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Fungal pathogens use variousmechanisms to survive exposure to drugs. Prolonged treatment very often leads to
the stepwise acquisition of resistance. The limited number of antifungal therapeutics and their mostly fungistatic
rather than fungicidal character facilitates selection of resistant strains. These are able to cope with cytotoxic
molecules by acquisition of appropriate mutations, re-wiring gene expression and metabolic adjustments.
Recent evidence points to the paramount importance of the permeability barrier and cell wall integrity in the
process of adaptation to high drug concentrations. Molecular details of basal and acquired drug resistance are
best characterized in themost frequent human fungal pathogen, Candida albicans. Effector genes directly related
to the acquisition of elevated tolerance of this species to azole and echinocandin drugs are well described. The
emergence of high-level drug resistance against intrinsically lower susceptibility to azoles in yeast species other
than C. albicans is, however, of particular concern. This is due to their steadily increasing contribution to high
mortality rates associated with disseminated infections. Recent findings concerning underlying mechanisms
associated with elevated drug resistance suggest a link to cell wall and plasma membrane metabolism in
non-albicans Candida species.

Introduction

The rising incidence of multidrug resistance is a global threat to
the effective treatment of human and animal infectious diseases
of bacterial and fungal origin. High mortality associated with
disseminated fungal infections is of particular concern, given the
limited treatment options and the high adaptive capability of
fungal pathogens to stress conditions associated with coloniza-
tion of different host niches and drug exposure.

Longitudinal surveillance studies from various medical centres
worldwide document the growing clinical relevance of yeasts of
the genus Candida as the leading cause of fungaemia. Candida
albicans remains the predominant causative agent of all forms
of candidiasis. Epidemiological data, however, indicate the growing
role of non-albicans Candida (NAC) as causative agents of nosoco-
mial invasive candidaemias, altogether surpassing C. albicans.1–4

Most infections attributed to NAC are caused by Candida glabrata,
Candida parapsilosis and Candida tropicalis. This changing epidemi-
ology and shift towards species characterized by elevated, as com-
pared with C. albicans, MICs of azoles, reflects their widespread use
and prolonged prophylaxis in the growing population of high-risk
patients.5–7 The evolved virulence factors characteristic of fungal
pathogens, combined with their great potential to develop antifun-
gal resistance, account for the observed epidemiology. The inci-
dences vary according to geographical region and patient group,
but continue to increase worldwide.8 High mortality (up to 60%),
alongwith increasing resistance to antifungals amongNAC species,

poses serious economic and medical problems. This is related to
the increase in the population of immunocompromised individuals,
such as transplant-receiving patients, HIV-positive people and
patients undergoing chemotherapy. Additional risk factors include
prolonged treatment with broad-spectrum antibiotics, advanced
age and premature birth. Frequent invasive medical treatments,
use of implanted devices (valves, joints, catheters) and misuse of
antifungal drugs also account for the observed shift towards isola-
tion of NAC. Patient characteristics predisposing to infections
caused by NAC are summarized in Table 1.

The opportunistic human pathogen C. glabrata is a primary
species isolated from patients with a compromised immune sys-
tem and the secondmost common aetiological factor for Candida
infections.20–23 Haploid and asexual C. glabrata live as commen-
sals on mucosal surfaces, where they are a constituent of the
normal microbiome.24,25

However, under suitable conditions C. glabrata may turn into
an opportunistic pathogen causing superficial as well as deep-
seated mycoses. It is most prevalent in transplant-receiving
patients, individuals with non-transplant surgery and patients
with solid tumours or haematological malignancies (Table 1).
C. glabrata affects mostly older patients, diabetics or individuals
pre-exposed to azoles or echinocandins, and is rarely isolated from
neonates and young children. Mortality rates are higher in C. glabrata
than in C. albicans infections, reaching 50% (Table 1). This is
related to the enormous adaptability of C. glabrata. It may colon-
izemany different host niches. In order to survive and proliferate it
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uses numerous mechanisms, allowing its successful adaptation
as a pathogen. These include the ability to sustain long-term car-
bon and iron starvation upon phagocytosis by macrophages, as
well as a low-pH environment in the vagina or phagolysosomes,
increased resistance to nitrosative and oxidative stresses. On the
other hand, relatively hypoxic conditions are encountered by this
pathogen in some of the host niches it occupies, such as the peri-
odontal space or intestine.26,27Finally, stress is posed by challenge
with antifungal drugs used in medical treatment, as well as by
competitive interactions with other microorganisms. These condi-
tions are likely to affect the intrinsically low susceptibility of
C. glabrata to fluconazole, whichmay quickly develop into high-level
resistance during the course of medical treatment. Therefore,
infections caused by C. glabrata are difficult to eradicate, leading
to significant mortality combined with increased virulence.

One of the most prevalent aetiological factors causing
nosocomial candidaemia in tropical countries is C. tropicalis.9 This
diploid, dimorphic fungal pathogen affects mostly neutropenic
patients and individuals with haematological malignancies.15,28

Candidaemia and invasive candidiasis caused by C. tropicalis are
treated with amphotericin B or echinocandins. Although extended-
spectrum triazoles are also in use, resistance is usually induced
upon prolonged exposure.

C. parapsilosis, a diploid dimorphic yeast, is a normal human
commensal; in contrast to C. albicans, C. glabrata and C. tropicalis,
however, it can also live freely in a wide range of environmental
niches. Recent data highlight the increasing clinical impact of this
species. Multiple nosocomial outbreaks due to C. parapsilosis in
clinical settings have been observed.10,29,30 C. parapsilosis can
disseminate via horizontal transmission. Exogenous sources
such as medical devices and parenteral nutrition, but mostly
the hands of healthcare workers, may be sources of fungaemia
outbreaks.31 –33 C. parapsilosis affects individuals with a wea-
kened immune system (Table 1); however, the group of patients
at greatest risk of nosocomial infection with C. parapsilosis is that
of low-birth-weight neonates.11 A characteristic feature of this
fungal pathogen is its high capability for biofilm formation on abi-
otic plastic surfaces (Table 2). This facilitates and enhances the

Table 1. Infections caused by NAC species

Feature C. glabrata C. parapsilosis C. tropicalis

Average mortality rate 50% (30%–80%) 29% 40% (30%–70%)

Patient age adults (.65 years) premature infants, children and young

adults (1–19 years)

adults (.60 years)

Underlying conditions solid organ transplant, solid tumours,

diabetes mellitus, haematological

malignancies, pre-exposure to azoles

or echinocandins, corticoid use

neutropenia, pre-exposure to echinocandins,

parenteral nutrition, immunosuppressive

therapy, burns, vascular catheterization,

prosthetic devices, prior antibiotic therapy,

prior surgery

neutropenia, organ transplant,

haematological malignancies,

prolonged catheterization

Major sites of infections vagina, oral cavity, urinary tract,

disseminated

gastrointestinal tract, oral cavity,

disseminated

skin, oral cavity (AIDS and cancer

patients), genitourinary tract,

gastrointestinal tract,

disseminated

Compiled using information from references 9–19.

Table 2. General features of NAC species

Feature C. glabrata C. parapsilosis C. tropicalis

Ploidy haploid diploid diploid

Virulence factors

adhesins EPA family ALS-like family ALS-like family

hyphae/pseudohyphae absenta pseudohyphae present

ability to form biofilms/form moderate/mats high/less structured, monolayer

or multilayer

high/compact monolayer

major biofilm regulators Bcr1 Bcr1, Cph2 Bcr1

secreted proteases absent SAPP1-3 SAPT1-4

drug resistance natural azole resistance, acquired

echinocandin resistance

increased echinocandin resistance,

acquired echinocandin resistance

natural 5-fluorocytosine resistance,

acquired fluconazole resistance,

acquired echinocandin resistance

Compiled using information from references 34–42.
EPA, epithelial adhesins; ALS, agglutinin-like sequence; Bcr1, biofilm and cell wall regulator 1; SAP, secreted aspartyl proteases.
aCan form pseudohyphae under nitrogen starvation conditions.34
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capacity of the organism to colonize prosthetic materials and
indwelling devices, including catheters.18,43Difficult-to-eradicate
C. parapsilosis biofilms, resistant to antifungal drugs, pose the
need for removal of intravenous catheters and implanted
devices.44

Molecular mechanism of drug resistance

The number of drug classes that can be used for the treatment of
invasive fungal diseases is relatively small compared with the
large number of antibacterial medications. Similar biology of the
eukaryotic host and fungal pathogens leads to significant toxicity
of certain drugs, frequently precluding their safe use over pro-
longed time, which is often required. Overuse of antifungals,
which are most often applied as monotherapy, leads to selection
of subpopulations of resistant cells, a process facilitated in
patients with a weakened immune system.

Inherent resistance of certain species to antifungal drugs
occurs naturally without pre-exposure to drug, whereas suscep-
tible species can acquire resistance during medical treatment,
which often leads to therapy failure. This acquired resistance to
a single drug may be accompanied by cross-resistance to the
entire group of antifungals of the same class, as well as to repre-
sentatives of multiple structurally unrelated groups. Resistance
to multiple drugs may also emerge in response to therapy
approaches in which two ormore drugs with differentmechanism
of action are applied sequentially or in combination. Resistance to
both azoles and echinocandins in C. glabrata and C. tropicalis or
azoles and amphotericin B in C. glabrata has been detected in
clinical settings.45–49 The emergence of MDR Candida (mostly
among C. glabrata isolates) not responsive to treatment with all
three classes of antifungal drugs is alarming.50

In order to survive the presence of toxic drugs, fungal cells have
evolved various mechanisms, including target alteration, reduced
uptake and active extrusion.51 These mechanisms are connected
with processes allowing protection of cell integrity and are coordi-
nated with stress response signalling pathways. Stress adaptation
promotes the evolution andmaintenance of clinical drug resistance.

Resistance can develop to anyof the threemain classes of anti-
fungal drugs that are in clinical use against infections caused by
NAC species, namely echinocandins, azoles and polyenes.

Echinocandins, their mode of action and
mechanisms of resistance

The primary and specific antifungal drug target is the cell wall. Its
structure and composition are tightly regulated to reflect its mul-
tiple functions in pathogenic fungi. Enzymes engaged in the bio-
synthesis of cell wall components rapidly respond to any change
in cell wall structure. This is effected by the coordinated action of
several signalling pathways that sense and respond to defects
within the cell wall, including those caused by some antifun-
gal drugs.

Echinocandins disrupt cell wall biogenesis. This class of fungi-
cidal drugs comprises micafungin, anidulafungin and caspofungin,
the most widely used echinocandin.52–54 These lipopeptides kill
fungal pathogens via inhibition of the biosynthesis of an essential
component of the fungal cell wall, b(1,3)-glucan.55 The subunits of
the integral plasma membrane protein 1,3-glucan synthase Fks1p

or Fks2p are the target of specific non-competitive inhibition by
echinocandins.55 As a result, the fungal cell wall undergoes
remodelling.

According to recent guidelines, echinocandins have been
approved as the front-line clinical agents for candidaemia treat-
ment.56 This is due to their wide spectrum of fungicidal activity
against most Candida species, including fluconazole-resistant
strains. Although echinocandins have been in medical use since
2001 and resistance to this class of drugs appears rarely, an
increasing number of NAC isolates exhibiting elevated tolerance
has been reported.57,58 Experimental data collected so far indi-
cate that acquired echinocandin resistance in clinical isolates of
C. albicans, C. tropicalis and Candida krusei is associatedwith spon-
taneous point mutations in the hot spot regions of the FKS1 target
gene.59 – 62 Resulting amino acid changes reduce Vmax of the
glucan synthase enzyme.59,62

Strains of C. parapsilosis show reduced susceptibility to echino-
candins due to the presence of a proline-to-alanine substitution at
amino acid position 660 (P660A) within the HS1 region of Fks1p.59

Therefore, further reduction of echinocandin susceptibility in
clinical isolates of C. parapsilosis might involve regions of FKS1
other than HS1 and HS2. Thus far, FKS2 gene alterations have
not been detected to play a role in echinocandin resistance in
this yeast species.63

In clinical isolates of C. glabrata, and in contrast to other
Candida species, echinocandin resistance involves mutations in
the functionally redundant genes CgFKS1 and CgFKS2.64–66 The
presence of clinically significant distinct mutations, mainly in the
HS1 region of the FKS1 and FKS2 genes, correlated with increased
MIC of the echinocandin used and poor treatment outcome.45,67

Decreased echinocandin susceptibility can also result from
mechanisms that are independent of FKS mutations. A phenom-
enon of conditional growth at high drug concentrations exceeding
the MIC, with retention of full susceptibility at low to intermediate
concentrations, named paradoxical growth or the Eagle effect,
has been observed in C. tropicalis, C. parapsilosis, C. albicans,
Candida dubliniensis and C. krusei. This has been linked to the
induction of transient compensatory pathways leading to the
accumulation of chitin and reduction of b(1,3)-glucan content
in cells challenged with a high drug concentration.66,68 – 70

Paradoxical growth depends on the type of echinocandin drug
used and the targeted species.68 Apart from altered cell wall
structure, changes in morphology and growth rate have been
attributed to the Eagle effect. Paradoxical growth is inhibited by
the presence of human serum, and its in vivo significance remains
uncertain.71

Yet another way of modulating echinocandin susceptibility
involves membrane sphingolipids. While a high dose of echino-
candins led to paradoxical growth, selection with low concentra-
tions of caspofungin resulted in isolation of C. glabrata mutants
exhibiting a mixed phenotype with reduced susceptibility to
caspofungin (CRS) and increased susceptibility to micafungin
(MIS). Genetically, the mixed phenotype was independent of the
FKS genes and mapped to the loss-of-function mutations in
genes encoding enzymes involved in sphingolipid biosynthesis
(FEN1, SUR4, SUR2 and IFA38). Accumulation of long-chain
bases (LCBs), such as sphingosine and dihydrosphingosine, in
CRS/MIS mutants was observed. Increased LCB content is likely
to differentially influence interaction of caspofungin andmicafun-
gin with Fks hot spot regions embedded in the plasmamembrane.
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A role of LCBs in moderating echinocandin susceptibility has been
shown in multiple yeast species, including C. glabrata, C. tropicalis,
C. krusei and C. albicans as well as moulds such as Aspergillus
nidulans.72–74

Studies of the evolution of C. glabrata drug resistance to echi-
nocandins in the human host revealed stepwise acquisition of
accompanying compensatory mutations underlying increased
resistance.75 Global analysis of genome changes was performed
on a series of C. glabrata isolates recovered from a patient under-
going multiple rounds of caspofungin treatment. WGS revealed
the presence of a mutation within the drug target, CgFKS2, and
a number of non-synonymous changes in genes previously not
connected with echinocandin resistance. Apart from mutations
in CgFKS2, alterations in CgDOT6, CgMRPL11 and CgSUI2 accom-
panied an increase in echinocandin resistance.75 CgFKS2 alone
can confer echinocandin resistance. Based on the function of
Saccharomyces cerevisiae orthologues that are involved in telo-
meric gene silencing (ScDOT6) or mitochondria organization
(ScMRPL11), these processes might be involved in C. glabrata
adaptation to the host or compensation of the adverse effect of
CgFKS2 mutation. A mutation that reduced the fitness cost of
echinocandin resistance was identified in CDC55.

Loss of heterozygosity in CtFKS1 has been observed during
the course of echinocandin-based antifungal therapy against
C. tropicalis. Environmental stress posed by caspofungin treatment
led to in vivo selection and stepwise progression from CtFKS1 to
homozygosity for the Ctfks1 mutation.76 Loss of heterozygosity
has beendocumentedas an important factor in drug resistance evo-
lution in C. albicans. Acquisition of hyperactive mutations in both
alleles of the TAC1 regulator increased azole resistance due to the
overexpression of its downstreamtarget genesCDR1orCDR2, encod-
ingmultidrug efflux pumps of the ATP-binding cassette (ABC) super-
family.77 Thus, loss of heterozygosity can be considered as one of
the mechanisms leading to stable drug resistance.78

Azoles, their mode of action and mechanisms
of resistance

Azoles, including ketoconazole, itraconazole and fluconazole,
have been the mainstay of antifungal therapy and prophylaxis
for many years. A key azole drug, fluconazole has been in clinical
use since the early 1990s. Its low toxicity, high efficiency and oral
availability made it the most commonly used triazole com-
pound.79 New representatives of this class, voriconazole and
posaconazole, which have an extended activity spectrum, have
been approved for systemic treatment.56 The fungistatic nature
of azoles, along with their massive overuse in agriculture and
medicine, facilitates the selection of resistant isolates. The trans-
fer of field-selected azole-resistant Aspergillus to clinics has
already been observed.80–82The huge selective pressure of azoles
used in crop protection, associated with their long half-life and
broad specificity, however, has global effects on multiple fungal
species thriving in the environment, including those posing a
threat to human health.83

Azoles inhibit cytochrome P450 14a-lanosterol demethylase,
encoded by the ERG11 gene and involved in ergosterol biosynthesis.
As a result, ergosterol in the plasma membrane is depleted and
methylated sterols, such as the toxic 14-a-methyl-ergosta-
8-ene-3,6-diol, accumulate. This has a profound effect onmembrane

packing and increases membrane fluidity, which triggers severe
membrane stress and affecting the function of numerous mem-
brane proteins.84

Mechanismsof azole resistance include active efflux, target alter-
ation or amplification and impaired drug uptake. Overexpression of
efflux pumps of either the ABC superfamily or the major facilitator
superfamily (MFS) leads to increased extrusion of drugs from cells,
decreasing their concentration below toxic level.85–89 Whereas
some transporters, like C. albicans CaMDR1, of the MFS, are specific
for the closely structurally related fluconazole and voriconazole,
the ABC representatives show extremely broad substrate specificity,
details of which remain unresolved.90–93

The mechanism of drug target alteration or amplification is
connected to the ergosterol biosynthesis pathway. It is based
on increased expression of the primary azole target ERG11 or
point mutations within the ERG11 gene, which can decrease the
affinity of azoles for the target enzyme. In addition, loss of the
sterol D5,6-desaturase function coded by ERG3 has been asso-
ciated with decreased drug susceptibility.94,95

Altered drug uptake may reduce the intracellular azole level
and influence the overall drug susceptibility status of the fungal
cell. The exact molecular mechanism of this type is not entirely
clear. According to early reports, azoles passively diffuse across
the plasmamembrane. Thus, altered plasmamembrane lipid com-
position and subsequent changes in the permeability barrier would
affect the uptake of drugs.96,97 Recent studies, however, propose
pH- and ATP-independent facilitated diffusion as a mechanism of
entry of certain azole drugs. This previously uncharacterized mech-
anism was observed in clinical isolates of C. albicans, C. krusei and
Cryptococcus neoformans and recently in Aspergillus fumigatus.98,99

The saturation kinetics of fluconazole accumulation suggested that
azole import was associated with energy-independent facilitated
diffusion. Uptake of azole drugs can be influenced by their structure,
hydrophobicityand polarity. Various accumulation (uptake) systems
may therefore exist for drugs depending on their characteristics.
Thus, changes in the lipid environment and membrane fluidity
have the potential to affect both passive drug diffusion through
the membranes and also protein-mediated facilitated diffusion, as
the activity of membrane proteins largely depends on the mem-
brane environment.

Each of the mechanisms described may operate separately in
different isolates; however, the development of high-level resist-
ance is usually achieved by their combined effect. Numerous
recent experimental reports unravel new connections coupling
azole resistance to fundamental processes involved in the patho-
gen’s cellular homeostasis and allowing adaptive evolution.

Azole resistance in NAC species

Different NAC species vary in their susceptibilities to azoles.
C. tropicalis and C. parapsilosis are regarded as being susceptible.
Primary resistance to azoles is rare in these species. C. glabrata
shows dose-dependent susceptibility or resistance and it is no
longer considered to be susceptible to azoles.

Widespread prophylactic use of fluconazole coincided with
an increased incidence of infections due to less susceptible
NAC species.100 Fluconazole-resistant clinical isolates of
C. glabrata, C. parapsilosis and C. tropicalis have been detected
worldwide.21,101–103
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The development of azole resistance is relatively quick and
dynamic. In addition, exposure of a susceptible clinical isolate to a
specific azole could induce stable cross-resistance to the entire
groupof azole classof antifungals in all NAC species discussed.103–105

Thus far, there is limited information on the molecular mech-
anism underlying elevated azole tolerance in C. parapsilosis and
C. tropicalis. The only global analysis of cellular traits that are
altered upon azole treatment in C. parapsilosis resembles the
description of molecular changes found in C. albicans.104,106,107

It also indicates differences in cellular responses to specific azole
antifungals used for treatment. Similarly to C. albicans, selection
of C. parapsilosis towards increased fluconazole or voriconazole
resistance led to the elevated expression of the CpMRR1 transcrip-
tion factor and its target CpMDR1 and likely other MFS family mem-
bers. In addition, noticeable up-regulation of enzymes from the
family of aldo-keto reductases (AKRs) was observed in MDR1-
overproducing isolates of both species.104,106,107 Homologous
stress-regulated AKRs arewidespread in other organisms, including
mammals, where they catalyse important redox modifications of
various carbonyl-containing compounds, being engaged in their
metabolism and detoxification.108 The role of drug-induced AKRs
in Candida remains to be clarified.

In contrast, posaconazole challenge of the same C. parapsilosis
isolate triggered modifications in the composition of the plasma
membrane, compensating for alterations in its fluidity and perme-
ability. Posaconazole-induced inhibition of the production of
ergosterol was balanced by overexpression of the transcriptional
regulators UPC2 and NDT80, which govern expression of the ERG
genes of the ergosterol biosynthesis pathway.104 Additional
changes included the induction of CpCDR3—the homologue of
C. albicans ABC transporter CDR3, which was shown to be engaged
in out-to-in translocation of 7-nitrobenz-2-oxa-1, 3-diazole-4-yl
(NBD)-labelled phospholipid analogues within the plasma mem-
brane and CpPDR16 phosphatidyloinositol transfer protein.109

Recent findings of Berkow et al.110 suggest that azole resistance
in C. parapsilosis clinical isolates depends on the combined specific
changes in the ergosterol biosynthesis pathway due to the CpErg11
alteration (Y132F), increased expression of CpERG11, CpCDR1 and
CpMDR1 transporters and the contributions of CpTAC1- and
CpMRR1-dependent targets. The latest include members of the
largely uncharacterized drug:H+ antiporter family of the MFS
(DHA transporters), which are highly represented in C. parapsilosis.
DHA transporters that have been linked to antifungal drug resist-
ance in other pathogenic fungi include C. glabrata FLR1, TPO3 and
QDR2 and C. albicans CaMDR1 or CaNAG3.92,111Roles in ion homeo-
stasis, virulence, biofilm formation and architecture or survival in
the host have been attributed to MFS transporters, apart from
mediating resistance to selected xenobiotics.112 Together with
members of the ABC transporter superfamily, they likely take part
in cellular homeostasis and the stress response and might also act
as a remote signalling and sensing system.

In clinical isolates of C. tropicalis, acquired in vivo azole resist-
ance was related to increased expression of CtERG11 or its
missense mutations.113,114 While alterations in the ergosterol
biosynthesis pathway predominate in vivo, experimentally
induced fluconazole resistance involved up-regulation of multi-
drug efflux pumps of either the ABC type (CtCDR1) or the MFS
family (CtMDR1).113 The process of in vitro-induced fluconazole
resistance was very fast and dynamic but led to loss of virulence
in the murine model, indicating reduced fitness of these mutants.

C. tropicalis with depletion of ergosterol in the plasma mem-
brane and cross-resistance to polyenes and azoles has been iden-
tified in patients suffering from recurrent candidaemia.48,49

Different missense mutations in CtERG11 and CtERG3 rather than
active efflux led to selection of C. tropicalis accumulating 14-methyl
sterols. Thus, altered plasmamembrane composition and resulting
changes in the permeability barrier are the key players in the acqui-
sition of stable multidrug resistance in C. tropicalis.

Azole resistance in C. glabrata

In contrast to C. albicans and other NAC species, inherent as well
as acquired azole resistance in C. glabrata clinical isolates relies
predominantly on increased active drug efflux. This is due to ele-
vated expression of the multidrug ABC transporter-encoding
genes CgCDR1, CgCDR2 and CgSNQ2.87,88,114–118 Massive overex-
pression of a single ABC transporter gene or multiple multidrug
ABC transporter genes in clinical isolates of C. glabrata resulted
from spontaneous gain-of-function (GOF) mutations in the tran-
scription factor CgPDR1, a homologue of S. cerevisiae PDR1 and
PDR3.116 –119 Early independent transcriptomic analyses of
C. glabrata clinical isolates indicated that the main mechanism
of azole resistance involves the PDR1 regulon. This was in line
with the very low frequency of mutations in other azole targets,
such as CgERG11 and CgERG3.88,118 –121 The status of the
CgPDR1 locus affects azole susceptibility in clinical settings, as
recently revealed by high-throughput sequencing technology.122

Activatingmutants of CgPDR1, apart from contributing to azole
resistance in vitro and in vivo, modulate interaction with host cells.
GOF mutations in CgPDR1 increase virulence compared with the
WT alleles in the murine model of disseminated candidiasis and
enhance adhesion to epithelial cell lines, whichmight facilitate ini-
tial colonization of the host.123,124 In addition, CgPDR1 GOF
mutants may promote evasion of the immune system by reduced
adherence to and uptake by macrophages.124

Susceptibility to azoles is also connected with respiratory sta-
tus in C. glabrata. It decreases in petite mutants with dysfunc-
tional mitochondria. Mitochondrial dysfunction due to partial or
complete loss of mitochondrial DNA (mtDNA) can be induced
in vitro by exposure to ethidium bromide or the presence of
azoles.125,126These in vitro-selected C. glabratamutants emerged
with high frequency.127,128 Azole-resistant petite mutants of
C. glabrata were also isolated from patients undergoing flucon-
azole therapy, although at low frequency.126 C. glabrata petite
mutants selected in vivo exhibited higher resistance with no
need for GOFmutations within CgPDR1. They were also more viru-
lent in the murine model.128 In another approach to the analysis
of the virulence of petite mutants of C. glabrata selected on drug-
containing plates, reduced virulence was observed.129 The
discrepancy likely results from different selection procedures
and the commonly observed heterogeneous nature of petite
yeast mutants, which show increased mutation frequency.130

Transcriptomic analysis of petite mutants indicated substantial
overlap between C. glabrata and S. cerevisiae. Similarly to
S. cerevisiae, defects in mtDNA led to increased expression of
CgPDR1 and concomitant up-regulation of nuclear genes con-
nected with small-molecule transport and multidrug efflux as
well as membrane lipid homeostasis. These include CgCDR1,
CgSNQ2, CgYOR1 and CgPDR15, encoding ABC transporters,
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along with CgPDR1 regulator and genes involved in lipid
biosynthesis: CgPDR16, CgIPT1, CgLCB5 and CgLAC1. The elevated
expression of CgPDR1 in petite mutants correlated also with
up-regulation of CgRTA1 and CgRSB1.121,123,131 Both encode
7-transmembrane domain-containing proteins, which are overpro-
duced in azole-resistant C. glabrata, C. albicans and S. cerevisiae.
Rta1p and Rsb1p were initially identified in S. cerevisiae to increase
resistance to 7-aminocholesterol and phytosphingosine, respect-
ively, by an unknown mechanism.131–135 The predicted topology
of CgRta1p (and CgRsb1p) most closely resembles that of a family
of ubiquitous 7-transmembrane helix G-protein-coupled receptors
(7-TM GPCRs), which transduce various signals across biological
membranes and in humans are the major target of therapeutic
intervention by small-molecule drugs. It remains an open question
whether CgRta1p and CgRsb1p are involved in G-protein-mediated
signal transduction phenomena, functioning under defined stress
conditions.

Comparison of recent data on CgPdr1 genomic binding sites in
C. glabrata petite mutants obtained in vitro with a set of genes
up-regulated in a mitochondrial mutant isolated from a patient
indicated a core set of genes from the PDR1 regulon, common
to both variably selected mutants.128,136 In both cases, massive
overexpression of CgCDR1 along with CgPDR1 was observed.
In vivo selection of highly resistant C. glabrata petites is connected
with acquisition of many other changes that evolved to increase
resistance and virulence in the mammalian host. These altera-
tions affect the organization of mitochondria and cellular respir-
ation, as well as the biogenesis, organization and maintenance
of the cell wall.

Genetic alterations and variation in gene copy number contrib-
ute to azole resistance in C. glabrata and constitute a source of its
enormous genetic diversity. Early reports indicated a positive
correlation between the increase in copy number of CgERG11
with elevated azole tolerance.137 Rapid alterations in genomic
organization, including karyotype changes during the time of infec-
tion, have also been reported.138,139 The underlying presence of a
considerable number of megasatellites or repetitive minisatellite
sequences serving as a source of inter- and intra-chromosomal
rearrangements leads to enormous genome plasticity. This,
together with the enhanced genome mutability of haploid C. glab-
rata, allows fast adaptation and successful colonization of the host.

The picture of the response to azole antifungals has become
even more complex in the light of recent findings. Components
of the cell wall integrity (CWI) pathway and sterol biosynthesis
and constituents of the RNA polymerase II mediator complex
CgMed2p and CgGal11p were shown to be required for basal
and acquired azole resistance in C. glabrata.140 The RNA polymer-
ase II mediator complex plays a crucial role in the process of
transcription activation, where it serves as a bridge between
upstream gene-specific regulatory proteins and the core of RNA
polymerase II.141 Removal of CgMED2 impaired CgPDR1 activation.
It was also required for fluconazole resistance elicited by GOF
CgPDR1. Similarly to the effect exerted by CgGAL11 (CgMED15)
disruption, it affected fluconazole-induced CgPDR1 expression
and led to reduced transcript levels for CgCDR genes.140

Cells lacking CgMED2 were also more susceptible to caspofun-
gin and constitutively activated the Pkc1p-mediated CWI path-
way, indicating the involvement of upstream signalling cascades
in the PDR response.140 In this way, subtle perturbations in the cell
wall and plasma membrane caused by the presence of drugs

might be sensed and transmitted to CgPdr1p. Detailed molecular
mechanisms of this interplay are yet to be discovered.

Another component of the mediator complex, the CgGal11p KIX
domain,was shown todirectly interactwith CgPdr1p in a xenobiotic-
dependent manner.142 Direct binding of ketoconazole to ScPdr1p
has been proposed as amechanism triggering activation of its regu-
latory network in S. cerevisiae, including the azole resistance-
conferring multidrug ABC transporter ScPdr5p. Although this is in
line with the observation that ScPdr1p homologues, members of
the Gal4 family, are ligand-activated transcription factors, the dis-
sociation constant of ketoconazole was relatively high (39 mM).142

Induction of transcriptional activators of multidrug transporters
upon binding of xenobiotic substrates to regulatory proteins has
also been observed in bacteria. Crystallographic analysis of the bac-
terial BmrR transcriptional activator of the multidrug transporter
Bmr revealed thepresence of a large electronegative pocket capable
of accommodating multiple hydrophobic xenobiotics possessing a
net positive charge with high affinity.143,144 The compensatory acti-
vation of genes encodingmultidrug ABC transporters in response to
genetic inactivation of homologues of overlapping specificity was
associated with specific activation of ScPdr1p, but without addition
of xenobiotics.145 This indicates that Pdr1p activation may involve
interactions with endogenous ligands that have not yet been
identified.

Polyene drugs, their mode of action and
mechanisms of resistance

Polyenes are natural fermentation products of Streptomyces. The
most commonly used polyene drug, amphotericin B, is connected
with severe toxic side effects, including dose-dependent renal tox-
icity when used in the conventional way. Therefore, new liposome
formulations with decreased toxicity and improved therapeutic
index have been developed.146,147 In comparison with other
drugs, amphotericin B is refractory to the development of resistance.
Despite nearly 50 years of use in medical treatment, resistance to
amphotericin B is rare. The fungicidal action of amphotericin B is
more complex than previously thought. According to the newly pro-
posed sterol sponge model, it primarily forms large extramembra-
nous aggregates that extract ergosterol from phospholipid
bilayers, thus depleting cells of ergosterol.148 Resistance to ampho-
tericin B is very uncommon among NACs. Sporadic cases of
enhanced amphotericin B tolerance were reported.149 Membranes
of C. tropicalis isolates resistant to azoles and with reduced
susceptibility to amphotericin B were low in ergosterol.48 In
C. albicans, depletion of ergosterol led to the accumulation of
C-14-methylated sterols or lanosterol.150 In addition, amphotericin
B induced the intracellular accumulation of reactive oxygen species
(ROS) in NAC species.151 Cells of C. tropicalis resistant to amphoter-
icin B exhibited altered mitochondrial activity and produced signifi-
cantly less ROS. It is, however, not clear whether these effects
directly result from ergosterol depletion, which might affect mito-
chondrial membrane composition and function, or other amphoter-
icin B-induced intracellular events. Multiple effects exerted by
amphotericin B were reflected by decreased fitness and reduced
virulence of C. tropicalis resistant to amphotericin B.152 This was
due to constitutive activation of the diverse stress responses
imposed by amphotericin B challenge and the extremely high fit-
ness costs of acquired mutations. Apart from compensatory
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mutations, alterations were identified in the CtERG2, CtERG3, CtERG5,
CtERG6 and CtERG11 genes of the ergosterol biosynthesis pathway.
Ergosterol depletion activated compensatory mechanisms in the
Hsp90 chaperone and Hsp90-dependent stress response pathways,
including those of Hog1, calcineurin and Pkc1pCWI signalling.152 This
is in linewith recent large-scale phenotypic profiling of the C. glabrata
knock-out collection, unravelling genes linking modulation of
amphotericin B tolerance to cell wall and lipid homeostasis.153 Due
to the essential role of ergosterol, various cellular processes under-
lying the fungicidal action of amphotericin B are likely to be affected.

Strikingly, an amphotericin B resistance mechanism depend-
ent on plasma membrane proteolipid 3 (Pmp3) was recently
proposed by Bari and co-workers.154 Pmp3 is a conserved
hydrophobic membrane polypeptide involved in maintenance of
membrane potential and ion homeostasis. It was shown to spe-
cifically antagonize the amphotericin B effect in C. glabrata and
S. cerevisiae.155 Together with Pmp3, modulation of amphotericin
B resistance was dependent on functional components of
the sphingolipid biosynthesis pathway, such as the fatty acid elon-
gases Fen1 and Sur4, the regulatory Ypk1 kinase and Sac1 phos-
phatidylinositol phosphate phosphatase.156,157 Defects in FEN1
and SUR4 affect the entire yeast lipidome, leading to accumula-
tion of aberrant sphingolipid species and compromised vacuolar
and protein trafficking to the cell surface.158 The concomitant
adaptational modifications of ergosterol and sphingolipid metab-
olism are likely due to their critical involvement in raft formation.

Drug resistance and cell wall stress signalling

As key enzymes involved in cell wall biogenesis are associated
with the plasma membrane, and the two structures remain in
close contact during cell growth, providing a physical barrier
between the cell interior and the outside world, the homeostasis
of the two structures requires coordinate regulation. Integrity of
the cell wall, providing mechanical rigidity, is crucial for cell sur-
vival and it must therefore be appropriately remodelled in
response to adverse external stresses, including that posed by
antifungal drugs. Alterations in the cell wall are sensed by plasma
membrane-bound sensors that trigger activation of the signalling
cascades (Figure 1).

General signalling pathways, like the protein kinase C (PKC1)/
CWI/mitogen-activated protein (MAP) kinase cascade, the HOG
signalling and calcium/calmodulin-dependent phosphatase
calcineurin pathways, as well as the TOR pathway, are highly con-
served among different yeasts, including NAC species. Signalling
pathways are interconnected, coordinately regulating their target
genes involved in crucial cellular functions, including those asso-
ciated with membrane and cell wall metabolism.

The primary function in modulating the response to echino-
candins and azoles is played by the PKC1 cascade, which is
known to control CWI. Defects within the cell wall or transient
compensatory changes induced by high caspofungin concentra-
tion activate PKC/CWI along with calcineurin pathways in
C. albicans, S. cerevisiae, C. krusei, C. parapsilosis and Candida guil-
liermondii.159,160 Similarly, in C. glabrata, rescue from fungicidal
concentrations of echinocandins was associated with activation
of the CgSlt2p MAPK, in the Pkc1p kinase cascade, along with its
target, CgRlm1p transcription factor.68,161 –163 Another down-
stream target of CgSlt2p, CgSBF (Swi4–Swi6 cell cycle box binding

factor), seemed to contribute to micafungin resistance.164 More
experiments, however, are needed to clarify the exact role of
CgSBF components in resistance to echinocandins as well as
their interplay with CgRlm1p.

The role of the PKC/MAPK cascade in azole susceptibility was
shown in C. albicans, S. cerevisiae and Cryptococcus neofor-
mans.165 – 167 Among NAC species, a direct link between CWI
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Figure 1. Schematic diagram of Pkc1p, calcineurin and TORC2 signalling
pathways involved in modulation of drug resistance. The PKC/CWI,
calcineurin and TORC2 pathways control a number of cellular processes,
including plasma membrane integrity and cell wall homeostasis.
Membrane sensors (e.g. Wsc family, Mid2) detect alterations in the cell
wall and trigger signalling pathways. The PKC pathway plays a primary
role in the response to echinocandin and azole challenge. Rho1 GTPase
activates the PKC cascade (MAPKK Bck1, MAPK Mkk1 and MAP kinase
Slt2). Rho1p also acts as a regulatory subunit of Fks1p/2p glucan
synthase. Activated MAP kinase Slt2p modulates the activity of
transcription factors that control the expression of genes involved in cell
wall biogenesis. In C. glabrata, Slt2p modulates azole tolerance via the
CgBem2p regulatory protein. CgSlt2 might influence the activity of the
CgPdr1 transcription factor, which controls genes from the PDRE regulon
(dotted arrow). The phosphatase calcineurin, composed of two subunits,
Cna1p and Cnb1p, is activated by calcium/calmodulin (not shown on the
diagram). Calcineurin dephosphorylates the Crz1p transcription factor,
which in turn moves into the nucleus and induces expression of genes
involved in CWI. Calcineurin inhibits sphingolipid biosynthesis via
dephosphorylation of Lag1p and Lac1p ceramide synthases. Slm1p/2p
from the TORC2 signalling network bind to calcineurin and inhibit its
activity. Downstream substrates of TORC2, i.e. Ypk1/2 kinases, control
the Rho1p GTPase switch most probably via Rom2p (dotted arrow). Rho1p
couples TORC2 signals to theMAPKmodule. Solid arrows, confirmed positive
regulation; dotted arrows, suggested positive regulation; bar-headed
arrows, confirmed negative regulation.
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pathways and response to azole stress was demonstrated in
C. glabrata.168 Components of the PKC cascade like CgBem2p,
which regulates GTPase CgRho1p or MAPK CgSlt2p, were shown
tomodulate azole susceptibility. Decreased tolerance to azole anti-
fungals in Cgbem2D cells appeared to be connectedwith the inabil-
ity to induce expression of ABC multidrug efflux pumps and their
transcriptional regulator CgPDR1, thus linking the PDR regulon
with PKC1 signalling. ScBem2p, along with proteins involved in
MAPK signalling, was also detected in a screen directed towards
identification of upstreammodulators of the PDR network or com-
pensatory pathways independent of Pdr1p/Pdr3p in S. cerevisiae.169

However, detailed interplay between the PDR-mediated response
to drugs and kinase pathways remains to be further investigated.

In addition to monitoring the integrity of the cell wall, the core
components of the PKC/MAPK pathway, namely Rho1p, Pkc1p and
Tus1p, participate in membrane fluidity homeostasis, which is
needed for proper environmental adaptation.170 Recently, prote-
omic analysis revealed Pkc1p-induced phosphorylation of eiso-
some components ScPil1p and ScLsp1p, thus showing a
connection between Pkc1p signalling and furrow-like plasma
membrane microdomains.171 Other proteomic studies showed
that fluconazole affects not only the cellmembrane but also influ-
ences the composition of the fungal secretome and the cell
wall.172 Analysis of the C. albicans secretome and cell wall sub-
proteome upon fluconazole challenge suggested morphotypic
changes due to the decreased levels of proteins associated with
hyphal formation (CaAls3p, CaHwp1p, CaPlb5p) in the cell wall
and thus favoured yeast growth. Concomitantly, increased incorp-
oration of glycosylphosphatidylinositol (GPI)-anchored aspartyl
protease CaSap9p or proteins involved in cell wall repair (CaPhr1p,
CaPhr2p, CaPga4p, CaPir1p) was observed. These data, together
with the reduced level of glucan, indicate severe remodelling of
the cell wall upon challenge with fluconazole.173 It is likely that
similar changes might take place in related NAC species.

Apart from the PKC cascade, serine/threonine phosphatase
calcineurin modulates tolerance to echinocandins and azoles in
many yeast species. Calcineurin and its main downstream
effector, Crz1p transcription factor, play diverse roles in the
response to drug challenge among different Candida species. In
C. tropicalis, Crz1p has a dual function: it is needed for micafungin
tolerance and is dispensable for responses to caspofungin, anidu-
lafungin and azoles.174 In contrast, C. glabrata crz1D mutants
exhibited high-level azole resistance, suggesting its negative role
in the response to these drugs.153,175 Thus, subtle differences
between species may indicate the involvement of other, yet
unidentified, interactions between calcineurin and client proteins
modulating drug-specific responses (Figure 1).

The catalytic subunit of calcineurin is stabilized by heat shock
protein Hsp90p, a molecular chaperone known as a global regula-
tor of cellular signalling and stress responses in eukaryotic
cells.175 –177 The critical role of Hsp90p in basal and acquired
azole tolerance was shown in C. albicans and S. cerevisiae.178

Inhibition of calcineurin or depletion of Hsp90p function abolished
azole resistance. In C. glabrata Hsp90p and calcineurin regulation
is necessary for basal as well as acquired tolerance to echinocan-
dins.75,162 Loss of calcineurin function or pharmacological inhib-
ition of Hsp90p reduced echinocandin resistance despite the
presence of the CgFKS2 mutant allele.75

The TOR complex 2 (TORC2)-activated Ypk1 signalling cascade
is a common pathway involved in the response to induced plasma

membrane stress and a link with the calcineurin and PKC path-
ways (Figure 1). Our knowledge of these interactions comes
mainly from research on S. cerevisiae. A single study of Ypk1p
function in NAC comes from the analysis of C. glabrata cells with
deletion in YPK1, which were hypersensitive to azoles, echinocan-
dins and amphotericin B, suggesting its general role in cellular
responses to stress posed by antifungal drugs.153 In S. cerevisiae
Ypk1p regulates polarization of the actin cytoskeleton and endo-
cytosis, which are also affected by sphingolipids.179 – 181 The
essential function of Ypk1p is the regulation of sphingolipid
biosynthesis.182 This occurs at several steps of the pathway,
including the first committed reaction catalysed by the serine pal-
mitoyl transferase SPT, a complex of Lcb1p, Lcb2p and Tsc3p. Ypk1
activates SPT by phosphorylation of its inhibitory proteins Orm1p
and Orm2p, resulting in their dissociation. Ypk1p also phosphory-
lates ceramide synthases Lac1p and Lag1p, with preference for
Lac1p.183 Interestingly, some of the steps activated by Ypk1p
are common to those activated at the level of transcription by
Pdr1p, which include LCB2 and LAC1.133,184 CgLAC1 as well as
CgLCB5, which encodes sphingoid long-chain base kinase, are
also Pdr1p targets in C. glabrata.118

In S. cerevisiae, activation of Ypk1p takes place in response to
compromised sphingolipid biosynthesis and involves phosphoryl-
ation by the eisosome-associated protein kinase Pkh1p or inter-
action with Slm1p/Slm2p regulatory proteins.185 Calcineurin
negatively regulates sphingolipid production by direct depho-
sphorylation of Lac1p and Lag1p.

Ypk1p negatively regulates endocytosis via inhibition by
phosphorylation of Fpk1/2 kinases. Fpk1 and Fpk2 are known
as activators of aminophospholipid flippases Dnf1p and
Dnf2p, involved in maintenance of phospholipid asymmetry.
Interestingly, the function of these flippases was shown to be
negatively regulated by Pdr5p and Yor1p MDR transporters,
indicating that these ABC pumps play roles, additional to drug
transport, affecting the function of other plasma membrane
proteins.186

Conclusions

Epidemiological data clearly indicate the growing importance of
NAC-caused infections worldwide. Given the increasing number
of immunocompromised patients and increasing antifungal
drug resistance, there is an urgent need for the development
of new effective treatments. Better understanding of basic fungal
biology and pharmacotherapy adaptation mechanisms, facili-
tated by progress in new technologies, including deep sequencing,
has the potential to highlight the dynamic robust changes in
fungal pathogens during the course of therapy. High-throughput
postgenomic technologies in combination with reverse genetics
and the development of classical molecular tools dedicated to
each pathogenic NAC species should allow the detailed evaluation
of fungal adaptation to the infected host, depending on the
occupied niches and type of drug used, and speed up the process
of development of new antifungal approaches.
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