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Abstract
Alzheimer’s disease is a complex disorder encompassing multiple pathological features with associated genetic and

molecular culprits. However, target-based therapeutic strategies have so far proved ineffective. The aim of this study is

to develop a methodology harnessing the transcriptional changes associated with Alzheimer’s disease to develop a

high content quantitative disease phenotype that can be used to repurpose existing drugs. Firstly, the Alzheimer’s

disease gene expression landscape covering severe disease stage, early pathology progression, cognitive decline and

animal models of the disease has been defined and used to select a set of 153 drugs tending to oppose disease-

associated changes in the context of immortalised human cancer cell lines. The selected compounds have then been

assayed in the more biologically relevant setting of iPSC-derived cortical neuron cultures. It is shown that 51 of the

drugs drive expression changes consistently opposite to those seen in Alzheimer’s disease. It is hoped that the iPSC

profiles will serve as a useful resource for drug repositioning within the context of neurodegenerative disease and

potentially aid in generating novel multi-targeted therapeutic strategies.

Introduction
Global gene expression profiling can be thought of as a

high content quantitative phenotypic measure character-

ising tissue1, cell type in, for example, the heterogeneous

context of the brain2–4 and revealing diversity within a

previously thought homogeneous population5. Further,

biological state dynamics can be modelled through tem-

poral patterns of expression6. In the therapeutic context,

it has been established that disease-associated expression

changes can distinguish between disease states and are

consistent across independent data sets, thus facilitating

the identification of robust biomarkers7. Disease-

associated gene changes point to modulated pathways

and affected cell types, thus providing valuable insights

into mechanisms8. Interestingly, the quantitative nature of

the transcriptional phenotype has allowed for a direct

mapping of disease to potential therapeutic9–12. Here the

obvious hypothesis is that drugs tending to reverse the

expression changes seen in the disease state may act to

reverse the biological changes associated with the disease

itself. An important caveat here is that some expression

changes associated with Alzheimer’s disease (AD) may in

fact be compensatory and beneficial. Drug repurposing or

repositioning has resulted in successful initiatives across

several maladies13–19. Further, and of more specific

interest to the present project, drugs with profiles showing

significant anti-correlation to AD gene changes have been

shown to be conspicuous for their reported neuropro-

tective activities12. In a recent development, disease-

associated gene expression changes have begun to be

inferred from genomic risk variant data with the

Genotype-Tissue Expression repository20 and harnessed

to predict repurposing candidates for major psychiatric

conditions21. Although there is some intriguing psy-

chotherapeutic association of the candidate drugs in this

approach, the predicted transcriptional perturbation does
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not have an overlap with that seen in diseased brain tissue

[G. Williams, unpublished observation]. In the absence of

further validation of the predicted gene changes, one must

fall back on data from patient samples.

There are no established disease-modifying drugs for

the treatment of AD, there have been no new sympto-

matic treatments licensed for AD for >20 years and the

pipeline of emerging therapies is very limited. Target-

based drug research in AD has led to many insights into

the disease and provided the research community with

useful tool compounds. However, the promising results

seen in the laboratory have so far failed to be carried over

to the clinic and this has led to researchers casting around

for novel, non-target-based approaches22. The main aim

of transcription-based drug discovery is not target dis-

covery, but rather the discovery of drugs that have a

disease-modulating effect based on their global tran-

scriptional activity. A particularly attractive aspect of the

approach is that it naturally lends itself to repositioning

existing drugs thereby bypassing the hurdles that novel

entities must overcome on the road to the clinic. AD has

been extensively studied in relation to the expression

changes following pathological and cognitive decline23–26.

The wealth of data points to consistent and characteristic

changes associated with the disease and thereby makes a

repositioning strategy particularly attractive.

The application of gene expression profiling to drug

repositioning is limited at present by the fact that full drug

profiles are available only on a restricted set of immor-

talised human cell lines. This data is provided by the

Broad Institute connectivity map project (CMAP)11. A

more extensive drug set has been profiled on a variety of

induced pluripotent stem cell (iPSC)-derived cells,

including neural stem cells and differentiated cortical

neurons. However, this data constituting the LINCS

project27 is based on profiling a set of 1000 landmark

genes and then using an optimised linear mapping to

generate full profiles. This motivated the present initiative

to define the full expression profiles of the CMAP can-

didate drugs in the more AD relevant cell type of iPSC-

derived cortical neurons. The new phenotypes can then

be compared to the CMAP profiles and more pertinently

scored against the disease profiles to see whether they

preserve or enhance their anti-correlation with AD. In

this context, iPSC-derived cortical neurons have now

been established as a model system for the study of

neurological diseases especially the tracing of the effects

of disease-related genetic variants28–31. This model pro-

vides for an efficient moderate throughput platform to

assess the transcriptional effects of the candidate drugs in

a more neurological context. It must be remembered,

however, that AD is a complex pathology also involving

multiple cell types, such as microglia and astrocytes. In

this context, assaying drug perturbations within isolated

iPSC cultures facilitates an important but limited insight

into the disease.

The motivation for the work presented here is to gen-

erate a neuronal-specific transcriptional database of

compounds with a view to drug repositioning in AD and

other neurodegenerative conditions. The initial com-

pound set was assembled based on CMAP profiles that

showed a tendency to reverse AD-associated expression

changes observed across a variety of independent studies.

The drug candidates were then profiled for their tran-

scriptional effects on iPSC-derived human cortical neu-

rons. The results indicate that at the global level there is a

degree of correspondence between the CMAP and iPSC

profiles. Furthermore, 51 of the drugs have profiles that

drive transcription changes counter to those in AD. The

consistently regulated genes correspond to those impli-

cated in AD. It is hoped that the transcriptional data for

these drugs will be of use to the wider community of

researchers interested in neurodegenerative conditions

and facilitate further repositioning efforts.

Materials and methods
The AD-associated transcriptional landscape

The NCBI GEO database32 was queried for series con-

taining samples derived from postmortem AD patient

brains for various stages of the disease. Similarly, murine

AD model brain samples were also collected based on

relevant query key words: 5xFAD, 3xTG, Alzheimer’s

disease+mouse. Profiles were generated based on relative

levels of non-disease and disease state sample averages,

with the scaled fold level defined as f ¼ hdi�hci
hdiþhci, where the

brackets indicate averages of the control (c) and disease

(d) samples. The statistical significance is measured by

Student’s t test and those folds falling below the 95%

confidence interval were dropped as were those with folds

of <20%. The human disease versus control AD set

comprises 21 profiles derived from 13 series (NCBI GEO

accession: GSE8442224, GSE3726333, GSE3698034,

GSE3942035, GSE129723, GSE2937836, GSE4835037,

GSE1522225, GSE2697238, GSE3726439, GSE2814640,

GSE528141, GSE1321442) showing intra-profile con-

sistency based on the regression scores for significant

(Student’s t test p < 0.05) correlations, see Supplementary

Table 1. To capture brain region variability, the number of

profiles is greater than the number of series. In Supple-

mentary Table 2, the extent of intra- versus inter-series

AD profile correlation scores are given showing that in

many cases the variability in brain region profiles is

greater than that between independent series. Cognitive

decline was based on decline in Mini-Mental State

Examination (MMSE)43 represented by two profiles from

two independent series and Clinical Dementia Rating

(CDR)44 profiles from one series. Similarly, series

Williams et al. Translational Psychiatry           (2019) 9:220 Page 2 of 10



corresponding to murine models of AD were gathered

from 5xFAD and 3xTG mice resulting in seven profiles

from three series (NCBI GEO accession: GSE5052145,

GSE11975646, GSE10114447, GSE7757448) for the 5xFAD

set and nine profiles from eight series (NCBI GEO

accession: GSE31624, GSE1512849, GSE36237,

GSE9292650, GSE60460, GSE6091151, GSE3698134,

GSE35210) for the 3xTG set. Series corresponding to

BRAAK stage progression (NCBI GEO accession:

GSE1297, GSE84422, GSE48350, GSE10624152) were

generated with a linear mixed model analysis, by fitting

the gene expression level across the samples in the series

to a linear function of the BRAAK stage with categorical

calls on cell type and gender as covariates. The resulting

residual correlation Z score for gene expression against

BRAAK stage constituted the BRAAK profile. Profiles

corresponding to full BRAAK progression were not con-

sidered to be sufficiently different to the overt disease

profiles derived from the same series, where disease

assignment is also based on BRAAK staging. However,

gene expression changes driving mild BRAAK pathology

should capture early disease biology invisible in the overt

profiles. In total, six profiles corresponding to mild

BRAAK pathology, level 0 to level 3, formed the mild

BRAAK AD set. Similar profiles were generated for psy-

chiatric measures MMSE and CDR (NCBI GEO accession:

GSE48350, GSE1297, GSE84422). In the case of the

MMSE profile, the regression signs were reversed as

MMSE scores decrease with disease progression, see Table

1 for an overall comparison of the profile sets.

Representative profiles for each set were based on genes

showing consistent changes across the constituent pro-

files. In particular, the sense changes (upregulation and

downregulation calls) for significantly regulated genes

were summed over the profiles and only those genes

retained that had an absolute regulation fraction of >20%

and with a significant regulation statistic measured by

Student’s t test of p < 0.05. Owing to the categorical nat-

ure of the representative profiles, correlation with the

iPSC profiles was based on an enrichment analysis. The

enrichment score was generated based on a binomial

probability sum with gene probabilities scaled according

to their frequencies in SPIED53.

CMAP profiles

CMAP data were downloaded from the Broad con-

nectivity map site (www.broadinstitute.org/connectivity-

map-cmap) 11. This consisted of probe sets for each

sample ranked according to expression level relative to

batch control. The data consist of 6100 samples covering

1260 drugs and 4 cell types. The relative probe expression

ranks, defined as 1� 2 R�Rmin

Rmax�Rmin
, where R in the rank of a

given gene’s expression change (Rmax being the highest

and Rmin being the lowest ranks), were averaged over

replicates ignoring cell type and filtered based on sig-

nificance using a one-sample Student’s t test. For genes

with multiple probes, the probe with the largest sig-

nificant change was mapped to the gene. This resulted in

a unique profile for each drug in CMAP. The compound

data can be queried through SPIED53.

iPSC profiles

Following the dominant CMAP treatment protocol, cell

cultures were treated for 6 h and at compound con-

centrations of 10 μM. The iPSC expression samples were

generated on the Affymetrix Human Genome U133 Plus

2.0 Array platform from ThermoFisher Scientific.

Human iPSC-derived cerebral cortical neurons

(HyCCNs; Ax0026) were cultured as per the manu-

facturer’s guidelines (www.axolbio.com/page/neural-

stem-cells-cerebral-cortex). Each drug treatment at a

concentration of 10 μM for 6 h was performed on 3

independent HyCCN cultures (average density 300 K/

cm2) and RNA from each treated well extracted by direct

cell lysis and recovery using the Absolutely RNA Micro-

prep Kit (Agilent, as per the manufacturer’s guidelines).

Each drug-treated plate also consisted of a vehicle-only

control set of triplicate cultures. Integrity of total RNAs

was determined using an Agilent Bioanalyser as per the

manufacturer’s instructions and only samples with RNA

Table 1 The AD sets show varying degrees of overlap

AD BRAAKmild COGI 5xFAD 3xTG

AD 11.26 ± 0.45 −1.81 ± 0.38 13.34 ± 1.08 3.38 ± 0.33 0.05 ± 0.11

BRAAKmild 4.43 ± 1.00 −1.03 ± 0.83 −0.35 ± 0.34 −0.04 ± 0.20

COGI 15.10 ± 3.47 3.09 ± 0.70 0.26 ± 0.23

5xFAD 13.23 ± 1.67 0.46 ± 0.21

3xTG −0.06 ± 0.25

The overt AD profile set is highly correlated with the cognitive decline profiles. There is a degree of overlap with the 5xFAD profiles but poor agreement with the mild
BRAAK and 3xTG animal profiles. The 3xTG profile set is conspicuous for not being internally consistent or having significant overlap with the other AD sets. The
numbers in the table correspond to the average Z score across pairs in the sets, excluding correlations of profiles with themselves
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integrity number >7 were progressed to transcriptome

analysis. Transcriptome changes driven by exposure to

the candidate drugs were determined using the Nugen

Ovation V2 labelling system (https://www.nugen.com/

products) followed by Human U133 Plus 2 GeneChips as

per the manufacturer’s instructions (www.thermofisher.

com/order/catalog/product/900466).

The NCBI GEO hosts 145,000 samples on this platform,

making it the most popular array chip. The relative

expression levels of probes were collected for the GEO

data and the iPSC control data. The ranks were scaled to

lie between zero for the highest expression probe and

unity for the lowest. The relative rank of each probe was

defined as r0�r
r0

for r < r0 and
r0�r
1�r0

for r < r0, where r and r0
are the average probe ranks over the iPSC samples and the

set of samples deposited on GEO, respectively. Probes

were then mapped to genes and, in the case of degeneracy,

the probe with the largest relative rank mapping to the

gene. The gene rank profile was taken to be related to the

relative gene expression characterising iPSCs.

Drug treatment profiles were based on statistically fil-

tered ratios of drug-treated and control groups. These

were generated based on a combined set of 554 samples,

which were robust multiarray averaging normalised. The

samples were distributed over 23 plates with the corre-

sponding dimethyl sulfoxide controls. Transcriptional

profiles for the 153 drugs were generated based on nor-

malising to the plate control and multiple plate drug

replicates kept as separate profiles. The drug set is enri-

ched for CMAP based anti-AD potential (153). Rapamy-

cin, which has a well-defined transcriptional signature,

served as a positive control. The expression changes were

either measured as scaled folds filtered for significance

with Student’s t test or as Z scores, with significance based

on the magnitude of Z. Degenerate probes were mapped

to genes based on the dominant probe responses.

Results
AD-associated expression changes

To capture as much as possible of the transcriptional

landscape of AD, different categories were defined based

on overt disease versus healthy profiles, profiles following

early pathological and cognitive measures, together with

those from animal models, as described in ‘Materials and

methods’. There is a good degree of overlap between the

overt AD profiles and those following cognitive decline,

see Table 1, but it was reasoned that there is sufficient

variability to give rise to unique drug candidates, see

section on ‘CMAP candidates’. The early BRAAK stage

profiles show little overlap with overt or cognitive decline

profiles, see Table 1, and thus it is anticipated that these

profiles may shed light on distinct early stage pathology

and early therapeutic intervention. The animal model data

naturally separates into those based on the 5xFAD, which

is consistent with AD as can be seen in Supplementary

Table 3, and those based on 3xTG, showing little overlap

with AD profiles or internal consistency. A similar ana-

lysis also including rat models of AD has been carried out

by Hargis and Blalock54. Animal model data were inclu-

ded in this study because the expression changes seen in

the model systems have established causes, i.e. the inser-

ted mutations, 5xFAD or 3xTG in our case. Consequently,

candidate drugs reversing these changes may have more

focused mechanisms of action. Furthermore, the evidence

for neuroprotection is to a large extent derived from

experiments in animal models.

CMAP candidates

In general, transcription-based repositioning results in

tens of candidates out of a total of just over a thousand

drugs constituting CMAP13–19. The relatively small

number of compounds that are put forward for rigorous

bio-assaying to establish firmer evidence for a disease-

modulating potential of course reflects the experimental

resource required. The basis of the present project was to

select candidates to populate a database of iPSC profiles

for drugs biased towards their predicted anti-AD and

wider neuroprotective activities. It was therefore reasoned

that the thresholds for deeming a drug a repositioning

candidate had to be relaxed to allow for over a hundred

candidates to be taken forward. To this end, five AD-

based profile sets that capture distinct aspects of the

disease were separately queried against CMAP and three

selection criteria were applied. In the first instance, data

were gathered on the anti-correlation rank of each com-

pound, with compounds showing a high rank in either of

the profiles considered as candidates, see Supplementary

Table 4 for the complete candidate list. A second selection

was based on consistency of the anti-correlation across

profiles in each set, and finally some compounds with

conspicuously high anti-correlations with individual pro-

files were added to the set. The full list of compounds is

given in Supplementary Table 4 and consists of 153

compounds. Interestingly, among these drugs are estab-

lished neuroprotective entities and AD therapeutics,

see below.

iPSC profiles

As a first step in establishing the phenotype of the

model cell system, the overall iPSC transcriptional profile

was queried against a database of publicly deposited gene

expression profiles via SPIED12,53, see ‘Materials and

methods’. The top 1000 genes in the iPSC rank profile

consists of 959 upregulated and 41 downregulated genes

and this served as a query in the SPIED search. It is

perhaps worth pointing out here that the level of gene

expression unique to a given cell type will tend to be

elevated relative to a background consisting of a variety of
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tissue types. An analogy would be in the context of divi-

sion of labour one is characterised by what one does not

by what one does not do. The top SPIED hits show a high

correlation with human brain-derived samples, validating

the cell’s lineage, see Supplementary Table 5.

Comparison of iPSC and CMAP profiles

The extent to which an iPSC profile correlates with its

CMAP equivalent can be assessed by querying the CMAP

database with the iPSC profile and ranking the CMAP

equivalent. The extensively studied perturbagen rapamy-

cin served as a positive control and eight independent

profiles were generated to assess the degree to which

these profiles are consistent with each other and with the

rapamycin profile in CMAP. The rapamycin profiles had

consistently high overlaps among themselves, but less so

with the CMAP profile, with only one returning rapa-

mycin as a top hit, rank seven, in a CMAP query, see

Supplementary Fig. 1. In Supplementary Fig. 2, iPSC and

CMAP profile pairs with the four highest CMAP query

ranks are shown. Overall, there are 30 significantly cor-

relating and 8 anti-correlating pairs. The overall com-

parison of the iPSC and CMAP profiles can be framed in

terms of an enrichment analysis for the rank of the

equivalent compound hit and the significance can be

assessed with Kolmogorov–Smirnov (KS) statistic on the

maximal deviation from the zero-enrichment diagonal

line. The KS statistic furnishes an objective measure of the

robustness of the iPSC profiles and suggest that iPSC

profiles based on a Z score threshold of |Z| > 3, see

‘Materials and methods’ for details, capture most of the

compound-associated changes. The enrichment is that of

the rank of a given iPSC compound score with itself in

CMAP. The enrichment plot is shown in Fig. 1. The KS

statistic is highly significant with the chance of a random

compound association beating the enrichment maximum

of p= 5.1E−6.

Relation of iPSC profiles to AD

Further to assessing the extent to which compounds

orchestrate similar expression changes in the cancer cell

lines and differentiated cortical neurons, it is critical to

test whether the drugs also act in an anti-AD manner in

the neuronal context. To this end, the drug profiles were

scored against five representative AD reprofiles derived

from the AD sets defined above, see ‘Materials and

methods’ for details. Table 2 lists the compounds with at

least two significant anti-correlations with the repre-

sentative AD profiles, which will be referred to as AD hit

compounds (ADC). The ADC set show a relatively high

degree of intra-profile correlation as compared to other

iPSC profile pairs, see Fig. 2. The average correlations in

terms of regression Z scores are: 2.43 for ADC pairs and

0.77 for all other pairs. It is therefore of interest to see to

what extent the ADC set regulate a common set of

transcripts. In Fig. 3, the common ADC target genes are

shown demonstrating a high degree of consistency with a

clearly defined set of upregulated and downregulated gene

cohort. To get an idea of the underlying biological net-

works that are being perturbed by the ADC, a pathway

enrichment analysis was performed on each of the profiles

in the ADC set. The consistently positively and negatively

regulated pathways defined by an enrichment in the

upregulated and downregulated gene sets, respectively,

Fig. 1 The overall comparison between the iPSC profiles and

those on the cancer cell lines can be framed as an enrichment

analysis for the rank of iPSC queries against CMAP. For each drug,

the correlation between iPSC and CMAP profiles are ranked against

the remainder of the CMAP data set profiles. For a good agreement

between the profiles, one would expect an enrichment in high rank

scores and this is the case for iPSC profiles. The top plot shows the

rank distributions in bins of 50 with a clear bias for high rank scores.

The bottom plot is the cumulative distribution of ranks contrasted

with the non-enriched diagonal. The significance is measured by an

MC simulation randomising rank orders and counting the number of

times peak deviation from the diagonal exceeds that in the original

enrichment
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Table 2 Compounds with iPSC profiles showing anti-correlation with at least two representative AD profiles, referred to

as the ADC set

A
D

B
R

A
A

K
m

il
d

C
O

G
I

5
x

F
A

D

3
x

T
G

TRIOXSALEN -0.22 -0.43 -0.37 -0.33

ALLANTOIN -0.64 -0.35 -1

FLUMETHASONE -0.33 -0.33 -0.33

GALANTHAMINE -0.5 -0.37 -0.33

OXAPROZIN -0.34 -0.2 -0.2

RISPERIDONE -0.29 -0.38 -0.54

SULFAMONOMETHOXINE -0.36 -0.6 -0.33

(cis-) NANOPHINE -0.21 -0.27

ACETYLSALICYLSALICYLIC ACID -0.33 -0.38

ALBENDAZOLE -0.32 -0.6

AMINOPURINE -0.39 -0.24

ATRACTYLOSIDE -0.29 -0.21

BENZTHIAZIDE -0.28 -0.71

BEPHENIUM -0.24 -0.29

BROMOPRIDE -0.29 -0.25

CEPHALOTHIN -0.57 -0.23

CHLORPROMAZINE -0.46 -0.33

CYCLOPENTHIAZIDE -0.25 -0.43

DILAZEP -0.21 -0.41

DIPYRIDAMOLE -0.33 -0.45

DOXORUBICIN -0.36 -0.5

DROPROPIZINE -0.59 -0.2

ERGOCALCIFEROL -0.25 -0.33

ESTRIOL -0.5 -0.38

ETOMIDATE -0.35 -0.33

FENBUFEN -0.38 -0.22

FLUOCINONIDE -0.51 -0.53

GLAFENINE -0.38 -0.26

HYDROFLUMETHIAZIDE -0.39 -0.44

IPRONIAZIDE -0.51 -0.33

KAWAIN -0.22 -0.25

LEVAMISOLE -0.54 -0.47

MESTRANOL -0.24 -0.21

MONOBENZONE -0.29 -0.36

N6-METHYLADENOSINE -0.39 -0.3

NEOSTIGMINE -0.21 -0.31

NETILMICIN -0.78 -0.5

OFLOXACIN -0.33 -0.41

OXANTEL -0.57 -0.41

OXOLINIC ACID -0.5 -0.33

PHENACETIN -0.41 -0.57

PHENINDIONE -0.28 -0.79

PHENOXYBENZAMINE -0.31 -0.22

PROBENECID -0.25 -0.29

PROPARACAINE 5.0-3.0-

PYRANTEL -0.52 -0.2

RONIDAZOLE -0.5 -0.29

TELENZEPINE -0.35 -0.26

THIOGUANOSINE -0.3 -0.25

TRICHLORMETHIAZIDE -0.36 -0.27

XAMOTEROL -0.4 -0.33

DESCRIPTION

furanocoumarin and a psoralen deriva�ve

urea hydantoin used in dermatological prepara�ons

cor�costeroid for topical use 

cholinesterase inhibitor

NSAID

an�psycho�c

an�-myocardial

angiogenesis inhibitor

Aspirin impurity

anthelmin�c

purine analog of guanine and adenine

toxic glycoside 

an�-hypertensive 

anthelmin�c

dopamine antagonist

cephalosporin an�bio�c 

an�psycho�c

an�-hypertensive

adenosine reuptake inhibitor

inhibits blood clot forma�on

chemotherapeu�c

cough suppressant

vitamin D 

steroid, weak estrogen

anaesthe�c

NSAID

Glucocor�coid

NSAID

oral thiazide used to treat hypertension and edema

Monoamine oxidase inhibitor 

seda�ve, anxioly�c, psychotropic 

used to treat parasi�c worm infec�ons

estrogen receptor agonist 

depigmenta�on drug

methylated RNA 

cholinesterase inhibitor

aminoglycoside an�bio�c

an�bio�c

anthelmin�c 

an�bio�c

pain-relieving and fever-reducing drug

Vitamin K antagonist

an�-hypertensive NP

 increases uric acid excre�on in the urine

topical anesthe�c 

anthelmin�c <E-10

nitroimidazole an�bio�c <E-9

an�muscarinic <E-8

chemotherapeu�c <E-4

diure�c <E-2

β1 adrenergic receptor agonist

The numbers are the correlation
n""þn##� n"#þn#"ð Þ
n""þn##þn"#þn#" and the associated binomial enrichment score is reflected in the red intensity. The compound descriptions are given

and those with reported neuroprotective activity are highlighted in grey
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are given in Supplementary Table 6, and these point to

key processes associated with AD that underpin the

potential therapeutic action of the drugs. The enrichment

for the AD, Parkinson’s disease and mitochondrial path-

ways in the positively regulated gene sets is driven by the

upregulation of cytochrome c oxidases, ubiquinone oxi-

doreductases and ATP synthases. These are all key players

in mitochondrial function, which is known to be com-

promised in AD55,56, with growing evidence that gene

variation affecting mitochondrial function may play a role

in AD57,58. The downregulated set appears to be less

consistent. Nonetheless, the enrichment of immune-

associated pathways points to a possible anti-

inflammatory activity of the candidate drugs.

Interestingly, the following drugs have been reported to

have neuroprotective activity: fluocinonide59, kawain60–63,

allantoin64, dipyridamole65–67, estriol68, levamisole69,

mycophenolic acid70, neostigmine71, probenecid72,73,

chlorpromazine74, and phenoxybenzamine75, and xamo-

terol has been reported to ameliorate neuroinflammation

and pathology in 5xFAD mice76 and shown to enhance

cognition in a Down syndrome mouse model77. The

atypical antipsychotic risperidone prescribed to manage

psychosis in AD has demonstrated neuroprotection in

animal models of ischemia78. Furthermore, cholinesterase

inhibition is a therapeutic strategy for AD79 and there are

two such inhibitors in the candidate list with galantamine

as an established AD therapeutic80, while neostigmine

exhibits poor blood–brain barrier penetrance and is

therefore not in clinical use for AD. There does not

appear to be any gene expression signature distinguishing

compounds with reported neuroprotective activities from

the other ADC compounds. This is to be expected as not

all compounds have been assayed for neuroprotection and

biological activity is not expected to be solely encoded in

the transcriptome.

Discussion
Neurodegenerative diseases present a therapeutic chal-

lenge due to the difficulty in establishing a clear protein or

mechanistic culprit for classic target-based intervention.

Another hurdle is a consequence of the temporal extent of

disease progression and the probable need to treat before

overt symptom onset. This is a particular problem in

designing clinical trials. With this in mind, alternatives to

target-based approaches are increasingly being pursued.

One recent report compared Parkinson’s disease (PD)

incidence and chronic therapeutic use data from the

Norwegian Prescription Database (www.norpd.no),

showing that salbutamol use reduced PD risk81. A middle

ground between target-based and epidemiological

approaches is a methodology based on the disease phe-

notype gleaned from gene expression changes observed in

pathological states. Underlying this approach is the

observation that disease states can effectively be repre-

sented by characteristic expression changes, in the sense

that these changes are consistent and can function as high

content quantitative biomarkers. One avenue available to

drug repositioning is to use these transcriptional pheno-

types together with the hypothesis that an anti-correlation

in phenotypes is indicative of the therapeutic potential of

the compound. Whereas the transcriptional landscape of

neurodegeneration and AD in particular has been well

characterised, the corresponding data for compounds are

either limited to full profiles defined on non-neuronal

proliferating cells or partial profiles on iPSC-derived

neuronal cells. The basis of the present study is to go

some way to fill this gap in the compound-associated

transcriptome with an emphasis on drugs with an anti-AD

potential.

In the context of defining the neurotherapeutic poten-

tial of candidate drugs, a further development would be to

treat wild-type or mutant AD mice with the compounds

and measure expression changes in the brain, along the

lines of the DrugMatrix project82. This approach would

have the advantage of including non-neuronal factors

contributing to AD pathology such as inflammation.

However, practical considerations limit whole-animal

approaches to smaller drug sets and will therefore form

part of a subsequent endeavour based on a more limited

set of drug candidates selected based on the iPSC data.

Fig. 2 The ADC compounds have relatively high intra-profile

correlations. The correlation Z scores are shown on a heat map with

the ADC component split off to highlight the enhanced correlation.

The average correlation for intra-ADC profiles is 2.43 as opposed to

0.77 for all other pairs
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In the present work, we have established an AD tran-

scriptional profile landscape and shown this to have a high

degree of internal consistency. This disease-associated

transcriptional landscape served as the basis for selecting

a series of candidate drugs from the CMAP database of

cancer cell line profiles, which were then assayed for their

transcriptional effect on iPSC-derived cortical neurons.

The iPSC profiles show a degree of overlap with the

corresponding CMAP profiles, with a highly significant

overall comparison in terms of the ranks observed for

iPSC queries of CMAP. Out of the 153 iPSC drug profiles,

51, termed the ADC set, showed a high degree of anti-

correlation with transcriptional changes seen in AD. A

pathway enrichment analysis performed on each of the

ADC set showed that pathways related to mitochondrial

function were commonly upregulated while commonly

downregulated pathways represented immune-associated

pathways. Interestingly, these pathological features are

found in multiple neurodegenerative disorders, such as

PD and Huntington’s disease, and it would be of interest

to investigate whether these compounds may have wider

therapeutic potential. Notably, 18 of the ADC drugs

already have established neuroprotective ability in pub-

lished studies. Whereas we expect that initial CMAP fil-

tering against AD profiles has led to increased likelihood

of discovering compounds that tend to reverse AD-

associated expression changes in the context of iPSC

cultures, this can only be rigorously assessed by generat-

ing iPSC profiles for a series of compounds randomly

selected from the CMAP database, which is outside the

Fig. 3 The gene expression heat map for genes consistently regulated by the ADC set. Genes were selected based on their having a sum sense

change ratio >33%. Specifically, the sum sense change ratio is defined as 1
P

P
i¼1;¼ ;P sign gið Þ, where gi is the expression change of a gene in the ith

profile. The compounds are clustered with the UPGMA algorithm and the corresponding dendrogram shown at left
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scope of the present study. In conclusion, approaches to

identifying a broader range of candidate therapies for AD

are urgently needed. It is therefore expected that the iPSC

database will serve as a useful platform for drug reposi-

tioning across multiple neuropathological disorders as

well as AD.

Acknowledgements

This work was funded by the Wellcome foundation: A systematic programme

to develop and evaluate the best candidate treatments for repositioning as

therapies for Alzheimer’s disease (SMART-AD) reference 102001/Z/13/Z.

Conflict of interest

C.B. reports grants and personal fees from Lundbeck and Acadia and personal

fees from Roche, Orion, GSK, Otusaka, Heptares and Lilly outside the submitted

work. The other authors declare that they have no conflict of interest.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Supplementary Information accompanies this paper at (https://doi.org/

10.1038/s41398-019-0555-x).

Received: 22 March 2019 Revised: 21 May 2019 Accepted: 17 July 2019

References

1. Su, A. I. et al. A gene atlas of the mouse and human protein-encoding

transcriptomes. Proc. Natl Acad. Sci. USA 101, 6062–7 (2004).

2. Zhang, Y., Chen, K., Sloan, S. A., Bennett, M. L., Scholze, A. R. & O’Keeffe, S. et al.

An RNA-sequencing transcriptome and splicing database of glia, neurons, and

vascular cells of the cerebral cortex. J. Neurosci. 34, 11929–47 (2014).

3. Lein, E. S. et al. Genome-wide atlas of gene expression in the adult mouse

brain. Nature 445, 168–76 (2007).

4. Zeisel, A. et al. Brain structure. Cell types in the mouse cortex and hippo-

campus revealed by single-cell RNA-seq. Science 347, 1138–42 (2015).

5. Chen, R., Wu, X., Jiang, L. & Zhang, Y. Single-cell RNA-Seq reveals hypothalamic

cell diversity. Cell Rep. 18, 3227–41 (2017).

6. Busch, H. et al. Gene network dynamics controlling keratinocyte migration.

Mol. Syst. Biol. 4, 199 (2008).

7. Golub, T. R. et al. Molecular classification of cancer: class discovery and class

prediction by gene expression monitoring. Science 286, 531–7 (1999).

8. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in

disease. Cell 152, 1237–51 (2013).

9. Marton, M. J. et al. Drug target validation and identification of secondary drug

target effects using DNA microarrays. Nat. Med. 4, 1293–301 (1998).

10. Hughes, T. R. et al. Functional discovery via a compendium of expression

profiles. Cell 102, 109–26 (2000).

11. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to

connect small molecules, genes, and disease. Science 313, 1929–35

(2006).

12. Williams, G. A searchable cross-platform gene expression database reveals

connections between drug treatments and disease. BMC Genomics 13, 12

(2012).

13. Wei, G. et al. Gene expression-based chemical genomics identifies rapamycin

as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 10, 331–42

(2006).

14. Zhang, D. et al. Ouabain mimics low temperature rescue of F508del-CFTR in

cystic fibrosis epithelial cells. Front. Pharmacol. 3, 176 (2012).

15. Sirota, M. et al. Discovery and preclinical validation of drug indications

using compendia of public gene expression data. Sci. Transl. Med. 3, 96ra77

(2011).

16. Dudley, J. T. et al. Computational repositioning of the anticonvulsant topir-

amate for inflammatory bowel disease. Sci Transl Med. 3, 96ra76 (2011).

17. Chang, M., Smith, S., Thorpe, A., Barratt, M.J. & Karim, F. Evaluation of phe-

noxybenzamine in the CFA model of pain following gene expression studies

and connectivity mapping. Mol. Pain 6, 56 (2010).

18. Kunkel, S. D. et al. mRNA expression signatures of human skeletal muscle

atrophy identify a natural compound that increases muscle mass. Cell Metab.

13, 627–638 (2011).

19. Walf-Vorderwulbecke, V. et al. Targeting acute myeloid leukemia by drug-

induced c-MYB degradation. Leukemia 32, 882–9 (2018).

20. Consortium, G. T. The Genotype-Tissue Expression (GTEx) project. Nat. Genet.

45, 580–5 (2013).

21. So, H. C. et al. Analysis of genome-wide association data highlights candidates

for drug repositioning in psychiatry. Nat. Neurosci. 20, 1342–9 (2017).

22. Corbett, A., Williams, G. & Ballard, C. Drug repositioning in Alzheimer’s disease.

Front. Biosci. 7, 184–8 (2015).

23. Blalock, E. M. et al. Incipient Alzheimer’s disease: microarray correlation analyses

reveal major transcriptional and tumor suppressor responses. Proc. Natl Acad.

Sci. USA 101, 2173–8 (2004).

24. Wang, M. et al. Integrative network analysis of nineteen brain regions identifies

molecular signatures and networks underlying selective regional vulnerability

to Alzheimer’s disease. Genome Med. 8, 104 (2016).

25. Webster, J. A. et al. Genetic control of human brain transcript expression in

Alzheimer disease. Am. J. Hum. Genet. 84, 445–58 (2009).

26. Readhead, B. et al. Multiscale analysis of independent Alzheimer’s cohorts

finds disruption of molecular, genetic, and clinical networks by human her-

pesvirus. Neuron 99, 64–82 e7 (2018).

27. Subramanian, A. et al. A next generation connectivity map: L1000 platform

and the first 1,000,000 profiles. Cell 171, 1437–52 e17 (2017).

28. Dolmetsch, R. & Geschwind, D. H. The human brain in a dish: the promise of

iPSC-derived neurons. Cell 145, 831–4 (2011).

29. Egawa, N. et al. Drug screening for ALS using patient-specific induced plur-

ipotent stem cells. Sci. Transl. Med. 4, 145ra04 (2012).

30. Ochalek, A. et al. Neurons derived from sporadic Alzheimer’s disease iPSCs

reveal elevated TAU hyperphosphorylation, increased amyloid levels, and

GSK3B activation. Alzheimers Res. Ther. 9, 90 (2017).

31. Kondo, T. et al. Modeling Alzheimer’s disease with iPSCs reveals stress phe-

notypes associated with intracellular Abeta and differential drug responsive-

ness. Cell Stem Cell 12, 487–96 (2013).

32. Barrett, T. et al. NCBI GEO: mining tens of millions of expression profiles-

database and tools update. Nucleic Acids Res. 35, D760–5 (2007).

33. Tan, M. G. et al. Genome wide profiling of altered gene expression in the

neocortex of Alzheimer’s disease. J. Neurosci. Res. 88, 1157–69 (2010).

34. Hokama, M. et al. Altered expression of diabetes-related genes in Alzheimer’s

disease brains: the Hisayama study. Cereb. Cortex 24, 2476–88 (2014).

35. Antonell, A. et al. A preliminary study of the whole-genome expression profile

of sporadic and monogenic early-onset Alzheimer’s disease. Neurobiol. Aging

34, 1772–8 (2013).

36. Miller, J. A., Woltjer, R. L., Goodenbour, J. M., Horvath, S. & Geschwind, D. H.

Genes and pathways underlying regional and cell type changes in Alzheimer’s

disease. Genome Med. 5, 48 (2013).

37. Berchtold, N. C. et al. Gene expression changes in the course of normal brain

aging are sexually dimorphic. Proc. Natl Acad. Sci. USA 105, 15605–10 (2008).

38. Berson, A. et al. Cholinergic-associated loss of hnRNP-A/B in Alzheimer’s dis-

ease impairs cortical splicing and cognitive function in mice. EMBO Mol. Med.

4, 730–42 (2012).

39. Lai, M. K., Esiri, M. M. & Tan, M. G. Genome-wide profiling of alternative splicing

in Alzheimer’s disease. Genom. Data 2, 290–2 (2014).

40. Blalock, E. M., Buechel, H. M., Popovic, J., Geddes, J. W. & Landfield, P. W.

Microarray analyses of laser-captured hippocampus reveal distinct gray and

white matter signatures associated with incipient Alzheimer’s disease. J. Chem.

Neuroanat. 42, 118–26 (2011).

41. Liang, W. S. et al. Gene expression profiles in anatomically and functionally

distinct regions of the normal aged human brain. Physiol. Genomics 28,

311–22 (2007).

42. Silva, A. R. et al. Transcriptional alterations related to neuropathology and

clinical manifestation of Alzheimer’s disease. PLoS ONE 7, e48751 (2012).

43. Pangman, V. C., Sloan, J. & Guse, L. An examination of psychometric properties

of the mini-mental state examination and the standardized mini-mental state

examination: implications for clinical practice. Appl. Nurs. Res. 13, 209–13

(2000).

44. Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A. & Martin, R. L. A new clinical

scale for the staging of dementia. Br. J. Psychiatry. 140, 566–72 (1982).

Williams et al. Translational Psychiatry           (2019) 9:220 Page 9 of 10

https://doi.org/10.1038/s41398-019-0555-x
https://doi.org/10.1038/s41398-019-0555-x


45. Paesler, K. et al. Limited effects of an eIF2alphaS51A allele on neurological

impairments in the 5xFAD mouse model of Alzheimer’s disease. Neural Plast.

2015, 825157 (2015).

46. Boeddrich, A. et al. The anti-amyloid compound DO1 decreases plaque

pathology and neuroinflammation-related expression changes in 5xFAD

transgenic mice. Cell Chem. Biol. 26, 109–20 e7 (2019).

47. Neuner, S. M., Heuer, S. E., Huentelman, M. J., O’Connell, K. M. S. & Kaczorowski,

C. C. Harnessing genetic complexity to enhance translatability of Alzheimer’s

disease mouse models: a path toward precision medicine. Neuron 101,

399–411 e5 (2019).

48. Marsh, S. E. et al. The adaptive immune system restrains Alzheimer’s disease

pathogenesis by modulating microglial function. Proc. Natl Acad. Sci. USA 113,

E1316–25 (2016).

49. Pereson, S. et al. Progranulin expression correlates with dense-core amyloid

plaque burden in Alzheimer disease mouse models. J. Pathol. 219, 173–81

(2009).

50. Castillo, E. et al. Comparative profiling of cortical gene expression in Alzhei-

mer’s disease patients and mouse models demonstrates a link between

amyloidosis and neuroinflammation. Sci. Rep. 7, 17762 (2017).

51. Sykora, P. et al. DNA polymerase beta deficiency leads to neurodegeneration

and exacerbates Alzheimer disease phenotypes. Nucleic Acids Res. 43, 943–59

(2015).

52. Marttinen, M. et al. A multiomic approach to characterize the temporal

sequence in Alzheimer’s disease-related pathology. Neurobiol. Dis. 124, 454–68

(2019).

53. Williams, G. SPIEDw: a searchable platform-independent expression database

web tool. BMC Genomics 14, 765 (2013).

54. Hargis, K. E. & Blalock, E. M. Transcriptional signatures of brain aging and

Alzheimer’s disease: what are our rodent models telling us? Behav. Brain Res.

322, 311–28 (2017).

55. Swerdlow, R. H. & Khan, S. M. A “mitochondrial cascade hypothesis” for

sporadic Alzheimer’s disease. Med. Hypotheses 63, 8–20 (2004).

56. Moreira, P. I., Carvalho, C., Zhu, X., Smith, M. A. & Perry, G. Mitochondrial

dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim.

Biophys. Acta 1802, 2–10 (2010).

57. Lakatos, A. et al. Association between mitochondrial DNA variations and

Alzheimer’s disease in the ADNI cohort. Neurobiol. Aging 31, 1355–63 (2010).

58. Alvarez, V. et al. Mitochondrial transcription factor A (TFAM) gene var-

iation and risk of late-onset Alzheimer’s disease. J. Alzheimers Dis. 13,

275–80 (2008).

59. Wang, J. et al. Identification of select glucocorticoids as Smoothened agonists:

potential utility for regenerative medicine. Proc. Natl Acad. Sci. USA 107,

9323–8 (2010).

60. Assemi, M. Herbs affecting the central nervous system: gingko, kava, St. John’s

wort, and valerian. Clin. Obstet. Gynecol. 44, 824–35 (2001).

61. Backhauss, C. & Krieglstein, J. Extract of kava (Piper methysticum) and its

methysticin constituents protect brain tissue against ischemic damage in

rodents. Eur. J. Pharmacol. 215, 265–9 (1992).

62. Schmidt, N. & Ferger, B. Neuroprotective effects of (+/–)-kavain in the MPTP

mouse model of Parkinson’s disease. Synapse 40, 47–54 (2001).

63. Wruck, C. J. et al. Kavalactones protect neural cells against amyloid beta

peptide-induced neurotoxicity via extracellular signal-regulated kinase 1/2-

dependent nuclear factor erythroid 2-related factor 2 activation. Mol. Phar-

macol. 73, 1785–95 (2008).

64. Ahn, Y. J. et al. Effects of allantoin on cognitive function and hippocampal

neurogenesis. Food Chem. Toxicol. 64, 210–6 (2014).

65. Blake, A. D. Dipyridamole is neuroprotective for cultured rat embryonic cortical

neurons. Biochem. Biophys. Res. Commun. 314, 501–4 (2004).

66. Farinelli, S. E., Greene, L. A. & Friedman, W. J. Neuroprotective actions of

dipyridamole on cultured CNS neurons. J. Neurosci. 18, 5112–23 (1998).

67. Guo, S., Stins, M., Ning, M. & Lo, E. H. Amelioration of inflammation and

cytotoxicity by dipyridamole in brain endothelial cells. Cereb. Dis. 30, 290–6

(2010).

68. MacKenzie-Graham, A. et al. Estriol-mediated neuroprotection in multiple

sclerosis localized by voxel-based morphometry. Brain Behav. 8, e01086

(2018).

69. Shukry, M. et al. Pinacidil and levamisole prevent glutamate-induced death of

hippocampal neuronal cells through reducing ROS production. Neurol. Res. 37,

916–23 (2015).

70. Ebrahimi, F. et al. Time dependent neuroprotection of mycophenolate mofetil:

effects on temporal dynamics in glial proliferation, apoptosis, and scar for-

mation. J. Neuroinflamm. 9, 89 (2012).

71. Qian, J. et al. A combination of neostigmine and anisodamine protects against

ischemic stroke by activating alpha7nAChR. Int. J. Stroke 10, 737–44 (2015).

72. Colin-Gonzalez, A. L. & Santamaria, A. Probenecid: an emerging tool for

neuroprotection. CNS Neurol. Disord. Drug Targets 12, 1050–65 (2013).

73. Vamos, E., Voros, K., Zadori, D., Vecsei, L. & Klivenyi, P. Neuroprotective effects of

probenecid in a transgenic animal model of Huntington’s disease. J. Neural

Transm. 116, 1079–86 (2009).

74. Geng, X. et al. Neuroprotection by chlorpromazine and promethazine in

severe transient and permanent ischemic stroke. Mol. Neurobiol. 54, 8140–50

(2017).

75. Rau, T. F., Kothiwal, A., Rova, A., Rhoderick, J. F. & Poulsen, D. J. Phenox-

ybenzamine is neuroprotective in a rat model of severe traumatic brain injury.

Int. J. Mol. Sci. 15, 1402–17 (2014).

76. Ardestani, P. M. et al. Modulation of neuroinflammation and pathology in the

5XFADmouse model of Alzheimer’s disease using a biased and selective beta-1

adrenergic receptor partial agonist. Neuropharmacology 116, 371–86 (2017).

77. Faizi, M. et al. Comprehensive behavioral phenotyping of Ts65Dn mouse

model of Down syndrome: activation of beta1-adrenergic receptor by

xamoterol as a potential cognitive enhancer. Neurobiol. Dis. 43, 397–413

(2011).

78. Yan, B. C. et al. Neuroprotection of posttreatment with risperidone, an atypical

antipsychotic drug, in rat and gerbil models of ischemic stroke and the

maintenance of antioxidants in a gerbil model of ischemic stroke. J. Neurosci.

Res. 92, 795–807 (2014).

79. Birks, J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database

Syst. Rev. CD005593 (2006).

80. Scott, L. J. & Goa, K. L. Galantamine: a review of its use in Alzheimer’s disease.

Drugs 60, 1095–122 (2000).

81. Mittal, S. et al. beta2-Adrenoreceptor is a regulator of the alpha-synuclein gene

driving risk of Parkinson’s disease. Science 357, 891–8 (2017).

82. Hardt, C. et al. ToxDB: pathway-level interpretation of drug-treatment data.

Database (Oxford) 2016, baw052 (2016).

Williams et al. Translational Psychiatry           (2019) 9:220 Page 10 of 10


	Drug repurposing for Alzheimer&#x02019;s disease based on transcriptional profiling of human iPSC-derived cortical neurons
	Introduction
	Materials and methods
	The AD-associated transcriptional landscape
	CMAP profiles
	iPSC profiles

	Results
	AD-associated expression changes
	CMAP candidates
	iPSC profiles
	Comparison of iPSC and CMAP profiles
	Relation of iPSC profiles to AD

	Discussion
	ACKNOWLEDGMENTS


