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Abstract 

The state of the art in the investigation of drugs release from Silica-based ordered 

Mesoporous Materials (SMMs) is reviewed. First, the SMM systems used like host 

matrixes are described. Then, the model drugs studied until now, including their 

pharmacological action, structure and the mesoporous matrix employed for each drug, 

are comprehensively listed. Next, the factors influencing the release of drugs from 

SMMs and the strategies used to control the drug delivery, specially the chemical 

functionalization of the silica surface, are discussed. In addition, how all these factors 

were gathered in a kinetic equation that describes the drug release from the mesoporous 

matrixes is explained. The new application of molecular modeling and docking in the 

investigation of the drug delivery mechanisms from SMMs is also presented. Finally, 

the new approaches under investigation in this field are mentioned including the design 

of smart stimuli-responsive materials and other recent proposals for a future 

investigation. 
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INTRODUCTION 

The application of ordered mesoporous materials like matrixes in drug delivery 

systems began in 2001 with the publication of the first article describing the discovery 

that ibuprofen could be loaded and released from MCM-41, a Silica-based ordered 

Mesoporous Material (SMM) [1]. A new class of host-guest system was thus 

established where the guest (the drug) were loaded into host (the mesoporous matrix) to 

be afterwards released by dissolution of the drug in an aqueous solvent. The fluid 

solvent, competing with the inorganic groups of the mesoporous SiO2 matrix, 

transported the drug through the mesoporous channels until it is released. The drug can 

be released as much in vitro as in vivo to a biological fluid like blood plasma to exert its 

therapeutic action in the human organism. 

From 2001, the scientific interest on this application of the SMMs has been 

exponentially growing, as it is demonstrated by the high number of publications since 

then (Fig. 1). As it can be observed in the figure, from the 2001 to 2014 over 3773 

articles and review papers were published using “mesoporous silica” and “drug 

delivery” or “drug release” as search criteria.  

 

Fig. (1). Evolution in the number of publications regarding the drug administration models from 

SMMs. Data obtained from ISI Web of Knowledge®.  
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On the other hand, if we made this search in Google Scholar® more than 27200 

results are found and 257000 doing that in Google®. This gives an idea of the interest of 

this subject for the specialized researchers and also for the whole society. 

Much has been advanced in this research field from the beginnings where the 

drug was released without know neither the adsorption and release kinetics nor the 

drug-matrix interaction mechanisms and without a control at demand of the release 

process. Nowadays, we can control the release of the drug, to know the kinetics of 

release, the interactions, essentially electrostatic, that govern the chemical interaction of 

the drug and the mesoporous matrix as well as other parameters that affect the release 

rate of the drug. 

Nevertheless, still much work remains to be done with the objective that the 

mesoporous matrixes release the drug of a selective manner in the human body. That 

supposes to carry out the drug to the site where its pharmacological action is needed and 

then release it from the matrix. That way, an intelligent drug delivery system, and not 

only controlled, would be created. 

In general, drugs are administered to human body by the following routes: oral, 

topical, inhalation, rectal or parenteral [2]. Nevertheless, the first application for the 

delivery of drugs in the humans with SMMs was not the administration by those routes, 

but to be included in clinical implants. It must be taken into account that inflammation 

and infection produce important problems in Orthopedic and Dental surgeries after the 

implantation [3-5]. For that reason, anti-inflammatory and antibiotics were the first 

drugs investigated to load SMMs, so that they were released in situ [6, 7]. Nowadays, its 

field of application was extended, with the introduction of new SMMs and drugs with 

further therapeutic actions as it will be described in this paper.  

The selection of the concrete SMM which is going to act like host for a specific 

the drug guest is essential for its correct therapeutic action. Therefore, it is necessary to 

know how to combine both factors of the more appropriate way, to establish a SMM-

drug system that increased the security and effectiveness in the administration of the 

drug. With this purpose it is necessary a deep knowledge of the characteristics of the 

mesoporous matrix and the drug, as well as the factors that regulate the interaction 

mechanisms of adsorption and release of the drug within the channels of the matrix. The 

application of in silico molecular modeling techniques, together experimental 

characterization techniques including Transmission Electron Microscopy, TEM, High 
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Performance Liquid Chromatography, HPLC, Nuclear Magnetic Resonance, NMR, and 

many others will help us to the understanding all these factors. 

This review article gives an outlook of the state-of the-art of the investigation in 

drugs delivery from SMMs and the future perspectives of research in this field. First, 

the main types of SMMs investigated for this purpose are described. The second section 

includes a comprehensive table of the SMM-drug model systems investigated until now 

classified by its therapeutic action, together another list  including representative 

examples of SMM- biological and food models. This is the core of the paper. Third 

section comprises the parameters influencing the release of drugs from SMMs including 

pore diameter, surface, pore volume, electrostatic forces, tortuosity of the channels and 

others. The fourth section presents the Higuchi model, the most used to adjust the drug 

release kinetics in these models. The fifth section describes the most common strategies 

used for control the drug release, like the matrixes functionalization with polar or apolar 

chains to tailor the drug-matrix interactions and consequently the kinetics of release. 

The sixth section describes how molecular modeling can be applied as a predictive tool 

in the release of drugs from SMMs and includes a few molecular models that have been 

reported. Finally, the main conclusions and future perspectives in this emergent research 

field are summarized. 

1. SILICA BASED ORDERED MESOPOROUS MATERIALS TO 

HOST DRUGS  

In general, SMMs have a structure or superstructure of intermediate complexity 

(mesostructure) containing pores with diameter ranging from 2 to 50 nm (mesopores). 

Ordered mesoporous materials can be or disordered and are based structurally on 

repetitive pores. Typically, they are constituted by silica or alumina exhibiting 

mesopores of uniform size. Furthermore, they can be also constituted by other oxides 

for example of niobium, tantalum, titanium, cerium, zirconium or tin [8].  

The load and release processes of a drug in a SMM, take place in the interphase 

fluid medium and porous solid. Thus, the adsorption of the drug by the matrix and the 

release process fairly depend on the nature of the porous solid. 

The synthesis of the SMM is basic to determine its nature. These materials are 

based on the sol-gel chemistry principles along with those of supramolecular chemistry. 
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To obtain ordered mesoporous materials, organic tensioactive acting as templates during 

the condensation of the inorganic precursors are used. During the process, a threshold 

value is reached, denominated critical micellar concentration, where the tensioactive 

molecules form molecular aggregates denominated micelles which are also grouped in 

supramicellar structures. In the synthesis of the SMMs the oligomers of silicate 

dissolved condense around the micelles that act as templates to form a solid that 

contains the tensioactive, which is eliminated by extraction with solvents or calcination. 

This way, and once eliminated the tensioactive agent, diverse geometries, including 

hexagonal, cubical or the lamellar that typically constitute in channels or cavities 

separated and supported by amorphous silica walls. The dimensions, topology and the 

chemical nature of the inorganic skeleton of the cavities determine the physical 

chemical properties of the mesoporous material. Such properties depend on the nature 

and concentration of tensioactive and the synthesis conditions including temperature, 

pH, saline total concentration and others. 

The type of the surfactant and the pH of the medium are the key factors affecting 

to the properties of the SMM obtained. Surfactants can be classified as cationic, anionic, 

neutral or non-ionic. The type of surfactant has great importance in the synthesis of 

mesoporous materials, since the nature of the phase is largely influenced by the 

interaction between the chemical species in solution and the surfactant. Basically, three 

types of interactions can be established: I– S+, in which the inorganic species in solution 

has negative charge (I–) whereas the surfactant is positively charged (S+); I+ S–, the case 

opposed to the previous one and the type in which both chemical species have not net 

electrical charge S0 (XI)0 (being X– the contra-anion). In all the cases it is necessary to 

consider that pH determines the charge of the chemical species that are going to form 

the inorganic skeleton of the material and consequently it controls the mechanism of 

interaction with the surfactant. Thus, the silica species in solution will be negatively 

charged at pH ≥ 9, whereas at pH neutral or weakly acidic the negative charge is very 

small, prevailing the Si–OH groups. For that reason, for the synthesis of SMMs, like 

MCM-41, MCM-48 and others, cationic surfactants (S+) like alkyltrimethyl ammonium 

bromide are performed under basic conditions, where silica species are present as 

anions (I-).  

On the other hand, for the SBA-15 synthesis, a neutral surfactant, such as 

Pluronic® P123, (HO(CH2CH2O)20(CH2CH(CH3)O)70(CH2CH2O)20H) is used at acidic 
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pH. In this case the synthesis pathway takes place through a double layer hydrogen-

bonding interaction that occurs between non-ionic surfactant (S0) and the X-I+ ionic 

pairs formed in the acidic medium. This synthetic route is used for SBA-n (n= 11, 12, 

15 and 16) and FDU-n (n= 1, 5 and 12). Other strategies based in neutral surfactants 

have also yielded to HMS and MSU families, whereas the S-I+ type, failed in the 

synthesis of SMMs when used acidic conditions, although it can be used to create the 

AMS-n family by working in basic conditions [9-11]. 

The great versatility in the synthesis of these materials is a great advantage, 

since allow its obtaining as discs, powders, microcapsules or nanoparticles, which opens 

a great number of possibilities for the administration of drugs guests. 

The necessity to create these SMMs, arise in the decade of 1990s. Their 

precursors are the zeolites, a type of silicates that are mainly used as catalysts in the 

cracking of petroleum to obtain gasoline or diesel combustibles. However, zeolites are 

microporous materials with pore diameter lower than 1 nm. This limits its applications 

to the adsorption of very small molecules, and most of drugs and biological molecules 

are greater than this size. For example, amoxicillin molecule is 1.1 nm lengths, 

erythromycin of 1.4 nm and there are many others of even bigger sizes. 

The necessity to obtain zeolites with greater pore size for the adsorption of 

molecules of greater dimensions to expand its field of application is what took to a 

group of scientists of Mobil Oil Company to synthesize a new family of compounds 

denominated M41S. These synthetic materials have pores of diameter between 2-10 nm, 

i.e. they are mesoporous but, in addition, their pores exhibit an ordered and very 

homogenous pore size distribution. Other characteristics, like high pore volumes of 

around 1 cm3/g and specific surface areas between 500-1000 m2/g, become these SMMs 

in very useful for the adsorption of elevated amounts of big molecules, like many drugs 

are.  

The first ordered mesoporous silica material used as drug host system was 

MCM-41 (Mobil Composite Matter number 41) and later on MCM-48 (Mobil 

Composite Matter number 48). Other, widely used later, was SBA-15 (Santa Barbara 

Amorphous number 15). All these structures are amorphous at the atomic scale, but they 

exhibit ordered mesostructures at the molecular scale and consist of pores in the form of 

channels [9-20]. MCM-41 has a flat hexagonal structure, whereas the one of MCM-48 

is cubical bicontinuous. 
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The SBA-15 structure is hexagonal plane like MCM-41 [21]. Nevertheless, the 

pore diameter of SBA-15 of around 9 nm (up to 30 nm with special synthesis 

conditions) is greater than the one of the approximately 3 nm of MCM-41 (can be up to 

10 nm). In addition, the SBA-15 structure also contains a microchannels system of that 

connect to the mesochannels. On the other hand, the pores of MCM-48, present a 

typical range size between 1.6 and 3.8 nm.  

The pores of MCM-41 and SBA-15 are longitudinal, whose cross-sectional 

section is similar to a hexagon, whereas MCM-48 has a tridimensional pore system, 

since the longitudinal pores produce intersections in the three directions of the space. 

These three materials, MCM-41, MCM-48 and SBA-15 have been traditionally 

used like hosts for the drug adsorption and still they are being investigated [22, 23]. 

This is due to that the inorganic silica, base of these mesoporous materials, has 

biocompatibility and a low cytotoxicity, which makes safe its administration in the 

human body.  

Fig. 2 shows the structures of MCM-48 and MCM-41 (similar to SBA-15). Later 

on, other ordered mesoporous silica materials, for that and other applications were 

investigated including FDU-5 [24], FDU-12 [25] (FDU coming from Fudan 

University), FSM-16 (Folded Sheet Mesoporous Material) [26], HMM-33 (Hiroshima 

Mesoporous Material) [27], PLGA-SiO2 (Poly-Lactic-co-Glycolic Acid) [28], SBA-16 

[29] or TDU-1 (Technical Delft University) [30].  

 

Fig. (2). Porous structures of: A) MCM-48 and B) MCM-41. (Modified from [31-33]). 
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These SMMs can be functionalized and then they are named adding to the 

acronym of the material (for example, SBA-15, MCM-41) the number of carbon atoms 

of the used alkyl chain for the inorganic functionalization (basically C8 and C18), for 

example, SBA-15-C8, the inorganic (basically - NH2 and - SH) or organic groups 

(basically -COOH) used, for example, MCM-41-NH2 or SBA-15-COOH and also 

composed like C3N+Me2C18 or derivatives of TMS (trimethylsilyl), and others. 

Furthermore the SMMs can be doped with metals like titanium (Ti-SBA-15, for 

instance) [34] or zirconium (like Zr-MCM-41) [35] and so on.  

All the properties of the SMMs native, functionalized or doped, especially by 

their textural properties (high surface area and great internal pore volume) are much 

appropriated for the drugs adsorption, even of a great size. In addition, the ordered 

distribution of its pores with linear channels, mainly in SBA-15 and MCM-41, favors 

the homogeneity in the diffusion of drug molecules, guaranteeing the reproducibility.  

2. HOST DRUG MODELS 

The drug guests are usually loaded in the SMM by impregnation from a solution 

containing the drug at constant temperature, until reaching the time at which the 

maximum adsorption of the drug in the mesoporous matrix takes place. 

In this stage, to choose the more suitable mesoporous material for the drug 

between all the available ones is very important [36], but also is the selection of the 

drug that is going to load in the matrix.  We have comprehensively compiled all the 

host-guest, SMM-drug, models as well as the main biological materials and nutritional 

complements investigated to date to be released from SMMs (Tables 1 and 2). 
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Table 1.  Drug models and silica ordered mesoporous matrixes (SMMs) investigated as 

drug delivery systems, with the pharmacological action and molecular structure. 

Categorie Drug –SMM models Molecular structures Ref. 

Analgesic Acetaminophen (Paracetamol) 

Analgesics, Non-Narcotic 

Antipyretics 

Matrix: SBA-15 

 
OH

O

N
H  

[37] 

Anti-bacterials 

 

Amoxicillin  

Antibiotic semisynthetic 

Beta-lactam 

Matrixes: SBA-15, MCM-41-

APTMS, MCM-41-CPTMS 

N

S

O

OH

O

HN

O

HO

H2N

H

 

[38, 39]  

 Ampicillin 

Antibiotic semisynthetic 

Beta-lactam 

Matrix: MCM-48-HMDS 

 

N

S

O

OH

O

HN

OH2N

H

 

[40] 

 Aztreonam 

Monobactam antibiotic 

Gram-negative infections 

especially of the meninges, 

bladder and kidneys 

Matrix: MCM-41 

O

OH
O

N
N
H

ON

S

O

O

HO O

S

N

NH2  

[41] 

 Cefalotin 

Cephalosporin first generation 

Beta-lactam antibiotic 

Matrixes: MCM-41, MCM-41-

APTES, MCM-41-VTES 

O

N

S
H

OHO

O

H
N

S

O

O

 

[42] 

 Cefalexin 

Cephalosporin first generation 

Beta-lactam antibiotic 

Matrix: SBA-15 
O

N

S
H

O

OH

H
N

O
H2N

 

[43] 

 Cefotaxime 

Cephalosporin third generation 

Beta-lactam antibiotic 

Broad-spectrum 

Matrixes: MCM-41, MCM-41-

APTES, MCM-41-VTES 

N

S

O
OH

O

H
N

O

N

O

S

N

NH2

O

O

H

 

[42]  

 Cefuroxime 

Cephalosporin second generation 

Beta-lactam antibiotic 

Matrixes: SBA-15, SBA-15-

MPTES, SBA-15-APMS, FDU-12, 

FDU-12-MPTES, FDU-12-APMS, 

MCM-41, MCM-41-APTES, MCM-

41-VTES 

 

N

S

O
HO

O

H
N

O

N

O

O

O
H2N

O

H

 

[42, 44]  
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 Ciprofloxacin 

Fluoroquinolone second-

generation  

Antibiotic 

Matrix: SBA-16-HA 

N

O

HO

N

NH

O

F

 

[45] 

 Clarithromycin 

Macrolide antibiotic 

Respirator and skin infections 

treatment 

Lyme disease treatment 

Helicobacter pylori treatment 

Matrixes: SBA-15, SBA-15-TREN 

O

O O

O

O

N

OH

HO

HO

HO

OH

O

O

OH

H

H

 

[46] 

 Doxycycline 

Tetracycline antibiotic 

Antimalarial 

Matrix: SBA-15 

O

H2N

OO

OH

OH OH

OH

HO

N

H H

 

[47] 

 Erytromycin 

Macrolide antibiotic 

Protein synthesis inhibitor 

Matrixes: MCM-48, FDU-5, FDU-

5-C8, SBA-15, SBA-15-C8, SBA-15-

C18, MCM-41, LP-Ia3d 

O

O

O

O

O

O

HO

HO

HO

OH

O

O

OH

N

 

[48-50] 

 Gentamycin 

Aminoglycoside antibiotic  

Broad-spectrum 

Ototoxic and nephrotoxic 

Matrixes: SBA-15, PLGA-SiO2 
O

O

HO
O

O

OH

HO

NH2

NH2

HN

H2N

HN

 

[51, 52] 

    Levofloxacin 

DNA replication inhibitor 

Synthetic fluoroquinolone 

antibiotic 

Matrix: MCM-41 

 

 

O

N

O

OH

O

N

N

F

 

[53] 

 Linezolid 

Synthetic oxazolidinone 

antibiotic 

Gram-positive bacteria resistant 

treatment 

Matrix: SBA-15 

ON
H

O
N

O

O N

F

 

[54] 

 Rifampicin 

Antibiotic semisynthetic 

Enzyme Inhibitor 

Antitubercular agent 

Nucleic acid synthesis inhibitor 

Leprostatic agent 

Matrix: SBA-15 

N

N

N

CH3

NH

O

O

OHOH

CH3

O

O
CH3

CH3

O

CH3

O

CH3

O

CH3

HO

CH3

OH

CH3

CH3

OH

 

[54]  
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 Vancomycin 

Glycopeptide antibiotic 

Gram-positive bacteria effective 

Penicillin-resistant 

Staphylococcus aureus treatment 

Matrixes: SBA-15, SBA-15-

MPTES, SBA-15-APMS, FDU-12, 

FDU-12-MPTES, FDU-12-APMS 

OO

Cl

HO

Cl

OH

O

O

O

NH2

OH

HO

OH

O

HO

N
H

H
N

OHOH

OH

H2N

OH

N
H

OH

HN

H
NHO

N
H

OH

OH

HO

NH

OHHO OH  

[44, 54, 

55]  

 

Anti-coagulant 

 

Coumarin 

Rodenticide 

Matrix: MCM-41 

O O

OH

HO

 

[56] 

Anticonvulsant Carbamazepine 

Antimanic  

Analgesic non-narcotic 

Matrixes: SBA-15, MCM-41 

N

O NH2  

[57, 58]  

 Diazepam 

Anti-anxiety 

Hypnotic and sedative 

Anesthetics intravenous 

GABA Modulators 

Muscle Relaxant 

Matrix: SBA-15 

 

N

N

O

Cl

 

[59] 

Anti-

depressives 

 

Sertraline 

Serotonin uptake inhibitors 

Major depressive disorder 

treatment 

Matrix: MCM-41 
Cl

ClHN

CH3

 

[60] 

  L-Tryptophan  

Dietary supplement 

Micronutrient 

Matrixes: SBA-15-C3N
+Me, SBA-

15-C3N
+Me2C18 

NH2

H
N

O

OH

 

[61] 

Anti-fungal Griseofulvin 

Anti-bacterial 

Skin and nails fungal infections 

treatment 

Matrix: SBA-15 

O

O

O
O

O

O
Cl

 

[59]  

 

 

Itraconazole 

Antiprotozoal 

14-alpha demethylase inhibitor 

Anticancer agent explored 

Matrix: SBA-15 
Cl

Cl

O

O

O

O
N

N

N

N

N

N

N

N

CH3

CH3

 

[62] 

 Ketoconazole 

Primarily fungal infections 

treatment 

14-alpha demethylase Inhibitor 

Matrix: SBA-15 
O

N
N

O
O

O

N

N

Cl

Cl

 

[59]  
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 Salicylic acid 

Anti-Infective 

Keratolytic 

Matrixes: SBA-15, SBA-15-NH2, 

SBA-15-COOH 
OH

O

OH

 

[63] 

 

 

 

 
 

Anti-histaminic Cinnarizine 

Piperazine derivative 

Calcium channel blocker 

Matrix: SBA-15 
N

N

 

[59] 

Anti-HIV Stavudine 

Antimetabolite 

Nucleoside analog reverse-

transcriptase inhibitor 

Matrix: SBA-15 

H
N

N

O O

O

HO  

[37]  

Anti-

hyperglycemic 

Glyburide (glibenclamide) 

Hypoglycemic 

Anti-arrhythmia 

Antidiabetic 

Matrix: SBA-15 

O

N
H

O

S

O

O H
N

H
N

O

Cl

 
 

[64] 

Anti-

hypertensives 

Aliskiren 

Renin inhibitor 

Essential (primary) hypertension 

treatment 

Matrixes: SBA-15, SBA-15-MgO 

 
O

N
H

OO

O

OH

O

NH2

NH2

 
 

[65] 

 

 

Atenolol 

Adrenergic beta-1 receptor-

antagonist 

Sympatholytic 

Matrixes: MCM-41, SBA-15 

O

NH2

O
H
N

OH

 

[66, 67]  

 Captopril 

Angiotensin-converting enzyme 

inhibitor 

Matrixes: MCM-41, MCM-41-

TMCS, SBA-15, SBA-15-MgO, 

MCM-48-YVO4:Eu3+ HS

O

OH

O

N

CH3

 

[65, 68-

70]  

 

 Carvedilol 

Vasodilator  

Adrenergic alpha-1 receptor 

antagonist 

Adrenergic beta-antagonists 

Matrixes: SBA-15, MCM-41 

N
H

O

O

OH

O

NH

 

[71, 72]  

 Lacidipine 

Calcium channel blocker 

Relaxing and opening up the 

blood vessels 

Matrix: SBA-15 N
H

O

O

O

O

O

O

 

[73] 

 Metropolol 

Adrenergic receptor antagonist 

Sympatholytic 

Anti-arrhythmia  

Matrix: SBA-15-MPTMS 

N
H

O

O

OH  

[74] 
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 Nifedipine 

Dihydropyridine 

Calcium channel blocker 

Chronic stable angina 

Matrix: SBA-15 N
H

O

O

O

O

N+

O

-O

 

[59, 75]  

 Nimodipine 

Dihydropyridine 

Calcium channel blocker 

Vasodilator 

Matrix: SBA-15 

HN

O

O

OO

N+

O O-

O

 

[76] 

 Propanolol 

Anti-arrhythmia 

Vasodilator 

Adrenergic beta-antagonist 

Matrix: MCM-41 

O

OH

N
H

CH3

CH3

 

[77] 

 Ramipril 

Angiotensin-converting enzyme 

inhibitor 

Congestive heart failure 

treatment 

Muscle relaxant 

Matrix: SBA-15 

N

O
OH

O

N
H

O

O

H

H

 

[78] 

Anti-

hypocalcemics 

 

Alendronate 

Bone density conservation agent 

Antiresorptive 

Matrixes: SBA-15, SBA-15-NH2, 

SBA-15-PO4, MCM-41, MCM-41-

NH2 

P

P
OH

OH

OH

HO

HO

O

O

NH2

 

[79-85]  

 Zolendronate 

Bone density conservation agent 

Antiresorptive 

Matrix: SBA-15 

 

P

O

HO

HO

N

N

OH

P

OH
HO

O

 

[86, 87]  

Anti-Infectives 

 

Chlorhexidine 

Disinfectant 

Mouthwashes 

Matrix: MCM-41 

NH

H
N

N
H

NH

H
N

N
H

NH

H
N

N
H

NH

Cl

Cl

 

[88] 

 Nitrofurazone (nitrofural) 

Bactericidal 

Antibiotic 

Matrix: MCM-41 

N
H

O

NH2

N
O

N+

O

-
O

 

[89] 

 

 Sulfadiazine 

Coccidiostat antiprotozoal 

Matrixes: SBA-15, MCM-41, 

MCM-41-NH2, MCM-41-COOH, 

SBA-15-COOH 

S

O

O

H
N

H2N

N

N

 

[90] 
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Anti-

inflammatory 

non-steroidal 

 

Aspirin (Acetylsalicylic acid) 

Fibrinolytic  

Antipyretic 

Cyclooxygenase Inhibitor 

Matrixes: MCM-41, MCM-41-Al, 

MCM-41-APTES, SBA-15 

O

OHO

O

H3C

 

[91-94]  

 Diflunisal  

Salicylic acid derivative 

Analgesic 

Matrix: MCM-41-Al O

OH

OH

F F  

[95] 

 Fluribuprofen 

Analgesic non-narcotic 

Cyclooxygenase Inhibitor 

Matrix: FSM-16 

F

HO

O

H3C

 

[26]  

 Ibuprofen  

Analgesic non-narcotic 

Cyclooxygenase Inhibitor 

Matrixes: MCM-41, MCM-41-

NH2, MCM-48, LP-Ia3d, FDU-5, 

SBA-15, TDU-1, MCM-41-HMDS, 

MCM-41-AEPTMS, MCM-41-

APTES, MCM-41-DMS, MCM-41-

TMS, Ti-SBA-15, SBA-15-GA 

 

OH

O

CH3

CH3

CH3

 

[1, 30, 

49, 96-

106]  

 Indomethacin 

Cyclooxygenase Inhibitor 

Cardiovascular 

Tocolytic 

Gout Suppressant 

Matrixes: MCM-41, SBA-15, SBA-

16 

Cl

O

O

OH

O

N

CH3

H3C

 

[59, 64, 

107, 

108]  

 Ketoprofen 

Analgesic 

Antipyretic 

Cyclooxygenase inhibitor 

Matrix: SBA-15-APTES 

HO

O

O

CH3

 

[109] 

 Mesalazine 

Inflammatory bowel disease 

treatment 

Ulcerative colitis treatment 

Matrixes: MCM-41, MCM-41-

NH2, MCM-41-COOH 

HO

OHO

NH2  

[110] 

 Naproxen  

Analgesic 

Antipyretic 

Matrix: MCM-41 
O

OH

CH3

O

CH3  

[111] 

 Phenylbutazone 

Analgesic 

Antipyretic 

Matrix: SBA-15 
O

O

N

N

CH3

 

[59]  
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 Piroxicam 

Oxicam class 

Arthritis treatment 

Cyclooxygenase inhibitor 

Matrixes: MCM-41, SBA-15 S

N

HN

N

CH3

OH

O

O O  

[112, 

113] 

Anti-

inflammatory 

steroidal 

 

Dexamethasone 

Glucocorticoid 

Antineoplastic 

Antiemetic 

Matrixes: SBA-15, MCM-41  

 

F

HO

HO O

OH

O

CH3

CH3H3C

HH

 

[114] 

 Methylprednisolone 

Glucocorticoid 

Antineoplastic 

Matrixes: SBA-15, SBA-16, MCM-

41, FDU-12 

HO

HO

O

OH

O

CH3

CH3

CH3

HH

H

 

[115] 

 Prednisolone 

Glucocorticoid 

Antineoplastic 

Matrixes: SBA-15, SBA-3, FDU-12 

 

HO

HO

O

OH

O

CH3

CH3

HH

H

 

[116] 

Anti-lipemic Fenofibrate 

Fibrate class 

Hypolipidemic 

Reduces LDL and VLD levels 

increasing HDL levels 

Reduces triglycerides level 

Matrix: SBA-15 

 

ClO

O

O

O

CH3

CH3

CH3

CH3

 

[59]  

Anti-

neoplastics 

 

Camptothecin 

Phytogenic 

Topoisomerase I Inhibitor 

Matrix: MCM-41 

 
O

O

O
HO

CH3

N

N

 

[117, 

118]  

 Cisplatin 

Cross-linking reagent 

Radiation-sensitizing agent 

Matrixes: MCM-41, SBA-15, 

MCM-41-APTES, MCM-41-PNTES 

Cl

Cl

Pt

H2N

H2N

 

[119, 

120] 

 Desatinib 

Tyrosine kinase inhibitor 

Chronic myelogenous 

leukemia agent 

Matrix: SBA-15 

S

N

O

H
N

NH

N

N

N
N

OH

Cl

 

[121] 

 

 Doxorubicin 

Anthracycline antibiotic 

Administered only into a vein 

Isolated from cultures of 

Streptomyces peucetius var. 

caesius 

Matrix: SBA-15-FA 

OO

HO

HO

OH

OH

O

HO

O

O

O

NH2

H3C

CH3

 

[122] 
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 Irinotecan  

Phytogenic 

Radiation-sensitizing agent 

Topoisomerase I inhibitor 

Prodrug 

Matrix: MCM-41-NH2 

O

O

O
HO

O

O

N
N

N

N

CH3

CH3

 

[123] 

 

 Methotrexate 

Antirheumatic 

Folic acid antagonist 

Nucleic acid synthesis inhibitor 

Matrix: MSM-Al 

 
O OH

O

OH

O

N
H

N

N

N

N

N

NH2

H2N  

[124] 

Anti-

thrombotic 

Cilostazol 

Fibrinolytic  

Platelet Aggregation Inhibitor 

Bronchodilator  

Phosphodiesterase 3 Inhibitor 

Vasodilator 

Neuroprotective 

Matrixes: MCM-41, MCM-48 

O

O

N

N

N
N

N
H  

 

[125] 

Anti-ulcer 

 

Famotidine 

Histamine H2 antagonist 

Matrixes: SBA-15, SBA-15-

COOH, SBA-15-COOH-TMS, 

MCM-41, MSU-1 -2 -3 

 

S
S S

O

O

N

NH2N
N

H2N
NH2

H2N

 

[126-

128] 

Diuretic Furosemide 

Sodium potassium chloride 

symporter inhibitor 

Matrix: SBA-15 

Cl

SO

O

O

OH

O

HN NH2

 

[129] 

Endiometriosis 

treatment 

Danazol 

Synthetic steroid ethisterone 

Gonadotrophins suppressor 

Matrix: SBA-15 
HO

O

N

CH3

CH3

CH

HH

H

 

[59]  

Steroid Progesterone 

Progestins 

Contraceptive Agents 

Matrix: SBA-15 

O

O

CH3

CH3

CH3

HH

H

 

[37]  

List of abbreviatons: APTMS: 3-aminopropyltrimethoxysilane; CPTMS: 3-chloropropyltrimethoxysilane; 
HMDS: hexamethyldisilazine; APTES: 3-aminopropyltrietoxysilane; VTES: trietoxyvinylsilane; APMS: N-(2-
aminoethyl)-aminopropyl dimethoxymethylsilane; MPTES: 3-mercaptopropyl triethoxysilane;  HA: Calcium 
phosphate hydroxyapatite; TREN: tris(2-aminoethyl) amine; TMCS: trimethylchlorosilane; MPTMS: 3-
mercaptopropyl trimethoxysilane; HDMS: 1,1,1,3,3,3-hexamethyldisilazane; AEPTMS: 3-(2-aminoethylamino) 
propyltrimethoxysilane;  DMS: dimethyl sulfide; TMS: tert-butyl mercaptan; GA: glutaraldehyde; PNTES: 3-
propanonitrile triethoxysilane; FA: Folic acid; MSU: Michigan State University mesoporous matrix. 
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Table 2.  Biological and food models in SMMs used as delivery systems. 

Biological &Food-matrix models Molecular structures References 

Allyl isothiocyanate  

Flavouring agent 

Rubefacient 

Cancer chemopreventive in vitro 

Matrix: SBA-15 

 

N

C

S

 

[65, 130] 

Bovine serum albumin (BSA)  

Transport protein 

Biochemical applications 

including immunohistochemistry 

and immunoblots 

Matrixes: SBA-15, SBA-15-NH2  

[131, 132] 

 

Chicago Sky Blue 6B 

Potent L-glutamate inhibitor 

Matrix: SBA-15 

 

 

 

 

Na
+

Na
+

Na
+

Na
+

SO O

O
-

S

O

O

-
O

O

N

N
H

O

O

H
N

N S

O

O

O
-

S OO

O
-

O NH2

NH2

 

[133] 

Pentagastrin 

Pentapeptide synthetic 

Effects like gastrin 

Diagnostic agent 

Matrix: MSU-Tween-80 

 

 

S

O

O

O
O

OH

O

O

O
O

H
NHN

N
H

HN

HN
HN

H2N
CH3

CH3

CH3

 

[134] 

 

L-Phenylalanine 

Intermediate neuriotransmisor 

Dietary Supplement 

Micronutrient 

Matrixes: SBA-15, SBA-16 

NH2

O

OH

 

[135] 

PTHrp (107-111) osteostatin 

Bone formation regulator 

Matrix: SBA-15 N O

H

H

H
H

H

N

O

H

H

H

HH
H

H

HH

N

O

O

O

H

H H

H

H
H

NO
H

H

HHH

N

O

H
H

H

H
H

H
H

H

H

H

H
H H

H

 

[136] 

Zn(II) benzoate complexes 

Food preservative 

Bactericidal  

Insecticide amd acaricid 

Matrix: SBA-16 

OO

benzoate ligand 

[137] 
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Fig. (3). Summarizing of Tables 1 and 2 to visualize more clearly the main SMMs and families and 

drugs investigated until now as host-guest systems. 

 As it can be observed in Fig. 3, SBA-15 and MCM-41 matrixes are, as much, the 

more profusely matrixes investigated until now because both together represent 76% of 

the mesoporous systems studied. Regarding the families of drugs released, the situation 

is more balanced although three categories: antibacterials, antiinflammatory and 

hypertensives represent the 50% of total. However, the category of antineoplastics is 

trending to increase, reaching a great importance in the actual research in mesoporous 

nanoparticles, which are out of the scope of this article.   

Therefore, the selection of the SMMs for a specific drug is not simple if we treat 

to find a host-guest pair for the optimal release of the drug. In principle, such selection 

must be randomized in a trial and error strategy with the different SMMs and drugs 

available. Nevertheless, this task cost time and money and, sometimes, it is not reliable. 

Initially, the SMM was chosen considering only the size of the drug molecule. With this 

single parameter, almost any SMM would be valid to host the most part of the drugs 

investigated. However, although the drug was small enough to penetrate into the pores 

of the matrix, other factors must be considered. For instance, the lipophilic or 

hydrophilic nature of the drug can be incompatible with the matrix. Moreover, the SMM 

and drug can present electrostatic charges repulsion. Anyone of these factors would 

prevent the use of that matrix for that specific drug. 

One of the technological ways to solve this problem of absorption via oral in 

these drugs is the guest-host system drug-SMM that helps to the drug absorption 

because it is encapsulated in the matrix. That is an important application of the 

mesoporous silica matrixes. The resolution of this technical problem can be reached 

with other materials, but the added value of the SMMs is, in general, that they are able 



 20 

to adsorb great amounts of water. This ability of SMMs is important for an effective 

entrance and delivery of the drug. It is necessary to consider that the drug when released 

it is linked to the matrix in dry conditions and it must be dissolved by the aqueous fluid 

coming into the SMM channels. Thus, it is established a concentration gradient favored 

by the fast absorption of the fluid into the pores of the mesoporous material. 

However, there are more aspects that must be taken into consideration. For 

instance, a drug can be essentially lipophilic, like ibuprofen, or essentially hydrophilic, 

like vancomycin [138]. This fact not only influences its absorption in the organism, but 

it is also an important parameter to consider in the delivery of a drug from a hydrophilic 

silica matrix that does not dissolve in aqueous fluids. 

Therefore, in the election of a drug model for its delivery from SMM, besides 

the size of the molecule, it is necessary to consider other factors related with the 

diffusion or the interactions with the matrix, as it will be detailed in the next section. 

On the other hand, to know if a drug was loaded in a SMM, indirect methods 

were used, for instance determining the reduction of the surface area and pore volume 

of the matrix. This changed when for the first time Vallet-Regi et al [139] in 2010 used 

the Scanning Transmission Electron Microscopy (STEM) to visualize with atomic 

resolution the SBA-15 and SBA-15-NH2 SMMs. STEM equipped with aberration 

corrector is able to determine the distribution of silicon, oxygen, nitrogen and carbon, 

through the mesoporous silica network. This way, the presence of zolendronate inside 

the channels of the mesoporous matrix was confirmed. 

Nevertheless, to obtain the total amount of drug adsorbed in a SMM it is 

necessary to use indirect methods like thermogravimetry, porosimetry and other 

methods of chemical analysis [140-146]. 

3. FACTORS INFLUENCING THE DRUG RELEASE FROM 

SILICA ORDERED MESOPOROUS MATRIXES  

In this section, the main factors that take part in the process of release of a drug 

from SMM, in their great majority common and related to the process of adsorption of 

the drug in the matrix, are described. 

3A. Pore diameter 
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As we previously established, the diameter pore that acts like selective sieve, 

determines if a drug, by size, can penetrate into the pore channels [131]. This way, and 

considering only the sieve effect of pores, although any SMM would be suitable to 

adsorb small size drugs, MCM-41 usually is used due to its great stability. In addition, 

MCM-41, as MCM-48 and SBA-15, presents the advantage to be easily functionalized, 

which has great importance in the controlled release of drugs guests, as we will see 

later.  

As an example and due to its small size, ibuprofen can be loaded in any SMM. 

For other drugs of greater size like the glycopeptide vancomycin (C66H75Cl2N9O24) or 

others of similar size, it is preferable to use SBA-15 as first option to be sure that these 

drugs will be able to be included within its pores [54, 147-150].  

In any case, it is necessary to notice that the fact that a drug can penetrate by size 

within pores does not guarantee that this will happen, because there are other factors 

that influence, as we will see ahead in an example of application of molecular models. 

Such factors can produce a rejection of the drug molecules by the inorganic or organic 

components of the channels of the mesoporous matrix.  

3B. Surface 

 When the drug to be loaded is of a size much smaller than the pores of the 

matrix, most of the drug molecules are not adsorbed to the pores surface. This is due 

that only a few of them can directly interact with the matrix surface and the remaining 

molecules do not interact with the surface and they are not retained. This is a relevant 

fact that was investigated by Vallet-Regi et al. in a model of alendronate from MCM-41 

and SBA-15 matrixes [131]. Experimental results of Vallet-Regí et al indicate that 

MCM-41 is able to load more alendronate than SBA-15 (surface area= 719 m2/g) 

because in MCM-41 (surface area= 1157 m2/g) the contact surface with alendronate is 

higher than that of SBA-15. 

The molecules are confined inside the pores through the attractive interaction 

with the internal mesopore walls. It is rational to consider the opposite process, that is 

the release of the adsorbed drug, will also depend on the material surface area. In fact, 

different experiments have shown that when the surface area of a SMM is very high, 

there is a great molecular retention and as a result a slower drug release in comparison 

with materials exhibiting smaller surface areas. The extra interactions of the drug 
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molecules with a higher surface available are responsible of retard in the kinetics of 

release of the drug [131]. 

3C. Pore volume 

 Pore volume is an important parameter for great size molecules. The pore 

volume determines the available space to load molecules of drug. Whichever greater is 

the pore volume, greater will be the load [151], which also influence the drug release. In 

case of small volume of pores, the channel of the matrix could be occluded with the 

drug molecules.  

3D. Electrostatic forces 

When the drug contacts with the mesoporous matrix, interactions by electrostatic 

forces of the partial charges produced by the movement of the electrons are established. 

The native silica in normal conditions has negative electrostatic charges with uniform 

zones of a great electron density. However, the drug molecule can be exclusively 

charged by positive charges, with deficit of electrons, negative, rich in electrons, or, the 

most habitual case, to exhibit zones of partial charges positive and negative in different 

positions of the molecule. It is understood that if the charges are of equal sign, they will 

be repulsed. Therefore if the drug is highly charged of negative electronic density, 

cannot penetrate into the pores, although it could be possible if size were the only 

criterion.  

Nevertheless, when electrostatic forces of different sign between the guest and 

the mesoporous host are established, they must influence the drug retention in the 

matrix channels. We will come back to it when we will study the application of the 

molecular modeling to the drug release from SMMs. 

3E. Tortuosity of the channel  

In the diffusion of the drug through a porous matrix, a factor to consider is the 

tortuosity of the channel. Nevertheless, and due to the property of SMMs to adsorb 

great amount of fluid as a sponge and the homogeneity and linearity of its channels, 

tortuosity is not a significant factor in the release of the drug from a SMM even in a 

priori more winding materials like MCM-48.  

The fact that the material tortuosity does not significantly affect the kinetic of 

release was shown in a model with ibuprofen and MCM-48 and SBA-15 like matrixes. 
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Izquierdo-Barba et al [152] experimentally demonstrated that there are no significant 

differences in the velocity of delivery of ibuprofen from MCM-48 and SBA-15, 

according to the obtained values using the Noyes-Whitney equation and the application 

of the first Fick´s law [153].  

3F. Other factors 

Another factor to be considered is the lipophilic or hydrophilic nature of the 

guest-host system. In principle, the mesoporous silica matrix is hydrophilic and does not 

dissolve in water, but that can change if the material is modified after be functionalized. 

This parameter influences both the adsorption of the drug and its delivery. 

Other factors that influence the delivery of a drug, like pH, temperature or 

pressure, usually are kept constants in the trials. Being thus, they cannot influence in the 

kinetic of release of the drug. But if they are modified those three parameters exert their 

influence in the release process. For instance, Rosenholm et al [154] demonstrated that 

the interface chemistry of SBA-15 is pH dependent and it is controlled by the type of 

silanol groups (Q2 (Si(OH)2(OSi)), Q3 (Si(OH)(OSi)3) and Q4 ((Si(OSi)4)).  

 Finally, is necessary to consider that the singular SBA-15 micropores that 

connect the mesoporous channels are too small so that the drugs commonly used as 

models are introduced into them. For this reason they do not influence the delivery of 

the drug and they are not considered as a factor that takes part in the drug release. 

The challenge consists in the evaluation of the specific participation of each 

factor that govern the drug delivery, to be able to find out how it works their mechanism 

of action and to act consequently, to release the drug in a controlled way. 

4. RELEASE KINETICS OF THE DRUG 

Once established the main factors that take part in the release of a drug from 

SMMs it is necessary to establish the type of kinetic that is going to govern that process. 

In the materials that we are reviewing, the objective is that the drug was released in vivo 

from the matrix by a biological fluid. Due to it, in the kinetic tests of drug delivery a 

common alternative is the use of solutions mimicking plasma, like the Simulated Body 

Fluid (SBF) proposed by Kokubo et al [155], isotonic serum or just a buffer at pH 7. In 

addition, to simulate better the in vivo conditions of plasma temperature usually is about 

37ºC at atmospheric pressure and all under stirring. 
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Like in the process of adsorption of the drug in the mesoporous matrix, the drug 

can be adsorbed in the outer or in the inner part of the channels. Thus, two delivery 

stages are observed. The molecules of drug adsorbed in the outer part of the matrix are 

quickly released, whereas the adsorbed ones within the channel exhibit a slower kinetic, 

since the diffusion of the drug is faster on the surface that within the pores. 

The fact that it is not possible in principle, to establish a traditional kinetics of 

order, zero, one or two, in the kinetics of administration, delivery and degradation of a 

drug, it is difficult to compare different kinetic models mesoporous matrix-drug. To 

solve this problem made the mesoporous models comparable to each other, Higuchi 

[156] established being based initially on the Fick´s law, one kinetic equation: a = kt ½ 

to calculate the constant observed of the reaction of release (k), that makes it dependent 

on the square root of the time (t ½) and the concentration of the drug (a). This equation, 

adapted for the first mesoporous material-drug model, is suitable for a model of release 

of the drug from the matrix when the diffusion takes place through pores full of 

dissolvent. Then, it establishes that the equation is: k= f (D, ε, τ, C, A), reuniting the 

main factors that take part in the release of a drug since D is the diffusion of the drug in 

the dissolvent, τ the tortuosity factor of the system, ε the porosity of the matrix, A the 

total amount of drug in the matrix and C the solubility of the drug in the solvent used.   

Thus, the release of the drug can be experimentally evaluated by the calculation 

of the kinetic constant observed for the drug release from the matrix for concentrations 

or percentages of release of the drug determined by using analytical techniques such as 

UV spectrometry or HPLC. In addition, the percentage (or milligrams) of drug released 

with time can be represented by a straight line. A typical profile of kinetic of release in 

a SMM - drug model in which a first stage of quick release is observed and later a 

sustained release (Fig. 4). 
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Fig. (4). Release of a drug from a SMM. A) Quick stage. B) Sustained step. (Unpublished results) 

 Higuchi equation that is applied in these models was modified by several 

authors, for example Dash et al [157], introducing new factors, to make it more 

effective.  

5. CONTROLLED RELEASE OF DRUG: FUNCTIONALIZATION  

In the initial works of drug release from SMMs of MCM-41 and SBA-15, it was 

still not had knowledge sufficient to obtain a really controlled delivery of the drug. For 

example, in the pioneering work of Doadrio et al [52] they demonstrated that it is 

possible to load and release a drug of greater size than ibuprofen used like first model 

from a SMM with pore diameter greater than that MCM-41, also used till then like a 

model, without collapse the matrix channels. It was an important first step. But the 

model of gentamicin-SBA-15 used, like other contemporary ones, although very 

reproducible does not control at demand the delivery of the drug. 

In that work, it is demonstrated that the kinetic of release is time dependent and 

that it is similar as much in the material as powders or as pellets. In the plot of 

gentamicin release (Fig. 4) the two stages described in the previous section are 

observed. In the first one, a fast delivery (60%) of the drug takes place in the first hour, 

attributed to its weak interaction in the surface of the matrix. In the second, a slower 

delivery of gentamicin (up to 100%) takes place until 24 h, due to the progressive 

release of the drug from the interior of the pores of the matrix [49]. This will be 

confirmed later with the application of molecular modeling and docking techniques. 

Results of similar profiles of release following the kinetics of Higuchi with other 

drugs, like the amoxicillin, were obtained [38]. Nevertheless, in this case, the drug 

release from the SBA-15 is more sustained. Indeed, there are not two identical models, 

reason why in the interpretation mechanism of release of a drug, we only have the 

security that is valid for the considered drug-matrix model, but in another model it could 
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be different. However in this review paper of computer-assisted mechanical-quantum 

models has not been considered yet. 

A considerable advance in the effective control of the drug release from SMMs, 

took place when the silica base of the matrix was functionalized. This functionalization 

allows an effective control on the kinetics of release of the drug, through several factors. 

In the first place, since the size and tortuosity of pores are inherent to the internal 

structure of the matrix, if they are modified, is carried out an alteration of the flow and 

therefore, also of the kinetic of delivery of the drug, that can be slowed down. The 

functionalization involves a decrease in the diameter and volume of pores, by the 

interaction of new groups to the silica matrix, which increases the tortuosity of the 

channel. Second, the hydrophilic capacity of the silica is modified, which can diminish 

until be converted into a lipophilic matrix, if we introduce sufficient number of carbon 

atoms, or conversely it can be increased if including new highly hydrophilic groups. 

Finally, new electrostatic drug-matrix interactions will be established, which will 

diminish or increase the negative electron density of silica surface.  

In addition, drug-matrix hydrogen bonds can be established and even between 

two groups of matrix when is functionalized with - NH2 groups, that also must be 

considered. Functionalization of the matrix with apolar groups can be obtained (i.e. 

C18, C8) or with polar groups (like -NH2, -SH, -COOH). For example, the 

functionalization with C8 and C18 chains are made introducing 

octyldimethylchlorosilane molecules (CH3(CH2)7Si(CH3)2Cl) or octadecyldimethyl 

chlorosilane (CH3(CH2)17Si(CH3)2Cl), respectively, over the silica surface, which will 

react to interact the carbon chains and the silanol groups. In this way the lipidic 

character of the material is increased.   

The question is what percentage of silanol groups is functionalized. In the case 

of the functionalization with C18 chains, very voluminous alkyl silane chains are 

created that are randomly arranged, reason why all cannot react with the silanol groups 

by steric effect. That way, approximately the 2.5% of -OH groups in the silica surface 

remains unreacted [158]. Thus, if the functionalization is made in the suitable 

conditions, the channels of the mesoporous material would not be occluded. 

Nevertheless, the functionalization can lead in some cases, an obstruction of the 

mesoporous material pores. For example, Izquierdo-Barba et al. [49] discovered that the 
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functionalization of MCM-48 with C18 chains covers all the pores of the mesoporous 

material and prevents the access of the drug to the inner of the channel.  

The release is generally slower from the functionalized matrix, with respect to 

not functionalized. A comparative example of the modification of the vancomycin 

kinetic release when SBA-15 is functionalized with C8 is shown in Fig. 5. In the figure, 

a smaller velocity of release in the functionalized material (k= 0.068 min-1/2) with 

respect to not functionalized is observed (k= 0.89 min-1/2) [55]. In analogous studies 

differences between the functionalized and non-functionalized matrixes regarding the 

drug delivery were also observed [159]. 

 

Fig. (5). Profiles of the delivery plots of a model of vancomycin in: A) SBA-15 and B) SBA-15-C8 

(Modified form [55]).  

In a study about the influence of the matrix functionalization in the drug 

delivery, functionalizing SBA-15 with C8 and C18 chains and using erythromycin as 

model drug, it was demonstrated that the release rate diminishes when the number of 

hydrophobic –CH2- groups – increased [48].  

Therefore, it has been demonstrated that, with the suitable functionalization, the 

release of a drug from a SMM can be controlled.  Nevertheless, with the data described 

until now all the factors that govern the adsorption and delivery of the drug in the 

mesoporous matrix are not completely described. This situation changes when 

molecular modeling analysis is combined together with the  experimental data that we 

will describe in the following section. 
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6. MOLECULAR MODELING APPLICATION TO SILICA 

ORDERED MESOPOROUS MATERIALS – DRUG SYSTEMS 

The recent introduction of the in silico molecular modeling analysis in the the 

drug release investigation from SMMs, supposes a significant advance in the 

interpretation of the drug-delivery mechanism from mesoporous matrixes, since it 

allows establishing the interactions by electrostatic charges and hydrogen bonds in the 

guest-host models. 

The importance of using these models in chemistry was recognized in 2013 with 

the concession of the Nobel Prize in Chemistry to Karplu, Levitt and Warshel by the 

development of multiscale models of complex chemical systems [160]. These advanced 

models are tools mainly predictive, that allows approaching reality and can to establish 

if a reaction is going to happen or no, to design new materials or drugs, to know how 

certain proteins respond to polluting agents or drugs, to determine the interactions drug-

receptor and more applications. At the moment, these models have such predictive 

power that Chemistry experiments can be done in computer instead of in the 

conventional laboratory, which saves time and money. 

  Appling this techniques to the silica-based ordered mesoporous materials and 

with appropriate software, it can be constructed the structure of a mesoporous material, 

such as MCM-41 and SB-15 in a 3D representation. Then, the minimum energy 

configuration, the electrostatic potential map, and other parameters of this structure can 

be calculated by semiempirical or ab initio mechanical-quantum methods. These 

calculations facilitate the comprehension of the mechanism of release of the drugs 

because the power of the computer calculations of the theoretical models provides the 

necessary information to understand these processes. For that reason, they must become 

in essential tools for experimentalist chemical, in general, and specifically for the study 

of the SMMs. 

For instance, it could be constructed the electrostatic potentials maps of the 

drugs included in Table 1, that could be used, among other applications, to predict what 

functional group of the drug molecule interacts with the matrix of silica, native or 

functionalized. This can be visualized by a representation in a gradient of molecular 

electrostatic potentials map that has been obtained from the mechanical-quantum 

calculations. In these map the atom zones rich in electrons are usually represented in red 
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and the deficit in electrons in blue. Other colors (green and yellow) usually are uniform 

and representative of covalent bonds or electron delocalization of pi bonds.  

Next a representative example of the application of these electrostatic potential 

maps the SMM-drug system based ibuprofen is presented. If we observed at detail this 

electrostatic potential map optimized by an ab initio method (Fig. 6), zones of negative 

charges rich in electrons and others of positive charge can be observed. Nevertheless, 

zones of positive charge predominate in the molecule. The figure also shows that the 

positive charges are mainly oriented towards the outer part of the molecule. This way, 

and because ibuprofen molecule is small enough to penetrate into the porous channels 

of the matrix it will be more probable that this molecule interact with the negatively 

charged silica matrix (dark grey contrast in Fig. 7). 

Another example is the vancomycin molecule, whose electrostatic potential map 

(Fig. 8) displays also two parts of different sign like ibuprofen. In this case predominate 

the zones with great electron density (negatively charged) but vancomycin molecule 

also exhibit a well differentiated part positively charged that is susceptible to establish 

electrostatic interactions with the negatively charged silica matrix. 

 

 

Fig. (6). Map of electrostatic potential of ibuprofen. (Unpublished results). 
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Fig. (7). Adsorption of a molecule of ibuprofen within the MCM-41 channels by electrostatic 

interactions. (Unpublished results). 

 

 

Fig. (8). Map of electrostatic potential of vancomycin. (Unpublished results). 

 

These theoretical models must be compared with the experimental data as it was 

reported by Doadrio et al in a vancomycin/SBA-15 model [55]. In that work, a MCM-

41 channel, similar to SBA-15 but with somewhat smaller pore diameter, was modeled 

to simulate the electrostatic interactions that take place with the vancomycin. That way, 

it was demonstrated that in that case the electrostatic attractions between the matrix and 
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the drug influences decisively the kinetic of delivery of the drug. Fig. 9 shows the 

channel simulations of MCM-41 (Figs. 9A and 9B) and the optimized structure of 

vancomycin (Fig. 9C). This last one shows that the molecule optimized of vancomycin 

is folded and by dimensions (1.77 nm) could penetrate into the pores of the MCM-41 

model (Fig. 9A) of 2.01 nm of diameter (MCM-412.01) and consequently in the bigger 

ones of SBA-15. Moreover, the vancomycin molecule can be located in the outer part of 

the channel as is shown in Fig. 9B. 

 

Fig. (9). Molecular modeling of: A) Complete MCM-41 optimized channel. B) Shorter MCM-41 

channel to short the simulations time when vancomycin molecule is included. C) Molecule of 

vancomycin optimized by quantum-mechanical semiempirical calculations. Modified from [55].  

 

In addition, the interaction of the C8 chains functionalizing the silica matrix can 

also be simulated as well as to calculate its electrostatic potential (Fig. 10). As it can be 

observed in the figure, the charge density of pure silica is modified when introducing - 

CH2- groups with positive partial charge density, in such a way that the silica matrix, 

now displays a electrostatic potential gradient ranging from +1.34 to +0.005, unlike the 

native silica which exhibited only negative electron density. 
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Fig. (10). Optimized molecular model of a MCM-412.01 pore functionalized with random 

distributed C8 chains. Modified from [55].  

 

These simulations allowed us explaining an experimental fact already 

mentioned: the kinetic of delivery of the vancomycin in SBA-15 is fairly retarded when 

SBA15 is functionalized with C8 chains. As it was told, the kinetic constants were 

0.890 min-1/2 in SBA-15 and 0.068 min-1/2 in SBA-15-C8, that is to say, decrease in an 

order of magnitude with the functionalization. The theoretical molecular model 

calculations demonstrated that the electrostatic interactions were more intense in the 

SBA-15-C8 that in native SBA-15. This study demonstrated that modifying the matrix 

characteristics it can be controlled the delivery kinetic of vancomycin, which would 

suppose in this case, a clear advantage for its pharmacological applications in implants 

exposed to infections. 

However, when docking technique was applied, the theoretical model also 

demonstrated that although vancomycin could enters by size into the MCM-412.01 and 

also in the bigger size channels of SBA-15, the molecule is rejected by the matrix and 

only the small head of positive charge of vancomycin molecule can interact with the 

matrix (Fig. 11). Thus, the guest-host interaction is essentially of adsorption in the pores 

surface, where the hydrophobic C8 chains positively charged are able to exert a greater 

retention of the vancomycin molecules which contain a great proportion of negative 

charge (Fig. 8) with respect to non functionalized silica. 
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Fig. (11). Simulation by docking in aqueous medium of the entry of a vancomycin molecule into a 

MCM-41 channel. Modified from [55].  

 

Furthermore it is possible to know by molecular modeling if take place hydrogen 

bond interactions between the functionalized chains (for example with - NH2 groups) 

and the silica matrix. This would be an additional feature to modify the drug release 

because the channels structures could be altered with functionalizing. In a recent study 

using SBA-15 functionalized with 3-aminopropyl-triethoxy-silane (APTES) as host and 

Chicago Sky Blue 6B (CSB) as guest molecule, Doadrio et al [133] detected an unusual 

decrease of two orders of magnitude of the release constant of CSB from SBA-15-

APTES (34.7 min-1/2) with respect to SBA-15 (7.7 h1/2) [161]. This effect could be 

explained with the construction of an optimized molecular model of SBA-15 with the 

pore diameter of 5.45 nm (SBA-155.45). The mentioned decrease was explained 

watching that the functionalization with APTES forces the channel torsion by the 

formation of hydrogen bonds between Si-OH groups of SBA-155.45 and -NH2 groups of 

APTES (Fig. 12). 
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Fig. (12). Molecular modelling of a CSB-SBA-15-APTES system. A) Non optimized model. B) 

Optimized model. It is observed as the pore of the matrix is deformed and folded. In transparency 

the original pore model of SBA-15 without optimizing shown in A. Modified from [133].  

The folding of the pore caused by the –NH2 group decreasing the pore diameter 

more than that that takes place after an organic functionalization. Thus, a diameter 8.6 

nm was obtained for SBA-15-APTES when in the original native SBA-15 was 10.1 nm. 

For this reason a huge increase of the tortuosity channel takes place, slowing down the 

CSB release. This study also demonstrated the importance and relation that exists 

between both factors: pore size and tortuosity. 

In addition, in this case it is possible to establish by molecular modeling and 

docking, that the CSB molecule penetrates within the matrix channels establishing 

hydrogen bonds with silanol groups in both functionalized and not functionalized 

materials (Fig. 13). Moreover, as it is known, electrostatic interactions will be formed in 

both the outer part of the wall of the channels and inside the pores. 
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Fig. (13). Molecular model of CSB-SBA-15 system (in vacuum) showing the hydrogen bonds 

established between the silanol groups of the matrix, functionalised and not functionalised, and the 

CSB molecule. Modified from [133]. 

Previous results show that molecular modeling is a powerful tool for the rational 

explanation of how it works the adsorption and release mechanisms of a drug from a 

SMM. In addition, these calculations are potent tools to predict if a specific drug can or 

cannot be retained within the SMM channels. This fact is what actually will determine if 

the delivery is going to be controlled or not.  

CONCLUSIONS AND FUTURE PERSPECTIVES  

  As we have review in this article, the great advantage of the SMMs in drug 

administration comes from its pores structure forming cavities where the drug 

molecules can be hosted. With the functionalization of the mesoporous matrix, 

controlled release of the drug can be reached. However, we can go a step ahead if we 

took advantage of the possibilities to close the pore and to open it when is need to 

release the drug. That is to say, that the mesoporous material serves like an on off 

device. In addition, if we release the confined drug in the place where it is going to 

product its pharmacological action, in a denominated stimulus-response process, we 

would have a complete system of controlled and effective release of the drug. In this 

way, we can be able to reduce the dose of drug to high security levels, since we will 

release only the necessary amount of drug. 
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 As an example of stimuli-response system, our group used a driving mechanism 

based on the heat generated by an alternating magnetic field (AMF) in a system that 

encapsulates the drug on the base of complementary DNA strands [162]. Another 

example, now using a chemical stimulus, was the MCM-41-vancomycin-ATP system 

[163]. There the MCM-41 pores were blocked with nanoparticles able to form disulphur 

bonds. After the disulphur bridges reduction, the vancomycin and ATP molecules in the 

matrix were released.  

 Other authors investigated other stimuli including thermosensible polymers to 

control the release of the drug from the matrix [164, 165]; pH changes [166-168], 

optical luminescence [56], magnetic stimuli [169] or ultrasounds [170]. A paper of 

Mura et al in [171] and two of our group [172, 173] review the state of the art of these 

stimuli-response systems for the drug administration from nanocarriers. 

 Whereas the stimuli-response systems of controlled release continue its advance, 

the therapy with SMM-drug systems reviewed in the present article will come more 

effective and safe. As is well known in the progress of a new drug this two objectives 

mentioned are key factors, in I, II and III phases of development as well as in phase IV, 

once be commercialized. To this advance molecular modeling and docking techniques 

will play an important role, trough the development of more powerful computers and 

software.  

 But perhaps, the field with more promising future is the one of the galenic 

formulation of the drug, that is to say, its correct presentation for the administration in 

an effective, safe and convenient way for the patient. In this sense, the elaboration of 

SMMs nanoparticles has the advantages that we have already seen in the administration 

of the drug, with respect to conventional ones, in concrete the possibility of transporting 

the drug to a determined place of release. In addition nanoparticles present an important 

advantage with respect the traditional ones as powders or tablets: the nanoparticles can 

be administered easily by oral route and by a parenteral route which is not possible for 

the traditional. Nevertheless, it is important to take into consideration the problems that 

can arise from the use of nanoparticles in the human body, ones originated by the 

reproducibility of the particles and others by their interaction with the biological fluids 

and organs, like are biocompatibility, immune response and others that can affect to 

their security and effectiveness.  
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 In spite of these concerns, Nanotechnology is already beginning to change the 

way to design the systems for the administration and transport of drugs. As much be 

applied, and in the SMMs-drug are being already made, it will be able to advance 

enormously in the development of new therapies to cure diseases like cancer. In these 

therapies unloading the drug in the place of the tumor is crucial since not only increases 

the effectiveness, but that also makes the security. That way, it is possible to administer 

minor doses of a drug that is cytotoxic and besides the drug is coated inside the SMM 

matrix during the transport until the tumor avoiding that exerts its toxic effect in healthy 

cells.  

Great advances are also reached in related fields with future in the therapy of 

cancer. For example, the study of cellular lines with the anti-carcinogenic agent 

bleomycin conjugated with disaccharide, has demonstrated that bleomycin can be 

targeted to cultivated cancer cells [174, 175]. Moreover, relevant investigations in 

Nanomedicine were carried out with materials like liposomes or gold nanoparticles 

[176-178]. Of special relevance in this area, are the studies with Si-RNA that is a 

powerful approach silencing genes associated with a variety of pathologic conditions 

[179].  

Polymer or peptide based systems (organic), for instance, 3D fibrillar peptide 

hydrogels can achieve sustained antibody release [180-181]. The main drawback of 

these models is its foreseeable immunogenic character, a feature not exhibited by the 

SMMs. 

 A still unexplored field is the one of polypill based on SMMs. Polypill is a 

formulation composed of several drugs that are used for the arterial hypertension 

treatment. That way the patients, in a single daily administration, take his complete 

medication, instead of the habitual 4-5 daily takings of individual drugs. The SMM of 

big pore size as SBA-15 would allow to adsorb great amount of molecules of several 

antihypertensive drugs simultaneously and to release them of a controlled form 

throughout the day. This would suppose a great advantage for the patients, since it 

would be more difficult that they forgot to take his medication when ingesting a single 

daily dose. 
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GRAPHICAL ABSTRACT 

This article comprehensively reviews the host-guest systems for release drugs from 

ordered mesoporous silicas together possible future strategies to control demand the 

kinetics of delivery of drugs from these matrixes. 
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