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Abstract
Drug repositioning has shorter developmental time, lower cost and less safety risk than tra-

ditional drug development process. The current study aims to repurpose marketed drugs

and clinical candidates for new indications in diabetes treatment by mining clinical ‘omics’

data. We analyzed data from genome wide association studies (GWAS), proteomics and

metabolomics studies and revealed a total of 992 proteins as potential anti-diabetic targets

in human. Information on the drugs that target these 992 proteins was retrieved from the

Therapeutic Target Database (TTD) and 108 of these proteins are drug targets with drug

projects information. Research and preclinical drug targets were excluded and 35 of the

108 proteins were selected as druggable proteins. Among them, five proteins were known

targets for treating diabetes. Based on the pathogenesis knowledge gathered from the

OMIM and PubMed databases, 12 protein targets of 58 drugs were found to have a new in-

dication for treating diabetes. CMap (connectivity map) was used to compare the gene ex-

pression patterns of cells treated by these 58 drugs and that of cells treated by known anti-

diabetic drugs or diabetes risk causing compounds. As a result, 9 drugs were found to have

the potential to treat diabetes. Among the 9 drugs, 4 drugs (diflunisal, nabumetone, niflumic

acid and valdecoxib) targeting COX2 (prostaglandin G/H synthase 2) were repurposed for

treating type 1 diabetes, and 2 drugs (phenoxybenzamine and idazoxan) targeting

ADRA2A (Alpha-2A adrenergic receptor) had a new indication for treating type 2 diabetes.

These findings indicated that ‘omics’ data mining based drug repositioning is a potentially

powerful tool to discover novel anti-diabetic indications from marketed drugs and clinical

candidates. Furthermore, the results of our study could be related to other disorders, such

as Alzheimer’s disease.

Introduction
Diabetes mellitus is one of the most prevalent diseases in the world, affecting approximately
382 million people around the world in 2013, costing at least $548 billion in 2013 according to
the international diabetes federation (IDF). Diabetic drug safety is a big concern during the
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development of new drugs. Avandia from GSK, for example, was found to be associated with
risk of heart attack [1], resulting in a recommendation of suspension by European Medicines
Agency (EMA) in 2010. Aleglitazar from Roche, a Peroxisome proliferator-activated receptor
gamma (PPARG) agonist, was terminated in phase III clinical trial in 2013 due to safety con-
cerns for bone fractures, heart failure and gastrointestinal bleeding. Among the current diabetic
drug developmental pipelines in leading pharmaceutical companies, 24 drugs have survived
the early stages of drug development (phase I, II clinical trials) and are now in phase III clinical
trials or post-market surveillance. Among the 24 drugs, 17 (71%) are incretin analogs,
DPP4-inhibitors or insulin analogs (S1 Table). However, the association between incretin ther-
apy and risk of pancreatitis and cancer is still uncertain and under investigations by the FDA
and EMA [2]. It has been long recognized that the traditional drug development process re-
quires a lot of time (10–17 years) and is extremely costly, but has a low success rate (< 10%)
and high safety risk. Therefore, novel strategies are needed for developing novel diabetic drugs
in a more efficient way with lower safety risks.

Drug repositioning (or repurposing) has long been used in the drug development process
by reusing marketed drugs and clinical candidates for a new indication (such as treating anoth-
er disease) [3]. Compared to de novo drug discoveries, drug repositioning may tremendously
reduce the development time to 3–12 years, cost and safety risks. For instance, most reposi-
tioned candidates have already been assessed by phase I or II clinical trials regarding their orig-
inal indications [4]. Therefore, toxicity information in animals and humans is often available.

There are multiple approaches for drug repositioning. The “Disease Focus” approach, for
example, employs experimental data related to diseases (e.g. ‘omics’ data) and knowledge of
how drugs modulate phenotypes related to diseases (e.g. side effects). Several methods, such as
expression pattern comparison [5] (connectivity map, CMap), text mining [6] and networks
analysis [7], have been established for mining ‘omics’ data. Meanwhile, computational methods
have been applied to predict drug-protein interactions [8], drug off-targets [9] and drug side ef-
fects [10]. Recently, scientists started to use data from genome wide association studies
(GWAS) [11] and pathogenesis knowledge from the Online Mendelian Inheritance in Man
(OMIM) database [12] to perform drug repositioning.

With the technological advancement in genomics, proteomics and metabolomics, biomedi-
cal data are quickly emerging and can be utilized as a valuable resource for drug repositioning.
GWAS data has been successfully utilized for drug repositioning [11]. Proteomics, assessing
the whole proteome in cells, tissues or body fluids, is involved in different stages of target-
based and phenotype-based drug discoveries, including target selection, target validation, lead
selection/optimization and preclinical testing. Metabolomics plays an important role in trans-
lational medicine, preclinical research/biomarker discovery, and patient stratification [13].
Proteins are the most common targets of small compound drugs. Therefore, data from metabo-
lomics and proteomics studies is a valuable resource for drug repositioning. However, no such
effort has been made so far. The current study aims to systematically integrate GWAS, proteo-
mics and metabolomics data for drug repositioning in diabetes treatment.

Materials and Methods

2.1 Literature search and data extraction
To obtain information on diabetes related genes, proteins and metabolites, we searched the
PubMed database up to August 2014 using the keywords “diabetes and GWAS”, “diabetes and
proteomics”, “diabetes and protein”, “diabetes and metabolomics”, “diabetes and metabolites”.
We included the literature in our study according to the following criteria: 1) all samples have
to be human samples, such as serum, plasma or tissues; 2) the clinical phenotype has to be
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“type 1 diabetes” or “insulin dependent diabetes mellitus”, “type 2 diabetes”, “gestational diabe-
tes”, “impaired glucose tolerance”, “impaired fasting glycemia” or “insulin resistance”.

For the GWAS studies, we extracted information on 1) the genes associated with diabetes;
2) the SNPs; 3) patient ethnicity; 4) the phenotypes (diabetes type). For the proteomics studies,
we extracted the following information: 1) the proteins associated with diabetes; 2) the direc-
tion of the change in protein level; 3) the methods used for measuring protein level; 4) the sam-
ple types; 5) the phenotypes. For the metabolomics studies, we extracted information on 1) the
metabolites associated with diabetes; 2) the direction of the change in metabolite levels, 3) the
sample types, 4) patient ethnicity, 5) the methods used for assessing the metabolites and 6) the
phenotypes.

2.2 Mining diabetic metabolites related proteins
In vivo, enzymes and transporters are two groups of proteins directly associated with the turn-
over of human metabolites. By searching the Human Metabolome Database (HMDB, http://
www.hmdb.ca), we obtained the names of enzymes or transporters associated with diabetes re-
lated metabolites that were discovered from previous metabolomics studies.

2.3 Constructing the diabetic metabolites-proteins network
To visualize the association between diabetic metabolites and their corresponding enzymes or
transporters, Cytoscape was used (www.cytoscape.org) to construct the metabolites-proteins
network [14].

2.4 Mapping diabetes risk proteins to proteins with drug projects
Diabetes related genes or proteins retrieved from genomics and proteomics studies were com-
bined with proteins related to diabetic metabolites retrieved from metabolomics data to gener-
ate a set of diabetic risk proteins. The Therapeutic Target Database (TTD version 4.3.02)
contains information on 236 targets of 20667 drugs at the stages of approved, clinical trial and
experimental. TTD was used to assess if those diabetes risk proteins have drug projects avail-
able [12]. Therefore, we selected diabetic risk proteins with drug projects to gather information
on the 1) drug target, 2) current disease indication, 3) drug name, 4) drug development stage
and 5) drug action mode. To focus on those most promising drugs to be repurposed in diabetes
therapy, targets/drugs that are at the research or preclinical stages were excluded. Targets/
drugs at the approved stage or in clinical trials were included in the following studies.

2.5 Application of pathogenesis information into anti-diabetic drug
repositioning
Most drugs are either antagonist or agonist, therefore the pathogenesis of target proteins is a
key basis for predicting if the drug may improve or worsen the disease phenotype [12]. We em-
ployed the OMIM (http://www.omim.org) and a literature search (PubMed) to gather knowl-
edge on the pathogenesis of the anti-diabetic targets. Specifically, the gain of function (GOF)
and the loss of function (LOF) roles in human or animal models were gathered to select anti-
diabetes protein targets [15–24]. To take advantage of this strategy, we excluded those drugs
with evidence of aggravating diabetic symptoms. For example, if drug D activates target T, and
GOF of target T was known to increase diabetes risk, then drug D is more likely to cause diabe-
tes instead of treating it.
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2.6 CMap analysis
The Connectivity Map (CMap) is a collection of genome-wide transcriptional expression data
from cultured human cells treated with compounds, and simple pattern-matching algorithms
[5]. In the current study, the candidate drugs were input into CMap to evaluate if it is positively
associated with known anti-diabetic drugs (e.g. metformin) or reversely associated with known
diabetes risk compounds (e.g. streptozocin).

Results

3.1 Omics studies revealed diabetes related genes, proteins and
metabolites
By searching Pubmed, we included in the current study 16 GWAS papers, 17 proteomics stud-
ies and 18 metabolomics papers studying diabetes (Fig 1). We selected 115 genes, 56 proteins
and 227 metabolites that were reported to be significantly associated with diabetes or impaired
glucose metabolism in humans (Fig 1, S2–S4 Tables).

3.2 Visualization of metabolite-protein network associated with diabetes
The 227 diabetes associated metabolites revealed from the metabolomics studies were linked to
840 enzymes or transporters (1660 metabolite-protein pairs) based on the HMDB (The
Human Metabolome Database, http://www.hmdb.ca). The metabolite-protein network was

Fig 1. Flow-chart of drug repositioning by mining ‘omics’ data.We retrieved 17 GWAS studies, 18
proteomics studies and 19 metabolomics studies that assessed diabetes patients until August 2014. 115
genes, 56 proteins and 227 metabolites were significantly associated with diabetes. An HMDB search
revealed 1660 metabolite-protein pairs corresponding to 840 proteins. Overall, 992 unique proteins
associated with diabetes were gathered and mapped to the TTD database and 108 of them had drug projects
information. After removing those under experimental and preclinical stages, we obtained 35 protein targets,
including 5 known anti-diabetic targets (27 drugs projects) and 30 unknown anti-diabetic targets (167 drugs
projects). Pathogenesis knowledge was retrieved from the OMIM and Pubmed databases, 12 targets
corresponding to 58 drugs were indicated to have novel indication for diabetes treatment. CMap analysis
indicated that 9 of the 58 drugs have the potential to treat diabetes.

doi:10.1371/journal.pone.0126082.g001
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generated using Cytoscape (V3.1.1) (Fig 2) and shows the highly connected metabolic path-
ways of various metabolites.

3.3 Diabetes risk proteins mapping to drug projects
840 metabolic proteins associated with diabetic metabolites were combined with 115 genes and
56 proteins, leading to 992 unique diabetic risk proteins. Uniprot IDs were retrieved to map
the corresponding proteins. A TTD database search showed that 108 of the 992 proteins have
at least one drug project. To focus on the most promising candidates, we filtered out those
drugs projects at the research or preclinical stage, because they only had information from in
vitro or animal model experiments and had no toxicity information in humans. Therefore, we
selected 35 druggable proteins for the following studies (Fig 1).

Fig 2. Diabetic metabolite-protein network. The Cytoscape tool was used to generate the diabetes associated metabolites and their connections to
metabolic enzymes/transporters. Overall 1660 diabetes related metabolite-protein pairs were established and visualized. Green triangles represent
metabolites associated with diabetes, and red circles represent proteins associated with metabolites based on HMDB database.

doi:10.1371/journal.pone.0126082.g002
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3.4 Five known and thirty unknown anti-diabetic drug targets discovered
using the current repositioning strategy
Five of the 35 proteins (14.3%) (alpha-2A adrenergic receptor, insulin, lysophosphatidic acid
transferase, glucokinase and PPAR gamma) are known anti-diabetic drug targets of 22 drugs
on the market or at clinical trials for diabetic therapeutics (S5 Table), indicating that the cur-
rent reposition strategy works well and has the potential to reveal novel indications.

In addition, 30 of the 35 proteins with a current indication to treat other diseases may be re-
purposed to treat diabetes (S6 Table). They correspond to 167 drugs at the approved or clinical
trial stages.

3.5 Pathogenesis knowledge leads to repositioning 12 targets for
treating diabetes
The ‘omics’ results only suggest an association between proteins and risk of diabetes; it does
not indicate the cause-effect mechanism. The drugs blocking or activating target proteins usu-
ally cause the loss or gain of function of the target. So, we cannot predict the outcome of the
drugs without knowing the pathogenesis information of that specific target protein [12]. The
current study used the OMIM database and a literature search of human or animal studies to
gather knowledge of GOF or LOF for these 30 candidate targets. We excluded 3 targets (CD1a,
5HT 2B, DHOD) corresponding to 11 drugs projects, because they have no direct pathogenesis
links to diabetes. We also excluded 6 targets corresponding to 14 drugs that were associated
with diabetic complications. According to the drug action mode information from TTD, we ex-
cluded 102 drug projects corresponding to 14 targets, since they may aggravate the diabetic
symptoms.

Finally, 58 unique drugs corresponding to 12 protein targets had pathogenesis information
that supports their therapeutic potential for diabetes (Table 1). Interestingly, one target
(MTNR1B) has previously been repurposed for diabetes treatment [25,26]. Another target
(Alpha-2A adrenergic receptor) has one drug under phase II clinical trial for diabetes treatment
(Yohimbine).

3.6 CMap results support ‘omics data’ based repositioned drugs
CMap was previously used successfully for drug repositioning by measuring the similarity in
gene expression profiles between compounds in mammalian cell lines. The current study ana-
lyzed 58 drugs by CMap and assessed their association with known anti-diabetic drugs or dia-
betic risk compounds. We found that 9 of the 58 drugs (15.5%) have CMap information
relating to anti-diabetic drugs or diabetic risk compounds (S7 Table), 11 of the 58 (19.0%)
drugs have CMap data but lack links to anti-diabetic drugs or diabetic risk compounds, and
38 of the 58 (65.5%) drugs have no CMap information.

CMap analysis further indicated 9 repurposed drugs for diabetes treatment. Specifically,
phenoxybenzamine (enrichment score = 0.799, p = 0.034), nabumetone (enrichment
score = 0.576, p = 0.02), niflumic acid (enrichment score = 0.484, p = 0.018) and perhexiline
(enrichment score = 0.697, p = 0.00006) are associated with resveratrol that is known to im-
prove glucose metabolism in animals. Idazoxan (enrichment score = 0.728, p = 0.011) and d-
cycloserine (enrichment score = 0.56, p = 0.036) are positively associated with gliclazide (an
anti-diabetic drug). And diflorasone (enrichment score = -0.709, p = 0.015) is inversely associ-
ated with streptozocin that is known to induce diabetes in animals. Diflunisal (enrichment
score = 0.626, p = 0.049) is associated with glimepiride (a sulfonylurea anti-diabetic drug), and
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Table 1. Information of the 12 targets and 58 drugs repurposed for treating diabetes based on “omics” data mining.

Drug name Current drug indication Stage Target Action
mode

Pathogenesis

Phenoxybenzamine Hypertension, hypoplastic left
heart syndrome

Approval Alpha-2A adrenergic
receptor

Antagonist LOF, rescue insulin secretion in
congenic islets#

Idazoxan Major Depressive Disorder Phase III
withdraw

Alpha-2A adrenergic
receptor

Antagonist LOF, rescue insulin secretion in
congenic islets#

Clobetasol Inflammation and itching Approved Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Desonide Atopic dermatitis Approved Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Desoximetasone Inflammatory diseases Approved Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Diflorasone Skin Allergies Approved Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Halobetasol
Propionate

Inflammatory diseases Approved Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Hydrocortamate Inflammatory diseases Approved Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Quinacrine Giardiasis and cutaneous
leishmaniasis

Approved Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Miltefosine Visceral Leishmaniasis,
Fungal diseases

Phase II Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Varespladib Coronary Artery Disease,
Atherosclerosis

Phase II Phospholipase A2 Inhibitor GOF, deleterious to normal beta-
cell secretory function15

Echothiophate
Iodide

Chronic glaucoma Approved Cholinesterase Inhibitor LOF, potentiate insulin action16

Hexafluronium
bromide

Spasms, Pain Approved Cholinesterase Inhibitor LOF, potentiate insulin action16

Hydrocortisone Inflammatory diseases Approved Nitric oxide synthase,
inducible

Inhibitor GOF, impair beta-cell function#;
LOF, reversed fasting
hyperglycemia17

Carprofen Pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Celecoxib Rheumatoid arthritis and
osteoarthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Diflunisal Pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Etodolac Pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Etoricoxib Rheumatoid arthritis and
osteoarthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Ibuprofen Pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Ketoprofen Rheumatoid arthritis and pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Lumiracoxib Knee osteoarthritis Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Mefenamic acid Rheumatoid arthritis and
osteoarthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Meloxicam Arthritis Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Nabumetone Rheumatoid arthritis and
osteoarthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Naproxen Pain and Rheumatoid
arthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

(Continued)
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Table 1. (Continued)

Drug name Current drug indication Stage Target Action
mode

Pathogenesis

Niflumic Acid Rheumatoid arthritis Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Phenylbutazone Chronic pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Piroxicam Pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Tenoxicam Rheumatoid arthritis and
osteoarthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Tiaprofenic acid Pain Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Tolmetin Rheumatoid arthritis and
osteoarthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Valdecoxib Osteoarthritis and
rheumatoid arthritis

Approved Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

ONO-2506 Stroke Phase III
completed

Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Celecoxib Pain Phase III Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

GSK-644784 Neuropathic pain Suspended in
Phase II

Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

GW-406381 Osteoarthritis, Neuropathic
pain

Suspended in
Phase III

Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

Rofecoxib Osteoarthritis Withdrawn Prostaglandin G/H
synthase 2

Inhibitor LOF, increase insulin secretion18;
GOF, IDDM19

D-cycloserine Bacterial infections Approved NMDA receptor Agonist GOF, lower glucose production20

D-cycloserine Obsessive-compulsive
disorder

Phase II NMDA receptor Agonist GOF, lower glucose production20

D-serine Schizophrenia Phase II NMDA receptor Agonist GOF, lower glucose production20

Remacemide Parkinson's Disease Discontinued in
Phase I

NMDA receptor Agonist GOF, lower glucose production20

Remacemide Huntington's disease Discontinued in
Phase III

NMDA receptor Agonist GOF, lower glucose production20

Buspirone Anxiety disorder Approved Serotonin-1A Agonist LOF, impair insulin secretion21

Flibanserin Female sexual dysfunction Phase III Serotonin-1A Agonist LOF, impair insulin secretion21

MN-305 Severe Mood disorder Phase II Serotonin-1A Agonist LOF, impair insulin secretion21

OPC-14523 Bulimia nervosa OCD MDD,
severe mood disorders

Phase II Serotonin-1A Agonist LOF, impair insulin secretion21

TGBA01AD Severe Mood disorder Phase II Serotonin-1A Agonist LOF, impair insulin secretion21

OPC-14523 Female sexual dysfunction Phase I Serotonin-1A Agonist LOF, impair insulin secretion21

1192U90 Schizophrenia Discontinued Serotonin-1A Agonist LOF, impair insulin secretion21

Adatanserin Severe Mood disorder Discontinued in
phase II

Serotonin-1A Agonist LOF, impair insulin secretion21

Bifeprunox Schizophrenia Teminated in
phase III

Serotonin-1A Agonist LOF, impair insulin secretion21

PRX-00023 Severe Mood disorder Discontinued in
phase II

Serotonin-1A Agonist LOF, impair insulin secretion21

SLV-313 Schizophrenia Terminated in
phase I

Serotonin-1A Agonist LOF, impair insulin secretion21

Sarizotan Parkinson's Disease Discontinued in
phase II

Serotonin-1A Agonist LOF, impair insulin secretion21

(Continued)

Drug Repositioning for Diabetes

PLOS ONE | DOI:10.1371/journal.pone.0126082 May 6, 2015 8 / 13



valdecoxib (enrichment score = 0.412, p = 0.047) is associated with metformin that is well
known for treating diabetes.

Discussion
Using ‘omics’ data mining and pathogenesis information, the current study repurposed 58
drugs for potential diabetes treatment. Gene expression profile comparison indicated 9 drugs
with a higher potential in treating diabetes.

Among these 9 drugs, diflunisal, nabumetone, niflumic acid and valdecoxib have a common
target of prostaglandin G/H synthase 2 (COX2). COX2 converts arachidonate to prostaglandin
H2 in vivo. Importantly, arachidonate was reported to be increased in the serum of type 2 dia-
betes and gestational diabetes patients [27,28]. Moreover, LOF of COX2 may increase insulin
secretion, and GOF of COX2 may induce insulin dependent diabetes mellitus (IDDM) [18,19].
Similar to other inhibitors of COX2, diflunisal is currently used for pain treatment, and nabu-
metone, niflumic acid and valdecoxib are used for treating rheumatoid arthritis and osteoar-
thritis. Importantly, CMap analysis showed that mammalian cells treated by these 4 drugs have
a similar gene expression pattern as cells treated by anti-diabetic drugs (glimepiride and met-
formin) or resveratrol (an activator of Sirt1 and PGC1a, previously shown to improve glucose
metabolism) [29]. These evidences collectively indicate that COX2 could be a potential drug
target for type 1 diabetes (also called IDDM) treatment. Therefore, the COX2 inhibitors are
promising candidates for treating diabetes due to their ability to block prostaglandins (PGs)
formation in monocytes and prevent antigen-presenting cell dysfunction, both of which could
predispose a person to autoimmunity and IDDM (Fig 3). Interestingly, a Phase II clinical trial
(ClinicalTrials.gov Identifier: NCT00506298) was conducted to assess the efficacy of CRx-401
(bezafibrate + diflunisal vs bezafibate + placebo) in lowering fasting plasma glucose levels in
patients taking metformin, but the results were not revealed.

Among the 9 drugs, phenoxybenzamine and Idazoxan target ADRA2A (alpha-2A adrener-
gic receptor). A genetic variation of ADRA2A (risk A allele for rs553668) is known to cause
overexpression of ADRA2A, which aggravates adrenergic suppression of insulin secretion and
causes type 2 diabetes [30]. Therefore, ADRA2A inhibitors may be utilized to treat a subset of
type 2 diabetes patients who carry the genetic risk variant in ADRA2A gene. In fact, one

Table 1. (Continued)

Drug name Current drug indication Stage Target Action
mode

Pathogenesis

Perhexiline Angina pectoris Approved Carnitine O-
palmitoyltransferase I

Inhibitor LOF, decrease glucose
production# and reduce insulin
resistance22

Cisapride Gastroesophageal Approved 5-hydroxytryptamine 4
receptor

Agonist GOF, improve insulin sensitivity23

Medusa IL-2 Cancer/Tumors Phase I/II Interleukin-2 receptor
subunit beta

Agonist GOF, reverse/prevent diabetes24

Sotrastaurin acetate Renal Transplant Phase II Protein kinase C, theta
type

Inhibitor LOF, prevent insulin resistance#

Ramelteon Insomnia Approved Melatonin receptor type
1B*

Agonist LOF, type 2 diabetes#

* Melatonin receptor type 1B was previously repurposed as a target for diabetes treatment.

# Information was retrieved from OMIM.

doi:10.1371/journal.pone.0126082.t001
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ADRA2A inhibitor drug (Yohimbine) is under phase II clinical trial for treating type 2 diabetes
(clinicaltrial.org identifier: NCT01593215).

The other 3 promising drugs are diflorasone, d-cycloserine and perhexiline. Diflorasone in-
hibits phospholipase A2, a protein previously shown to generate arachidonic acid [27,28] and
disrupt beta cell insulin stores [15]. Therefore, diflorasone has the potential to improve beta
cell function. Glycine, a co-agonist of the NMDA receptor, was shown to be reduced in type 2
diabetes or gestational diabetes patients in 4 independent studies (S4 Table). Activation of
NMDA receptors in the brain by d-cycloserine (NMDA receptor agonist) may have the poten-
tial to reduce glucose production and treat diabetes [20]. Perhexiline is an inhibitor of carnitine
O-palmitoyltransferase I that converts carnitine (reduced in diabetes condition) to acyl-carni-
tine (increased in diabetes condition) during lipid beta oxidation. Perhexiline has the potential
to improve insulin sensitivity and treat type 2 diabetes because inhibition of carnitine palmi-
toyltransferase-1 activity was reported to alleviate insulin resistance in diet-induced obese mice
[22].

CMap results should be taken with cautious, since this technique has a “batch effect” [31].
For example, cells under the same culture conditions after different compound treatment may
have highly similar expression patterns. A strategy of calculating Bridge Adjusted Expression
Similarity (BAES) [32] to improve data quality may be used to minimize the batch effect in
the future.

The current study integrates biomolecular information associated with diabetes from geno-
mics, proteomics and metabolomics studies. A network of diabetic metabolites and proteins
was generated to give an overview of how diabetes alters metabolites. This map may be used to
identify the dysfunctional metabolic enzymes in diabetic patients. As diabetes is a metabolic
disorder caused by both genetic and environmental factors, analyzing genome data together
with protein/metabolite data could provide an in-depth understanding of diabetic etiology.

Fig 3. Diagram of COX2 inhibitors and their indication for treating type 1 diabetes. COX2 is known to
convert arachidonate to PG H2, the precursor of PGs. PGs have an inflammation effect and sensitize
neurons to pain or induce antigen-presenting cell dysfunction that predisposes a person to autoimmunity and
type 1 diabetes. Therefore, inhibitors of COX2 have the potential to block PGs-mediated autoimmunity and
treat type 1 diabetes.

doi:10.1371/journal.pone.0126082.g003
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In terms of the origins of the proposed 9 drugs (S7 Table), 7 were discovered from metabo-
lomics studies and 2 were repurposed from GWAS studies, indicating that the GWAS and
metabolomics results provided the most valuable dataset for anti-diabetic drug repositioning in
the current study. Interestingly, one of the most successful compound anti-diabetic drugs, met-
formin, targets a metabolic enzyme (ACC2). The current study is the first to include metabolo-
mics data into drug repositioning, which may assist in the identification of dysfunctional
metabolic enzymes or transporters underlying the altered metabolic profiles.

Mapping diabetes risk proteins to drug projects is a critical step in drug repositioning. In
the current study, the well-known public Therapeutic Target Database (version 4.3.02) con-
taining information on 236 targets and 20667 drugs was used to perform the mapping. In fu-
ture studies, other databases such as DrugBank (http://www.drugbank.ca) may also be used to
obtain additional information for disease related proteins and to validate initial findings.

In summary, drug repositioning through mining ‘omics’ data provides a powerful tool to
find novel indications for marketed drugs and clinical candidates of complex human diseases,
such as diabetes. By analyzing GWAS, proteomic and metabolomic data in diabetes, mapping
diabetes related proteins to drug projects (TTD), and inputting pathogenesis knowledge, we re-
purposed 58 drugs with a potential indication for diabetes treatment. Preclinical or clinical tri-
als might be initiated to establish the efficacy of these repositioned drugs for the purpose of
diabetes treatment. Furthermore, the results of our study could be related to other common
disorders. For instance, there is convincing evidence of an increased risk of dementia in people
with diabetes, including a strong link between type 2 diabetes and Alzheimer's disease [33]. Of
note, an anti-diabetic drug (Liraglutide) has been used for a Phase II clinical trial for treating
Alzheimer’s disease (ClinicalTrials.gov Identifier: NCT01843075).
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