metabolism assessments, because novel exogenous metabolites are continuously 

discovered as new drugs are assessed and increasingly sensitive mass spectrometry 

technologies are developed [50]. In fact, during modern in vitro and in vivo studies of 
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preclinical drug development, achieving the goals of these assessments as stated above 

depends on such technologies [51, 52] In this context, the difficulty of quantifying highly 

reactive metabolites can be addressed both by improved assays and by devising novel 

biological assessment systems, as reviewed by Park et al. [53]. Refined and large-scale data 

arising from metabolomic techniques in turn allows for an improved understanding of 

metabolic enzyme regulation and other functional insights [49]. Looking forward, continued 

development of analytical techniques for functional and structural metabolic data will likely 

contribute to increasingly precise and realistic computational models to bolster the 

evaluation of drug metabolism in preclinical drug development.

IV. COMPUTATIONAL TOOLS FOR STUDIES OF DRUG METABOLISM

One major aspect of drug metabolism is the interaction of the drug with a protein, often a 

cytochrome (CYP), to alter its chemical composition. Predicting these interactions is 

desirable in the preclinical setting. Many computational tools exist that attempt to accurately 

predict these drug-target interactions. A broad but non-exhaustive survey of these tools 

follows:

Computer-aided drug design (CADD) tools used to predict drug-target signatures can be 

functionally categorized as shown in Fig. (2). These include structure-based (or protein 

target-based), ligand-based, and a combination of the two (proteochemometric). 

Chemoinformatics approaches, such as quantitative structure-activity relationships (QSAR), 

also leverage known binding affinity data of drug substrates to various metabolizing 

enzymes for the prediction of other drug-enzyme pairs. Here, we detail these methods and 

examine some recent applications to drug metabolism.

Structure-Based Computational Methods

When the structure of the metabolizing enzyme is known, structure-based approaches can be 

utilized to predict drug-enzyme interactions. X-ray crystallography and nuclear magnetic 

resonance (NMR) are typically used to determine biologically relevant enzyme structures in 

apo (ligand absent) and holoenzyme (ligand bound) states. These structures are publicly 

available in online repositories such as the PDB (www.rcsb.org) and EMBL (www.embl.de). 

If the structure for the enzyme of interest has not been determined, homology modeling can 

be used to predict reliable three-dimensional models. Homology modeling leverages known 

structures of proteins that have >30% similarity in amino acid sequence as templates for 

building the 3D model [54]. Free and commercial software such as SWISS-MODEL [54] 

and Prime [55], respectively, are available for this purpose. Successful use of homology 

modeling has been used for human cytochrome P450 enzymes and drug transporters. 

Unwalla et al. utilized ligand-bound CYP2C5 complexes as templates to build a homology 

model of CYP2D6, an important enzyme involved in first-pass metabolism [56]. The 

CYP2D6 model was then used for docking of known substrates to identify putative catalytic 

binding sites.

Docking is the process of computationally “fitting” two molecular entities and predicting 

their free energy of binding [57]. A variety of docking programs exist and have been widely 

employed in drug discovery to predict drug-protein interactions, such as GLIDE [58], 
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Autodock [59], and GOLD [60]. In small-molecule drug discovery, the drug(s) are docked 

into the specified binding pocket within the 3D structure of the protein target (crystal 

structure, homology model, etc.). Docking has been widely successful in predicting effective 

drug-protein target interactions important disease therapeutics [61–64].

While largely successful, docking may miss many true drug interactions. This may be due to 

non-optimal calculations of the free energy of binding due to simplified conditions (e.g. 

protein and drug docking simulation performed in a vacuum devoid of water solvent or 

membrane effects). de Graaf et al. found that crystallographic water molecules in various 

CYP structure active sites increased docking accuracy [65]. In addition, the protein starting 

structure is a critical consideration prior to running structure-based methods. At times, the 

3D protein structure model may not reflect the true binding capacity of the target. This is 

particularly important for CYP enzymes as they exhibit great flexibility and multiple binding 

modes for a broad range of substrates [66]. Thus, defining the appropriate binding site 

region becomes difficult. One way to overcome this limitation is to use molecular dynamics 

simulation (MDS). MDS simulates Newtonian motion of the protein’s atoms and the 

interatomic forces within the protein itself as well as forces between protein atoms and 

solvent atoms, membrane atoms, drug atoms, and other protein-protein atoms [67]. Doing so 

allows to the prediction of physically plausible structural fluctuations of the protein target in 

the desired in situ environment (e.g. aqueous solvent with physiological salt concentration). 

If simulations are conducted over a considerable length of time, low-energy conformational 

states with different binding modes may be uncovered and can serve as the structures for 

further simulations [68]. In addition, MDS is useful for assessing the stability of proposed 

drug-target binding signatures. Long-scale simulations help assess the conformational 

stability of a drug within the binding pocket as well as the diffusion into and sampling of the 

binding pocket space while maintaining protein flexibility. This method has been successful 

in assessing complicated structural mechanisms of action such as G protein-coupled 

receptors [69, 70]. Watanabe et al. utilized MDS to study the structural flexibility of wild-

type and mutant CYP1A2 [71]. They showed that polymorphisms not only affect local 

structural integrity but also distant structural dynamics, thus altering ligand binding and 

recognition. Similarly, Fukuyoshi et al. investigated the effects of polymorphisms on 

CYP2D6 using MDS [72]. CYP2D6 contains the flexible F–G loop structure, which is 

thought to contribute to the substrate access channel and ligand diversity [73]. Through 

MDS, the team discovered that some mutations (e.g. CYP2D6.10, 14A, and 61) were 

enzymatically relevant by keeping the F–G loop in a closed position, inhibiting substrate 

entry into the catalytic site. Since CYP2D6 has over 100 naturally occurring gene mutations 

[74], MDS is an efficient feasible strategy for selecting mutants to undergo experimental 

observations. Studies such as these have great utility in computational pharmacogenomics 

and personalized medicine.

Structure-based methods tend to be used in combination to optimize for both accuracy and 

computational efficiency. For example, docking is less computationally expensive and can 

be used to screen very large databases of drugs efficiently [75]. Top-ranked drugs from 

docking can then undergo MDS. Alternatively, in the absence of crystal structures, 

homology models can be built then refined using MDS. Though MDS, multiple low-energy 

conformations, or “snapshots”, can be utilized for docking. This “consensus approach” 
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increases accuracy by investigating drug binding of multiple protein conformations, some of 

which may be important in catalysis but may be of higher energy and short-lived relative to 

the conformational state achieved by the global minimum. This approach is highlighted by 

Mendieta-Wejebe et al. who built and refined homology models of CYP1A1 and CYP2B1 to 

predict potential biotransformation of two acetylcholinesterase inhibitors 4-(4′-hydroxy-

phenylamino)-4-oxo propanoic acid and 1H-pyrrolidine-1-(4′-hydroxy-phenyl)-2,5-dione 

[76]. For each isoform, 15 snapshots were obtained via MDS, all of which were used for the 

docking of the drugs. Docking results implied that neither molecule would adopt the proper 

conformation for biotransformation into toxic metabolites in either CYP enzyme, which was 

confirmed by subsequent experimental studies.

The aforementioned strategies depend on the availability of a 3D structure for the enzyme of 

interest, which may be obtained via crystallization or homology modeling. At times, it may 

be difficult to obtain a structure given difficulties in crystallization or the lack of an 

appropriate template from which to build a reasonable homology model. Thus, ligand-

centric methods may be required, which have their own benefits and drawbacks. These 

methods are discussed next.

Ligand-Centric, Proteochemometric & QSAR Computational Methods

Information extracted from drug chemical structures can be used to predict drug-enzyme 

interactions. The similarity approach is commonly used where the similarity between a drug 

known to bind the enzyme of interest and a query drug are calculated. Under the similarity 

principle, it is assumed that the greater the similarity, the greater the likelihood of the drug 

interacting with the protein [77]. Similarity can be calculated based on a number of metrics, 

such as topological parameters (e.g. shape [78]), physicochemical descriptors (e.g. 

electrostatics [79, 80]) as well as different combinations (e.g. pharmacophore similarity 

where the type of functional groups and their orientation in 3D space are considered [81]). 

In addition, these descriptors can be used for building quantitative structure-activity 

relationship (QSAR) models for a target of interest.

Pharmacophores provide a three-dimensional topological representation of important 

functional groups implicated in substrate binding. Pharmacophore models are derived from 

bioactive conformations of known active ligands using software such as LigandScout [82] or 

SPARTAN [83]. A limitation is inherently imposed by small numbers of known active 

ligands or potential lack of chemical diversity of those ligands. Nonetheless, pharmacophore 

models can be used to efficiently screen large libraries of molecules for potential substrates 

that are able to adopt the appropriate structural conformation and functional group 

orientation. An early study by de Groot et al. exemplifies the development of 

pharmacophore modeling for CYP2D6-catalyzed N-dealkylation reactions [84]. An example 

where pharmacophore screening is integrated into a larger in silico pipeline for drug 

metabolism is highlighted by Rakers et al. [85]. They developed a pharmacophore model for 

sulfotransferase 1E1 and used it to successfully screen for drug-like molecules that were 

known to bind SULT1E1 as well as experimentally validated nine compounds previously not 

known to bind. A combination approach was used by first utilizing molecular dynamic 

simulations of SULT1E1 apo and cofactor-bound structures to model the flexibility of the 
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active site and obtain different conformational states for subsequent ensemble docking of 

known SULT1E1 active ligands. Docking conformations were then prioritized based on 

catalytic competency (e.g. distance between the ligand and cofactor) and used to establish 

different pharmacophore models, which were further refined using support vector machines 

(SVM). Ultimately, a prediction model was created combining a pharmacophore fit score 

(determined using LigandScout) with other SVM-determined physicochemical descriptors. 

This model was used to screen the DrugBank library (www.drugbank.ca) resulting in 68 hits, 

28% of which were validated in the literature and nine new compounds which were 

experimentally validated. Pharmacophore models can be especially useful for large active 

sites capable of binding diverse substrates, whereby different models can highlight different 

substrate classes.

To date, there are two approaches to QSAR methods that predict the metabolism of 

substrates and inhibitors by CYP enzymes. The first consists of the application of QSAR to 

develop ADMET (absorption, distribution, metabolism, elimination and toxicity) models 

[86–91]. This model is known to be difficult to interpret and less predictable [92]. The 

second approach is focused on the development of QSAR models for molecules that pertain 

to specific individual CYPs [92]. For example, CYP1A1 is known to be found in the lungs, 

lymphocytes and skin and has be inferred in cancers that stem from polycyclic aromatic 

hydrocarbons (PAHs). PAHs are the primary substrates for metabolism by CYP1A1. 

Genestes et al. developed a QSAR model for the metabolism of 32 different compounds of 

the PAH series by CYP1A1 [93] utilizing multilinear regression analysis. Shimada et al. 

investigated the metabolic activities of the PAHs [94]. The QSAR analysis utilized energy 

descriptors developed during the docking process. The three main descriptors consisted of: 

(1) HOMO energy (energy of the highest occupied molecular orbital), (2) Hydrogen bond 

acceptor atoms in the ligand, and (3) PMF04 scoring function derived from docking studies 

correlated with inhibition potency. The predictability of the linear model utilized the neural 

methods for improvement. Using the same descriptors, the artificial neural networking 

(ANN) model illustrated a better prediction for CYP1A1 pro-metabolic property compared 

to the linear model.

CYP1A2 is known to be expressed in the liver and plays a role in the activation of aromatic 

and heterocyclic amines, PAHs and various therapeutic drugs. Procarcinogen activation by 

CYP1A2 increases a patient’s susceptibility to cancer while inhibition of CYP1A2 can 

contribute to cancer prevention. For example, flavonoids have been known to attribute to 

preventive cancer effects due to the interaction with CYP1A enzymes [92]. Roy et al. 

utilized a cluster technique with 2D descriptors addressing topological, physicochemical and 

structural indices combined with 3D descriptors for QSAR analyses [95]. This analysis 

utilized chemometric tools such as the genetic partial least square (G/PLS).

Proteochemometric methods are also QSAR-related models that further integrate 

information from proteins as well as drug-centric fingerprints [96]. For example, a unified 

proteochemometric (PCM) model for the prediction of the inhibition of CYP450 isoforms 

was developed and made publicly available under the Bioclipse Decision Support open 

source system [97]. PCM creates a unification of models for multiple proteins that 

interaction with multiple ligands through the correlation descriptors [98, 99]. The descriptors 
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are based on the following amino acid properties: hydrophobicity, normalized van der Waals 

volume, polarity, polarizability, charge, secondary structure and solvent accessibility [97]. 

The PCM model utilized non-linear data analysis techniques such as Support Vector 

Machine, Random Forest and k-Nearest Neighbor method to perform binary classification 

and probability estimates. This proteochemometric CYP model provides the opportunity to 

draw or import chemical structures and predict quetiapine inhibition of CYP2D6, 

propranolol inhibition of CYP1A2 and CYP2D6, and fluvoxamine inhibition of CYP1A2, 

CYP2C9, CYP2C19, CYP2D6 and CYP3A4 [97]. This PCM model advantageous in its 

extensibility, potentially extending to new CYP isoforms and polymorphic CYP forms.

Adverse Outcome Pathways in the Computational Assessment of Drug Metabolism

As the complexity of metabolism extends beyond immediate drug-enzyme interactions, it is 

critical to consider higher-order pathway and cellular perturbations that the parent drug may 

have on the cellular metabolic machinery. These perturbations are consequential in 

biological assessments of drug metabolism as described earlier in this review, wherein they 

can potentially explain tissue-specific and inter-organ metabolic routes, drug-drug 

interactions, and drug toxicity [100]. Equally important in this context are the metabolites 

arising from biotransformation of a drug, which can contribute to both the therapeutic action 

of that drug as well as its adverse effects [101]. The adverse outcome pathway (AOP) is a 

recently developed framework in computational toxicology which seeks to bridge molecular 

initiating events (MIEs) such as those predicted by the computational tools discussed in this 

review, and adverse events at the organ or organismal level [102]. The AOP Knowledge Base 

(AOP-KB) is the primary collaborative effort currently underway to catalog crowdsourced 

experimentally derived AOPs (www.aopkb.org). Current efforts in computationally predicted 

AOPs (cpAOPs) were recently reviewed by Oki et al. [103].

There are a number of advantages to incorporating the AOP framework to preclinical stages 

of drug development, particularly in drug metabolism and its relevance to toxicity. Of note is 

that MIEs are not restricted to chemical-protein interactions; chemical interactions with 

other macromolecular structures can lead to a wide variety of adverse effects [104]. Another 

central characteristic of AOPs is that they are defined by MIEs that do not depend on the 

nature of the implicated chemical compound [105]. For example, AOPs have been 

experimentally developed for the case of environmental chemicals inhibiting the 

acetylcholinesterase enzyme at distinct synaptic sites [106]. This MIE has associated adverse 

effects that range from mild to lethal, and is shared by toxic chemicals such as venoms and 

insecticides, but also by drugs with broad medicinal relevance [107]. Thus, while ecotoxicity 

is the primary focus of AOP studies, there is a distinct potential for the application of AOPs 

to preclinical drug development. Vinken et al, for example, developed AOPs describing the 

stepwise mechanistic association between the drug-implicated MIE of inhibition of the bile 

salt export pump and the organismal development cholestatic liver injury [108]. When 

combined with exposure and ADME assessments, the AOP framework has recently been 

demonstrated by Philips et al. to identify drug metabolites and parent compounds that in fact 

engage in an MIE and therefore avoid unnecessary costs of comprehensive biological 

assessment [109]. Figure 3 outlines how the AOP concept might contribute to a preclinical 

drug metabolism assessment workflow, wherein predicted or experimentally established 
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exogenous metabolites are screened for adverse outcomes according to the current 

knowledgebase. The application of AOPs to the preemptive assessment of drug metabolism 

is preclinical stages is just beginning to emerge. The development of the AOP-KB and 

complementary cpAOP models, if regularly implemented, will likely render preclinical 

assessment of drug metabolism more efficient.

CONCLUSION

It is clear that drug metabolism is a critical component in understanding drug efficacy, 

resistance and adverse effects. Prospective early identification of interactions between drugs 

and the enzymes implicated in human drug metabolism is desirable in drug discovery to 

avoid excessive costs and failures, particularly in the clinical phases. In addition, it is 

important to identify drugs that may potentiate or inhibit enzyme metabolic activity. 

Computational tools such as docking, molecular dynamics and QSAR models facilitate this 

process.

Pharmacogenomics is becoming increasingly utilized in the clinic as it has become 

understood that drug metabolism exhibits inter-patient variability. A clinically relevant 

example worth noting is dihydropyrimidine dehydrogenase (DPD), encoded by the DPYD 

gene, which serves as the rate-limiting step in the metabolism of the cancer 

chemotherapeutics 5-fluorouracil (5-FU) [110]. DPD deficiency excess 5-FU accumulation 

and toxicity such as mucositis and neutropenia [111]. A spectrum of DPD deficiency due to 

single nucleotide polymorphisms has been identified. Most notable is the IVS14+1G>A 

mutation in intron 14 coupled with exon 14 deletion [110]. Others include 2846A>T in exon 

22 [112] and T1679G in exon 13 [113]. Similarly, CYP450 pharmacogenomics has been 

used to understand inter-patient differences in warfarin metabolism, a widely used 

anticoagulant that requires close blood level monitoring [114]. This information helps 

identify patient populations at risk of toxicity, the need for dose adjustments and potentially 

antidotes in cases where the proposed drug provides life-saving treatment. With the growing 

body of knowledge in pharmacogenomics, understanding the functional significance of the 

genetic variations becomes increasingly crucial. Large online databases such as PharmGKB 

(www.pharmgkb.org) have been built for functional annotations as well as their clinical 

relevance. However, many genetic variants remain to be characterized through painstaking in 

vitro and in vivo methods. Computational tools, especially structure-based approaches such 

as homology modeling and molecular dynamics simulations, will prove indispensable in 

characterizing the structures of these variants as well as high-throughput screening of drugs 

for predicting their putative functional consequences. Prospective computational 

pharmacogenomics through QSAR and proteochemometrics will also add to our 

understanding and enhance patient safety throughout the drug development process. 

Implementation of a potential workflow, one of many possible permutations in the drug 

discovery process is shown in Fig. (3) for a drug that is already known to bind to a 

therapeutic target of interest for a disease state. This particular workflow highlights the 

potentiality of optimizing the starting drug through chemical permutations to form a 

congener library and subsequent virtual screening of the library against the target of interest, 

important ADMET enzymes and finally ranking the congener with the optimal combination 

of target binding, bioavailability and toxicity minimization.
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The computational tools listed throughout each have their strengths and weaknesses, 

especially when methods such as QSAR and pharmacophore models are highly dependent 

on the training set of ligands. Combinatorial approaches that pool the different methods may 

be synergistic and increase the accuracy of predictions. The previously noted “consensus 

approach” utilizing multiple structural conformations, or “snapshots”, of a single protein 

through MDS can increase accuracy when combined with virtual screening workflows such 

as docking. Furthermore, protein-centric techniques can be integrated with ligand-centric 

approaches to further optimize predictive accuracy. Multi-component discovery pipelines are 

becoming more commonplace as computational efficiency is increasing with decreasing 

costs.

While prediction of drug-protein binding is a critical goal of in silico methods, that alone is 

insufficient for formulating physiologically relevant models of drug biotransformation and 

the downstream effects on efficacy, toxicity and dosing parameters. Moving forward, 

enzyme kinetics will be an important consideration for clinical translation as rates of 

metabolite production as well as the effects on polypharmacy when drugs compete for the 

same metabolizing catalytic site. In addition, consideration must be given to enzyme 

inducers/inhibitors and drug-drug interactions. Understanding the regulatory elements 

behind biotransformation and transport enzyme expression, such as the human nuclear 

receptor PXR inducing CYP3A [115], will prove indispensable in personalized medicine 

and pharmacogenomics, allowing us to better understand the interpersonal differences in 

pharmacological biotransformation that extends beyond structural differences in key 

enzymes due to genetic polymorphisms.

In silico methods are increasing in accuracy as our understanding of drug metabolism grows 

from pharmacological studies and structural biology. Their use can greatly facilitate the drug 

development process by reducing downstream failures due to patient harm from toxic 

metabolites, lack of efficacy due to quick inactivation of active metabolites, and can also 

diminish the need of live animal use in preclinical development. Future discovery pipelines, 

especially in the PK/PD sector, will undoubtedly incorporate computational modeling and 

screening so as to predict the appropriate bioavailability, efficacy and toxicity of new 

investigational drugs and ultimately mitigate the downstream risk in animals and humans.
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Fig. 1. Major sites of drug metabolism and associated xenobiotic-metabolizing Cytochrome P450 
(CYP) isoforms when considering oral drug administration
CYPs expressed in the gut wall [116], liver [16], lung [117], tumor cell [118], and kidney 

[119] guide the phase 1 preclinical assessment of tissue-specific drug metabolism. Tissue-

specific CYPs are not exhaustive but are presented to demonstrate inter-tissue differences 

and similarities in predominant CYP expression. Other xenobiotic metabolizing enzymes 

originating from both membraneous and cytosolic media are not included.
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Fig. 2. 
Computational approaches utilized in PKPD in silico studies during the pre-discovery phase.
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Fig. 3. Computational optimization workflow for a drug known to bind a protein target of 
interest in a disease state that can serve as a clinical therapeutic candidate
This workflow is intended for drug discovery instances where investigators have a drug with 

potential efficacy but would like to optimize the drug for ADMET. (1) Virtual modification 

of R groups to create a virtual library of chemical congeners for the drug. (2) Computational 

experiments of congener library against the protein target of interest to determine potential 

binding and potency. (3) Computational experiments of congeners against curated virtual 

library of all known metabolism-associated enzymes to predict all potential metabolites. (4) 

Prediction of downstream pathway perturbations of all potential metabolites for each 

congener that may be related to toxicity. (5) Computational experiments to determine 

interaction of drug with important proteins implicated in absorption, distribution and 

excretion such that optimal bioavailability may be determined. (6) Algorithm to rank 

congeners based on greatest binding potential to given therapeutic protein target, least 

potential for metabolism into toxic metabolites and greatest potential bioavailability 

depending on interested route of administration.
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