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Background

Drug discovery and/or screening can be an expensive and time-consuming endeavor 

with traditional methods relying on testing in in vitro or in vivo models or via screening 

of organs and tissues using synthetic molecules [1]. In some cases, the expense of a tra-

ditional drug development approach may overwhelm the resources available and make 

cost–benefit discussions challenging when bringing a new therapeutic to market [2]. 

�erefore, developing cost-efficient in silico strategies to screen for drug candidates that 

may be efficacious in treating human disease may result in novel or repurpose-able ther-

apies [3]. With the rise of integrated -omics technologies, phenotypic screening [4], net-

work-based [5], and literature mining [6, 7], new approaches that take advantage of large 

data-driven methodologies are at the forefront of drug screening [2]. Taking advantage 
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of available knowledge, we propose a transcriptomically-driven drug screening approach 

that utilizes enrichment methods to determine candidate therapeutics.

Discovery-based enrichment methods can be used for finding matching transcrip-

tomic signatures of drug-disease comparisons [8]. One approach, referred to as the sig-

nature reversion principle, has been successful in diverse therapeutic settings [9–11]. It 

assumes that a drug induced gene expression signature will be correlated with change 

of the transcriptome in disease to a healthy or healthier state [2]. Our premise is that a 

negatively correlated gene profile of a drug-perturbated transcriptome can be exploited 

in in silico drug screening methodologies.

Gene set enrichment techniques are well established in providing biological context 

in -omics studies, particularly in transcriptomic studies where summarizing the overall 

biology of a particular contrast or linear model by pathways enhances interpretability. 

We have used gene set enrichment techniques in a variety of transcriptional studies that 

compare or contrast the human host response to infectious or chronic illness [12–14]. 

Of the various enrichment approaches [15], Gene Set Enrichment Analysis (GSEA), 

Database for Annotation, Visualization and Integrated Discovery (DAVID) and Gene 

Ontology (GO) are gold standards in pathway and gene set enrichment for transcrip-

tomic analyses [16–19], but unfortunately, their direct application in drug screening 

may not be ideal due to the lack of incorporation of drug-gene modulatory information. 

While other popular approaches such as gene2drug, DSEA, sscMAP, L1000cds, and 

CMAP-native methods may include such information, they lack the statistical rigor of 

GSEA [20–24]: none perform error rate analysis, calculate score normalizations, provide 

enrichment driver genes, or are tailored for transcriptomic analyses.

By performing enrichment on disease-associated gene signatures while using drug 

perturbation defined gene sets, entire transcriptomes can be probed for potential drugs 

or therapeutics. We propose a modified version of GSEA, namely drug perturbation 

GSEA (dpGSEA), to perform a unique drug-defined gene set enrichment analysis for 

screening therapeutics downstream of transcriptomic or proteomic studies. We describe 

dpGSEA as an analysis tool that emphasizes enrichment of counteracting gene expres-

sion between drug-gene and disease-gene profiles and provides an easily interpretable 

set of statistics to determine effectiveness of screened drugs. By using proto-matrices to 

capture a-priori drug perturbated gene signatures rather than gene sets, we believe our 

approach is well suited for transcriptomic-based therapeutic screening and enrichment.

Methods

We provide a comparison between dpGSEA and related approaches in Fig.  1 and 

detailed definition, notation, framework, statistic, normalization and error rate notes in 

the Additional file 1: Methods.

dpGSEA gene set priors

An overview of the dpGSEA processing, including the proto-matrix is shown in Fig. 2. 

dpGSEA utilizes transcriptomic signatures of drug perturbated cell lines from Broad 

Institute’s connectivity map project (CMAP) and the library of integrated network-

based cellular signatures (LINCS) projects to produce annotated gene sets rather than 

curated lists, like those from MSigDB [16, 24, 25]. �ese gene sets are organized into 
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proto-matrices as defined by gene signature cutoffs of ranked top fold change or statisti-

cal significance. �e proto-matrix itself contains information including genes acted on 

by a specific drug and the directionality in which it is influenced, that is, whether the 

drug induces up or down regulation of the gene.

To generate the proto-matrices, differential expression (DE) analysis using default 

LIMMA-voom parameters in Bioconductor was performed on the CMAP and LINCS 

data [26]. For each drug, a DE experiment was conducted using the correspondingly 

batched DMSO sample as controls, while remaining effects were linearly corrected. �e 

resulting genes were ranked by fold change and statistical significance to generate a spe-

cific signature, that is, the top 10, 20 or 50 genes acted upon by a specific drug with the 

cell-line information retained (these are labeled as “Sig Rank 10” or “FC Rank 20”, etc. 

with the first label denoting fold change or significance and the last label denoting the 

number of top ranked genes).

dpGSEA scoring statistics

Similar to the approach of GSEA (see Additional file 1: Methods), we consider a list 

L of annotated genes rank-ordered by increasing T(j) , for j ∈ {1, . . . , p} . Our method 

detects an enrichment of high values of T(j) in the positive tail of gene set Sk . �is 

Fig. 1 Comparisons between dpGSEA and similar approaches. a dpGSEA’s primary differences compared 

to GSEA include usage of a-priori gene set information derived from the Broad Institute’s connectivity map 

project (CMAP) and the library of integrated network-based cellular signatures (LINCS) projects organized 

as proto-matrices, an absolute statistical significance ranked approach rather than a fold change ranked 

approach, and a novel statistic to evaluate the drug target. Both approaches utilize a random walk running 

sum statistic to calculate enrichment scores. dpGSEA requires two inputs from the user to run. b dpGSEA is 

listed with comparable techniques that utilize GSEA-like approaches. Our approach uses the significance of a 

gene as well as directionality along with the generation of a novel statistic, the target compatibility score. We 

also show the driver genes for each drug
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translates into finding evidence of a leading-edge subset in gene set Sk , in which the 

values of T(j) are maximal:

1. �e traditional Enrichment Score, denoted Uk = U(Sk) = U
(

T1, . . . ,Tp|Sk
)

= ESk 

which is calculated for each gene set Sk , as the maximum deviation from 0 of a 

weighted running sum, for j ∈ {1, . . . , p} , in the gene set Sk , relative to its comple-

ment Sk . Formally, our first gene-specific Global Test Statistic can be written as:

Fig. 2 Overview of the dpGSEA pipeline and enrichment approach. Beginning from the left side of the 

diagram, the two primary inputs of dpGSEA are shown as tables. The top left table lists DEGs from, for 

example, a disease versus control study. The bottom left table contains the proto-matrix, which is analogous 

to MSigDB defined gene sets but contains a list of drug-gene actions rather than a gene set. dpGSEA merges 

the information in these tables by gene and ranks them by the absolute value of their significance. dpGSEA 

then estimates a running sum statistic based on drug-gene interaction and regulation. Highlighted in yellow 

are negatively correlated drug-gene interactions (opposing arrows). Enrichment distributions are formed 

[dotted red line, enrichment score (ES)] determining the maximum deviation of the running sum statistic 

plot, while the position of the maximum deviation (dotted orange line) represents the target compatibility 

score (TCS). dpGSEA then permutes the gene locations and generates new enrichment distributions 

along with null-enriched ES and TCS. The permutations are used to both normalize and generate statistical 

significance for each score. The output is a list of drugs ranked by their ES or TCS statistical significance 

(bottom center table). It should be noted that leading-edge genes are also included in the output (not 

shown)
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 where vk(l) =

∑l
j=1 |T(j)|

ω
I[σ(j)∈Sk ]

∑p
j=1 |T(j)|

ω
I[σ(j)∈Sk ]

−

∑l
j=1 I[σ(j)/∈Sk ]

p−γk
.

 Where | | denotes the absolute value, max(·) denotes the maximum function with 

respect to gene index l ∈ {1, . . . , p} , ω is a parameter describing the weight of the 

tail in the random walk (see remarks below), and I[σ(j) ∈ Sk ] is the indicator func-

tion on whether the jth rank-ordered gene, belongs to gene set Sk and is the inverse 

sign referring to the counter directionality for disease-gene and drug-gene, for 

k ∈ {1, . . . ,K }.

2. �e Target Compatibility Score, denoted Uk = U(Sk) = U
(

T1, . . . ,Tp|Sk
)

= TCSk , 

which is calculated for each gene set Sk , for k ∈ {1, . . . ,K } , as the absolute distance 

between the point of maximum enrichment score and the point where the rank-

ordered T(j) is minimal in absolute value, typically a zero fold-change or zero correla-

tion gene index. �is involves the computation of two gene indices: (1) the gene rank 

maximizer of the ESk statistic (leading edge upper bound), denoted l̂max

k
 , and (2) the 

gene rank minimizer of the rank-ordered T(j) , denoted l̂min:

where l̂max
k = arg maxl∈{1,...,p}

∣

∣vk(l)
∣

∣ and l̂min = arg minj∈{1,...,p}

∣

∣T(j)

∣

∣where arg max(·) 

and arg min(·) denote the maximizer and minimizer functions with respect to gene 

index l ∈ {1, . . . , p} and j ∈ {1, . . . , p} , respectively.

Normalization, signi�cance, and error rate

Normalization places ES and TCS scores on respective comparable scales. A null distri-

bution is created by gene label permutation of list L while retaining original gene label 

rank-ordering; this is performed for 1000 permutations. �e normalization factor is the 

change of scale obtained by the mean of the scores generated by the permuted distribu-

tions, and the normalized score is then obtained by simply dividing the true score by 

this normalization factor. �e significance of the true score is determined by the pro-

portion of permuted scores that are greater than the true score, and our null hypoth-

esis states that the true score is no different from those generated by random gene label 

permutation.

�e multiple testing problem is addressed by our procedure carried out to control the 

False Discovery Rate (FDR). After a full experimental run of dpGSEA, the FDR is calcu-

lated by comparison of the proportion of all permuted null normalized scores for every 

drug screened greater than the specific score of a drug in question. �is is performed for 

each ES and TCS respectively and is the approach utilized by GSEA.

Testing dpGSEA

We approached testing dpGSEA in a two-fold manner. (1) We determined if dpGSEA 

was able to positively identify a perturbated drug from an external DE experiment 

through positively correlated gene modulation, as opposed to the signature reversion 

principle. (2) We used dpGSEA as intended, an exploratory tool for drug screening, to 

(1)ESk = max
l∈{1,...,p}

∣

∣vk(l)
∣

∣, for l ∈ {1, . . . , p}

(2)TCSk =

∣

∣

∣
l̂
max
k

− l̂
min

∣

∣

∣
,
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determine if the therapeutics detected have biological or phenotypic relevance to a dis-

ease in question.

For the first case, we tested third party gene signatures, not those from CMAP or 

LINCS, derived from gastroenteropancreatic neuroendocrine tumor cells (GEPNTs) 

perturbated by fluvastatin, parbendazole (against drug-defined gene sets present and 

generated from CMAP), paclitaxel, rosiglitazone (against drug-defined gene sets pre-

sent and generated from LINCS), and doxorubicin (against drug-defined gene sets pre-

sent and generated from both CMAP and LINCS) (Gene Expression Omnibus (GEO) 

#GSE98894) [27]. Drug perturbation DE for GEPNTs was performed using LIMMA-

voom and matching signatures were detected using dpGSEA.

For the second case, drug screening, we applied dpGSEA to our recent study of dif-

ferential gene expression in CD4+T regulatory cells (Tregs) from immune respond-

ers (IR) and nonresponders (INR) to antiviral therapy in HIV-infected individuals 

(GEO #GSE106792) [28]. �is study assessed HIV-infected individuals for their ability 

to reconstitute the CD4+T cell pool in response to antiretroviral treatment and what 

candidate mechanisms were behind poor clinical outcomes and greater risk for mor-

bidity and mortality with respect to INR status. Mitochondrial Treg mechanisms were 

implicated to be the cause of the cell cycle halting [28]. We analyzed this dataset with 

dpGSEA to determine whether we could identify drugs that may take advantage of dif-

ferentially expressed genes (DEGs) involved in mitochondrial dysfunction or immune 

function as a whole in INRs.

Results

Our case study results for detection of GEPNTs drug perturbations by dpGSEA that pass 

the FDR α = 0.05 threshold are shown in Table 1A and B for both ES and TCS, respec-

tively, along with the specific proto-matrix used. It is worth mentioning that not every 

GEPNTs drug perturbation was positively identified by every proto-matrix by ES and 

TCS FDR thresholds, but we were able to positively identify all perturbations in most 

case with the exception of rosiglitazone by ES FDR and fluvastatin by TCS FDR. Pacli-

taxel perturbations were most frequently positively identified by both scores and pri-

marily by significance-based LINCS proto-matrices, while other drugs varied in their 

positive findings with respect to the proto-matrix utilized.

Table  2 shows the most statistically significant ES drug discoveries for the INR ver-

sus IR case study where mitochondrial and immunological associated drugs were found. 

Oseltamivir-carboxylate, the active metabolite of Tamiflu, an antiviral, prevents the 

release of progeny influenza virions while simultaneously modulating human sialidases 

which have been found to be localized in the mitochondria and involved in the regula-

tion of cell apoptosis [29, 30]. Ibutilide, an antiarrhythmic, has been shown to inhibit 

endoplasmic reticulum and mitochondrial stress mechanisms [31]. �ese findings are 

consistent with the INR mitochondrial dysfunction while showing targetable transcrip-

tion that may increase antiviral activity and/or prevent cell cycle disruption of Treg 

function. Notably, other drugs within statistical significance of 0.05, such as fibronil and 

telmesteine (p = 0.015, p = 0.017 respectively) have targets (CPT1A, and IDH2 respec-

tively) suggested to be representative of fatty acid oxidation and energy production of 

mitochondrial dysfunction congruent with previous research [28].
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When comparing dpGSEA with traditional GSEA, we find that the ranked ordering of 

paclitaxel perturbated cell lines are significantly different suggesting a substantial differ-

ence compared to our approach (Fig. 3). Wilcoxon signed rank tests are not significant 

(p > 0.90) when comparing dpGSEA with GSEA for both ES significance ranking and 

TCS significance ranking (Fig. 3e). Comparisons between ES and TCS rankings within 

dpGSEA and GSEA for comparable proto-matrices showed a maximum positional shift 

of 3 for perturbated cell line ranking (Top 50 Rank GSEA: MCF7 from 2nd to 5th) and 

most ranking shifts between ES and TCS within 2 spots (0 spot shift: 11; 1 shift: 9; 2shift: 

5; 3shift: 1).

Figure 4 compares dpGSEA score and significance trends against those of the CMAP 

native and the gene2drug approaches. Two approaches were not included in our evalu-

ation: the sscMAP approach is no longer available and the L1000cds approach does not 

provide a significance estimate. Here, we use the CMAP top 20 ranked significantly proto 

Table 1 A rank-ordered list by (A) ES and (B) TCS p value of positively correlated validation 

tests using an external RNA-seq dataset

Each row represents a positively identi�ed drug (rosiglitazone, �uvastatin, parbendazole, paclitaxel, or doxorubicin) by 

dpGSEA in GEPNTs perturbation versus GEPNTs DMSO control DE of our �rst test case. All �ndings shown pass an FDR 

threshold of α = 0.05 for ES in A and TCS in B. The leading-edge driver genes are listed in the “Genes” column and the speci�c 

proto-matrix the positive results were detected in are listed in the “Proto-Matrix” column. Positively identi�ed paclitaxel 

perturbations were most frequent while other drugs were found in only some of the proto-matrices utilized

Drug ES NES ES p value Genes Proto-Matrix

A

paclitaxel_HT29 0.547 2.745 0.011 SCNN1A, AKR1C3 LINCS FC Rank 20

paclitaxel_HT29 0.742 2.863 0.014 CFAP70, C4BPB LINCS Sig Rank 20

parbendazole_PC3 0.627 2.722 0.014 FSTL3, HIST1H2BG CMAP FC Rank 20

fluvastatin_MCF7 0.295 2.509 0.016 IFIT1, MSMO1, INSIG1, 
HMGCR, IDI1, HSD17B7

CMAP FC Rank 50

fluvastatin_MCF7 0.377 2.515 0.016 SQLE, INSIG1, IDI1, SLCO4C1, 
MAP1S, RTEL1, PPIF, MAFK

CMAP Sig Rank 50

paclitaxel_MCF7 0.864 3.076 0.016 HSPB1 LINCS Sig Rank 10

paclitaxel_HT29 0.855 3.043 0.019 CFAP70, C4BPB LINCS Sig Rank 10

doxorubicin_A375 0.529 2.588 0.020 MYB, CCL20, SLC27A2, MX2 LINCS FC Rank 20

paclitaxel_HELA 0.369 2.349 0.042 ABTB2, ZNF816, CASK LINCS Sig Rank 50

paclitaxel_PC3 0.706 2.531 0.044 SIK1, GPM6A LINCS FC Rank 20

parbendazole_MCF7 0.848 3.051 0.044 HIST1H2BG CMAP Sig Rank 10

Drug TCS NTCS TCS p value Genes Proto-Matrix

B

rosiglitazone_HELA 0.999 1.362 0.010 INSIG1 LINCS Sig Rank 50

paclitaxel_MCF7 0.979 1.671 0.031 HSPB1 LINCS Sig Rank 10

parbendazole_MCF7 0.954 1.929 0.044 HIST1H2BG CMAP Sig Rank 10

paclitaxel_HA1E 0.992 1.336 0.054 HIST1H2BD LINCS Sig Rank 50

paclitaxel_MCF7 0.981 1.500 0.056 HSPB1 LINCS Sig Rank 20

paclitaxel_HT29 0.962 1.641 0.066 CFAP70, C4BPB LINCS Sig Rank 10

paclitaxel_MCF7 0.982 1.370 0.088 HSPB1 LINCS Sig Rank 50

paclitaxel_HT29 0.964 1.474 0.101 CFAP70, C4BPB LINCS Sig Rank 20

parbendazole_PC3 0.964 1.419 0.113 FSTL3, HIST1H2BG CMAP FC Rank 20

paclitaxel_HELA 0.949 1.504 0.117 SIK1 LINCS FC Rank 20

paclitaxel_PC3 0.915 1.562 0.146 GAA LINCS Sig Rank 10

doxorubicin_MCF7 0.849 1.717 0.150 S100A2 LINCS FC Rank 10
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matrix as our a-priori signature for dpGSEA and correspondingly equivalent inputs (top 

20 genes by significance) for other approaches. It should be noted that directionality 

is integrated into the dpGSEA enrichment approach producing only positive scores as 

reflected by the one-sided distribution of Fig. 4b. �e ranked drugs that pass nominal 

GSEA-defined FDR, and Benjamini–Hochberg (BH)-defined FDR adjusted thresholds 

are also shown. Using the GSEA-FDR threshold [16], we find many drug screens that 

pass FDR = 0.05. �is is in stark contrast to those approaches without inherent error rate 

analysis (Fig. 4c, d) that have few or no screened drugs that pass the BH-FDR thresh-

old at the same level. �erefore, the dpGSEA screened drug results provide a richer and 

more reliable ranking of drugs for the clinician. In addition, it should be noted that this 

result is achieved by dpGSEA despite the fact that the GSEA-defined FDR procedure 

is inherently more conservative (less inductive of downward bias) than the BH-defined 

FDR procedures [32], especially in cases of lower α values (Additional file 2: Figure S1). 

Last but not the least, note the statistically significant findings of screened drugs (high-

lighted in green in Fig. 4) that pass a designated FDR significance threshold (0.05) unique 

to dpGSEA’s novel TCS statistic.

�e distributions of scores and significance can be found in Additional file 3: Figure 

S2 and Additional file 4: Figure S3 which show trends between both normalized scores 

and their respective transformed p values along with leading edge gene set sizes. Each 

plot shows one completed run of dpGSEA with each drug and their respective scores 

Table 2 A rank-ordered list of  the  most statistically signi�cant ES for  drugs found 

when performing an enrichment for INR vs. IR Treg cells using top 50 p value rank proto-

matrix (derived from LINCs)

Both normalized ES and normalized TCS along with their respective statistical signi�cance are shown. The leading-edge 

genes are also displayed, indicating genes driving the enrichment scores. Note that the highest ranked result, oseltamivir-

carboxylate, suppresses in�uenza virions production modulates human sialidases, known for mitochondrial involvement 

and regulation of cell apoptosis

Drug NES ES p value NTCS TCS p value Gene

bendamustine_HT29 3.13 < 0.001 0.88 0.359 TMEM106B, TMEM135, ELOVL6, KCNJ2, 
LSM6, TMEM126B, TGIF1, TXNDC9, 
MAPKAPK5

oseltamivir-carboxylate_MCF7 3.12 < 0.001 0.97 0.150 RDH11, ETS1, YAF2, UBE4B, SFPQ, FRYL

medrysone_PC3 3.00 < 0.001 0.92 0.267 FAM13B, BMPR1A, MYO7A, CAST, 
H2AFV, RABL6

luliconazole_HT29 3.42 < 0.001 0.90 0.314 RBM7, TMED7, NXT2, ATMIN, SUB1, 
NPTN, WASF2, CEP135, RDH14

doxofylline_MCF7 3.43  < 0.001 0.88 0.347 SUCLG2, TM9SF3, BRD7, RPL36, 
APPBP2, MRPL33, ARL5A, TGFB3, 
LRRC15, HSP90B1, RPS25

ibutilide_HELA 3.23 0.001 0.91 0.294 EDEM3, RAD21, RAB35, ADGRF1, CBX1, 
SCN2B

cevimeline_HA1E 2.88 0.001 0.84 0.421 EDEM3, UBE4B, CTSD, LRRC15, ID2, 
SRSF11, TRIM21, NUCKS1, PARP1, 
SH2D3A

chrysin_HA1E 3.10 0.001 0.86 0.386 EDEM3, PBRM1, GANAB, MRPL33, 
LARP4, NKRF, BMI1, NOC3L, CORO2A

amtolmetin-guacil_MCF7 2.81 0.001 0.88 0.330 EDEM3, ASB13, SCAMP1, TRAPPC6A, 
EP300, MFSD6, AZIN1, CIAO1

triamterene_HT29 3.04 0.001 0.95 0.188 TMEM106B, UGDH, ELOVL5, BNIP1, 
ZBTB11, PIH1D1
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and significance shown. We can see that, as expected, scores trend positively with sig-

nificance, and that TCS significance tends to favor smaller sets of driver genes (R = 0.72) 

while ES does not (R = 0.03) in Additional file  4: Figures  S3C and S3D. Furthermore, 

Additional file 4: Figure S3 shows a comparison between the positively identified fluv-

astatin perturbation for various proto-matrices. As a-priori signature sizes increase, we 

see fluvastatin migrate from lack of statistical significance to close and beyond TCS sig-

nificance at p < 0.05 and ultimately to ES significance at p < 0.05. �is may suggest that 

TCS is more capable of detecting enrichment for smaller gene set sizes.

Discussion

�e accurate portrayal of disease-gene and drug-gene complementary expression was 

the impetus for the development of dpGSEA. �ere are two features of dpGSEA that 

underscore its novelty in comparison to GSEA and other approaches, namely our 

indicator function denoting complementary disease-gene and drug-gene expression 

and the utilization of drug-derived gene set priors that include drug-gene modula-

tion information. GSEA, in its current state, is not capable of producing results that 

can be interpreted with directionality of modulation by gene set priors for enrich-

ment. Indeed, MSigDB gene sets, for example, only contain gene membership infor-

mation. In cases where enrichment does take modulation of expression within a gene 

set into account, such as those defined in the C6 and C7 collections, the represen-

tation of a single biologically-defined gene set is dichotomized into up and down 

regulated groups [16]. �is is less than ideal as interpretation of enrichment must be 

Fig. 3 Comparisons between dpGSEA show statistically significant differences between enrichment results. 

Plots a–d show trends and comparisons between dpGSEA (a, c) and GSEA (b, d) for the top 20 and top 50 

p value ranked proto-matrices (derived from LINCS data) identifying positively correlated genes. Plots a and 

b compare the top 20 ranked proto-matrices between dpGSEA and GSEA with each point representing an 

enriched drug in the final generated list. The labeled blue points all denote paclitaxel perturbated cell lines 

for the GEPNTs paclitaxel perturbation versus a GEPNTs DMSO control DE. The x-axis represents − log10 of 

the enrichment score (ES) p value and the y-axis − log10 of the target compatibility score (TCS) p value of 

corresponding perturbated drug cell line combination. The sub-axis lists the order of ascending significance 

for ES and TCS, respective of axis, that are also shown in tables E. The tables compare between the ranked 

orders for both ES and TCS with Wilcoxon signed rank test p values, suggesting the difference between 

dpGSEA and traditional GSEA results
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contextualized with two scores and two significance levels, making biological inter-

pretations difficult in cases where two sets of estimates may not be congruent. Fur-

ther, our results differ from those generated by traditional GSEA as shown by notable 

changes in rank of paclitaxel perturbated cell lines in Fig. 3, suggesting that the signa-

ture reversion principle plays a role when it comes to directionally influenced enrich-

ment. In addition, with respect to GSEA but unlike other methods, we report FDR 

results in dpGSEA analyses that reflect a combination of both sensitivity and specific-

ity metrics. However, in order to generate more specific accuracy metrics results like 

specificity and sensitivity, a simulation study of joint true drug perturbation and true 

DE (i.e. where the truth would be known for both) would be required to allow us to 

compare our candidate drug end results.

Fig. 4 Comparisons between the trends of scores and significance for dpGSEA and the CMAP native and 

gene2drug approach. Each point within each plot represents a screened drug’s significance and score within 

an equivalent run for dpGSEA (plots a, b), CMAP native (plot c), and gene2drug (plot d). Screened drugs that 

pass a designated FDR significance threshold (0.05) are shown in red, and screened drugs highlighted in 

green show statistically significant findings unique to dpGSEA’s novel TCS. Total number of screened drugs 

within specific significance thresholds are also shown, and it should be noted that the number passing 

FDR α = 0.05 using the GSEA-defined FDR threshold (plot a, b) is 121 while those that pass the BH defined 

threshold are 3 and 0 for CMAP and gene2drug, respectively (plot c, d)
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When compared to other drug screening approaches shown in Fig.  1b, we uniquely 

use both degree of modulation, as represented by DE significance, and directionality for 

enrichment. Methods such as gene2drug and DSEA require less conventional inputs, 

which will allow for application beyond transcriptomics but requires users to query with 

a single gene, a set of pathways, or a set of drugs without considering directionality of 

modulation [20, 21]. Although these approaches are versatile, dpGSEA takes advantage 

of the statistics generated in a DE experiment, making it uniquely postured for tackling 

transcriptomic drug screening. CMAP-native, L1000cds, and sscMAP approaches con-

sider directionality, but not DE significance, and instead use ordered lists or sets [22–

24]. Furthermore, we retain important aspects pivotal in GSEA’s success, such as score 

normalization and true FDR analysis in our approach [22, 24]. When comparing results 

between dpGSEA, CMAP native, and gene2drug, we see our approach provides for a 

greater number of drug screens that pass error correction. Our intrinsically less con-

servative GSEA-defined measurement of error is more appropriate for drug screening 

compared to the BH procedure. In our and other test cases the BH procedure shows 

strong bias towards exclusion of possible positive drug screens as shown in Fig. 4c, d, 

especially in cases of screens with high statistical significance, where the bias is most 

substantial (Additional file 1: Figure S1). �e BH procedure, and others like it, is insuf-

ficient in understanding false discovery in these drug screening approaches which calls 

for an inherent method such as the one we have applied. Furthermore, for exploratory 

screenings, a less conservative error analysis that maintains strict statistical rigor is ideal. 

As a result, dpGSEA is fundamentally different from the aforementioned approaches, 

and we believe it can be an effective tool for drug screening for transcriptomic DE exper-

iments. Furthermore, our novel statistic, TCS, serves as an alternative to the traditional 

ES by emphasizing gene rank with a DE experiment rather than statistical significance. 

It provides for another valid means of screening and, as shown in Fig.  4, elucidates a 

substantial number of otherwise ignored, but possibly important and effective, drug 

screens. �is allows future studies another avenue for justification of exploration for a 

specific drug or gene target of interest if ES significance is not met.

When testing dpGSEA we were able to positively identify drug perturbations of pacli-

taxel, parbendazole, doxorubicin, rosiglitazone, and fluvastatin in GEPNTs, but we want 

to emphasize that dpGSEA’s primary purpose is discovery screening rather than identifi-

cation. Our identification testing is a proof-of-concept for how our approach, in theory, 

can effectively apply the signature reversion principle in enrichment and detect drug 

perturbation signals for an external data set. We believe our true use-case test of dpG-

SEA on INR versus IR DE where mitochondrial and immunological associated drugs 

were found, is more revealing of dpGSEA approach’s capabilities.

Our scores, analogous to traditional GSEA scores, are rigorously generated while 

adjusted for false discovery to ensure the best possible accuracy. With respect to ana-

lytical studies based on DE analysis, i.e. all transcriptomic enrichment approaches, infer-

ences made by dpGSEA will rely upon the validity of the prior DE results generated for 

the first stage of the dpGSEA framework. In line with this point, a recent study sup-

ports the importance of ranking statistics in GSEA. As the authors state, “An important 

parameter, which could affect the final result, is the choice of a metric for the ranking 

of genes. Applying a default ranking metric may lead to poor results.” [33] Hence, the 
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important features of our approach include: (1) proto-matrices to capture more infor-

mation, (2) a more accurate Local Test Statistic such as the Empirical Bayes Moderated 

Statistic estimated in implementations of Limma or edgeR packages, and (3) error rate 

control procedures such as FDR selection.

Conclusions

We contend that our disease-gene and drug-gene complementary expression underpins 

the novel basis for dpGSEA, as well as the robust statistics controlled by multiple testing 

correction and the leading-edge driver genes generated by our approach. dpGSEA is an 

approach that uniquely enriches on drug-defined gene sets while considering direction-

ality of gene modulation, and we recommend dpGSEA as an exploratory tool to screen 

for possible drug targeting molecules.

Supplementary Information
The online version contains supplementary material available at https ://doi.org/10.1186/s1285 9-020-03929 -0.

Additional �le 1. Expanded methods including statistical approach, overall framework, reiteration of LIMMA statis-

tics, and FDR computation.

Additional �le 2: Figure S1. A comparison between the critical values of GSEA-defined versus Benjamini–Hoch-

berg defined error rate. Plots A, B, C, and D show analyses for the GSEA-defined FDR error rate in comparison with 

BH-defined FDR error rate for Fluvastatin using various proto matrices. Greatest departures of error rates (and critical 

values) are observed between GSEA-defined FDR and BH-defined FDR: at lower α (higher 1- α) levels, meaning that 

the GSEA-defined FDR error rate employed of our dpGSEA method tends to be less biased downward and therefore 

more conservative overall.

Additional �le 3: Figure S2. ES and TCS significance trends for Fluvastatin screens are shown for GEPNTs for various 

proto matrices. The six plots show trends between ES statistical significance (x-axis) and TCS statistical significance 

(y-axis). In these case, 6 different proto-matrices derived from CMAP data identifying correlated signatures for 

fluvastatin in GEPNTs are shown with plots B and E reaching statistical significance at the 10% and 5% level for TCS, 

respectively. Plots C and F both reach statistical significance at the 5% level for ES with the orange line denoting 

statistical significance at the 5% level

Additional �le 4: Figure S3. Trends normalized scores and leading-edge gene set size with their respective signifi-

cance are shown for a single fun of dpGSEA. Four plots are shown representing the trends for one run of dpGSEA 

using a CMAP FC Rank 20 proto matrix. Plot A shows drug screens’ normalized ES (x-axis) and respective ES statistical 
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