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Abstract

Antibiotic resistance is rising and we urgently need to gain a better quantitative understand-

ing of how antibiotics act, which in turn would also speed up the development of new antibi-

otics. Here, we describe a computational model (COMBAT-COmputational Model of

Bacterial Antibiotic Target-binding) that can quantitatively predict antibiotic dose-response

relationships. Our goal is dual: We address a fundamental biological question and investi-

gate how drug-target binding shapes antibiotic action. We also create a tool that can predict

antibiotic efficacy a priori. COMBAT requires measurable biochemical parameters of drug-

target interaction and can be directly fitted to time-kill curves. As a proof-of-concept, we first

investigate the utility of COMBAT with antibiotics belonging to the widely used quinolone

class. COMBAT can predict antibiotic efficacy in clinical isolates for quinolones from drug

affinity (R2>0.9). To further challenge our approach, we also do the reverse: estimate the

magnitude of changes in drug-target binding based on antibiotic dose-response curves. We

overexpress target molecules to infer changes in antibiotic-target binding from changes in

antimicrobial efficacy of ciprofloxacin with 92–94% accuracy. To test the generality of our

approach, we use the beta-lactam ampicillin to predict target molecule occupancy at MIC

from antimicrobial action with 90% accuracy. Finally, we apply COMBAT to predict antibiotic

concentrations that can select for resistance due to novel resistance mutations. Using cipro-

floxacin and ampicillin as well defined test cases, our work demonstrates that drug-target

binding is a major predictor of bacterial responses to antibiotics. This is surprising because

antibiotic action involves many additional effects downstream of drug-target binding. In addi-

tion, COMBAT provides a framework to inform optimal antibiotic dose levels that maximize

efficacy and minimize the rise of resistant mutants.
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Author summary

Antibiotic efficacy is traditionally assessed with a single value, the minimal inhibitory con-

centration, despite its limited predictive power. Dose-response curves that assess efficacy

over a range of antibiotic concentrations are promising, but extremely work intensive.

Using the well-characterized antibiotics ciprofloxacin and ampicillin as proof-of-concept,

we provide a mathematical framework that allows predicting optimal dosing of antibiotics

based on drug-target binding parameters. These could be measured early in drug develop-

ment and can also change when bacteria become resistant. Thus, we can predict the prob-

ability that resistant strains are selected at a given dosing regimen without isolating and

testing a multitude of resistant strains. Predicting optimal dosing with early accessible

experimental data can reduce the prevalent trial-and-error approaches and thereby the

number of antibiotic candidates that fail late in drug development.

Introduction

The rise of antibiotic resistance represents an urgent public health threat. In order to effectively

combat the spread of antibiotic resistance, we must optimize the use of existing drugs and

develop new drugs that are effective against drug-resistant strains. Accordingly, methods to

improve antibiotic dose levels to i) maximize efficacy against susceptible strains and ii) mini-

mize resistance evolution play a key role in our defense against antibiotic resistant pathogens.

It is noteworthy that dosing strategies for treatment of susceptible strains (e.g., dosing level

[1], dosing frequency [2], and treatment duration [3–5]) have recently been substantially

improved, even for antibiotic treatments that have been standard of care for decades. This sug-

gests that there likely remains significant room for optimization in our antibiotic treatment

regimens. It also highlights the difficulty in identifying optimal dosing levels for new antibiot-

ics. Indeed, optimizing dosing is one of the biggest challenges in drug development. Tradition-

ally, antibiotic efficacy was mainly described by a single value, the minimal inhibitory

concentration (MIC). While correlations between treatment success and MIC have been dem-

onstrated there is limited predictive power [6, 7]. When susceptibility is assessed by MIC, not

all patients infected with “susceptible” bacteria are successfully treated with antibiotics. Addi-

tionally, a large majority of patients with a “resistant” infection can be successfully treated with

antibiotics even when the underlying infection is serious and untreated patients are unlikely to

recover [8]. This was e.g. shown for patients with complicated intraabdominal infections [7].

Reasons for this mismatch may include that the MIC only gives the minimal concentration to

suppress bacterial growth and contains no information on antibiotic efficacy above or below

MIC [9]. This makes the MIC ill-suited to describe efficacy of the strongly fluctuating antibi-

otic concentrations in patients. This has led to an increase in more sophisticated dose-response

measurements where bacteria are exposed to multiple antibiotic concentrations and the kill

rate is assessed at each concentration individually (pharmacodynamic profiles). However,

these approaches require orders of magnitude more experimental effort than simple MIC mea-

surements because they involve a multitude of antibiotic concentrations and time points. This

process is too time-consuming when testing new drug candidates.

It is even more challenging to optimize dose levels to minimize the emergence of antibiotic

resistance, both for existing and novel antibiotics. Typically, not only the MIC changes when a

strain acquires resistance, also other properties such as the steepness of the dose-response

curve and the maximal kill rate at very high concentrations change [10]. Predicting the

changes in the dose-response curve is therefore not trivial. Thus, a full pharmacodynamic
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profile should be assessed for each potential resistant strain. To this end, resistant strains must

be isolated and due to the amount of different resistance mechanisms, a good saturation of the

mutational target must be achieved. This requires substantial and lengthy evolutionary experi-

ments. In addition, there remains substantial debate about which dosing strategies best prevent

the emergence of resistance during treatment [11–13]. In this context, a useful concept that

links antibiotic concentrations with resistance evolution is the resistance selection window

(mutant selection window) that ranges from the lowest concentration at which the resistant

strain grows faster than the wild-type, usually well below the wild-type MIC, to the MIC of the

resistant strain [14–16]. Antibiotic concentrations above the resistance selection window safe-

guard against de novo resistance emergence. Antibiotic concentrations below the resistance

selection window do not kill the susceptible strain, but also do not favor the resistant strain

and therefore do not promote emergence of resistance. To limit resistance, it is therefore

important to identify the resistance selection window and optimize dosing accordingly. How-

ever, this again requires obtaining a full pharmacodynamic profile of a majority of the expected

resistant mutants and is therefore not feasible as a standard assessment in drug development.

The next challenge to successfully designing antibiotic treatment arises when the experi-

mental information is integrated into mathematical pharmacodynamic models that then pre-

dict efficacy under realistic, fluctuating concentrations in patients. Pharmacodynamic models

from 1910 (Emax or Hill-models) [17] are still widely used despite assuming instantaneous

equilibria of antibiotic-target binding and therefore being often inaccurate when antibiotic

concentrations fluctuate. Recently described models that relax these assumptions have been

useful in gaining a better qualitative understanding of realistic dosing and complicated drug

effects, such as post-antibiotic effects, inoculum effects, and bacterial persistence [18–21].

However, to speed the development of new antibiotics or to inform practices which minimize

resistance, we require quantitative predictions for antibiotics or resistant bacterial strains that

do not exist yet. Models which permit quantitative predictions of changes in drug efficacy as a

function of modification of antibiotic molecules (i.e. new drugs) or novel resistance mutations

would be invaluable. Such tools would advance our general mechanistic understanding of anti-

biotic action, could guide dosing trials of new drugs, and suggest better dosing of existing

drugs.

In this report, we describe a mechanistic computational modeling framework (COMBAT-

COmputational Model of Bacterial Antibiotic Target-binding) that allows us to predict full

pharmacodynamic profiles based solely on accessible biochemical parameters describing drug-

target interaction. These parameters can be determined early in drug development. We use

this framework to investigate how changes in drug target binding, either due to improvements

in existing antibiotics or due to resistance mutations in bacteria, affect antibiotic efficacy. We

first show that COMBAT accurately predicts bacterial susceptibility as a function of drug-tar-

get binding and, conversely, allows inference of these biochemical parameters on the basis of

observed patterns of bacterial growth suppression or killing. We then use COMBAT to predict

the susceptibility of newly arising resistant variants based on the molecular mechanism of

resistance and determine the resistance selection window.

Results

Quinolone target affinities correlate with antibiotic efficacy

To investigate how biochemical changes in antibiotic action modifies bacterial susceptibility,

we explored how the affinity of antibiotics to their target affects the MIC. We compared the

MICs of quinolones, an antibiotic class in which individual antibiotics have a wide range of

affinities to one of their targets, gyrase (KD ~10
−4–10−7 M) but are of similar molecular sizes
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and have a similar mode of action [22]. This choice allowed us to isolate the effects of differ-

ences in drug-target affinity on the MIC.

We obtained binding affinities of quinolones to their gyrase target in Escherichia coli from

previous studies [23–27]. We then retrieved MIC data for several quinolones from clinical

Enterobacteriaceae isolates collected before 1990 [28], i.e., before the widespread emergence of

quinolone resistance [22]. We assume that quinolone affinities obtained from clinical Entero-

bacteriaceae isolates collected before the emergence of resistance correspond to those mea-

sured in wild-type E. coli.

To make qualitative predictions of MICs, we employed a simplified model based on the

assumptions that i) drug-target binding occurs much more quickly than bacterial replication,

ii) the antibiotic concentration remains constant and iii) that during the 18 hours of an MIC

assay, the concentration gradient of the drug inside and outside the cell has equilibrated.

Under these assumptions, the MIC can be expressed as

MIC ¼ KD
fc

1� fc
ð1Þ

where KD represents the affinity constant and fc the fraction of the target bound at the MIC

[29]. Accordingly, this model predicts that the MIC is linearly correlated with KD.

Fig 1 shows the correlations between drug-target affinities and MICs for seven quinolones

and clinical isolates of 11 different Enterobacteriaceae species. We observed a significant

(p< 0.018) linear correlation between MIC and KD in all species, confirming the qualitative

model prediction.

A quantitative model to predict antibiotic efficacy

While it was encouraging that our model can qualitatively predict MIC changes, our aim was to

quantitatively predict antibiotic treatment performance. The simplified model assumes that the

binding kinetics are much faster than bacterial replication, which may not be true in all cases.

To expand the generalizability of the model, we extended the modeling framework to allow that

bacterial replication may occur in a similar time frame as drug-target binding events.

The full model (COMBAT- COmputational Model of Bacterial Antibiotic Target-binding)

describes the binding and unbinding of antibiotics to their targets and predicts how such bind-

ing dynamics affects bacterial replication and death (Fig 2A). In previous work linking drug-

target binding kinetics with bacterial replication [21], we described a population of bacteria

with θ target molecules per cell with a system of θ + 1 (bacteria with 0, 1, . . ., θ bound target

molecules) ordinary differential equations (ODEs). This system increases in complexity with

the number of target molecules and makes fitting the model to data computationally too

demanding for most settings. To simplify this prior approach, we developed new mathematical

models based on partial differential equations (PDEs), where a single equation describes all

bacteria simultaneously. The sum of bacteria within all target occupancy states over time can

be described by a time kill curve (Fig 2B), during which the bacterial population is character-

ized by the distribution of bacterial cells with different levels of target occupancies at each

time-step (Fig 2C). This curve can be visualized as a two-dimensional surface in a three-

dimensional coordinate system where the number of bacteria is represented on the z-axis, the

percent of bacteria with the fraction of bound target molecules on the x-axis, and time on the

y-axis (Fig 2D).

Antibiotic action is described by rates of binding (kf) and unbinding (kr) to bacterial target

molecules (Fig 2A and 2E). The binding of an antibiotic to a target results in the formation of

an antibiotic-target molecule complex x, where x ranges between 0 and θ.

PLOS COMPUTATIONAL BIOLOGY Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1008106 August 14, 2020 4 / 27

https://doi.org/10.1371/journal.pcbi.1008106


COMBAT consists of two mass balance equations: Eq 2 describing bacterial numbers as a

function of bound targets and time and Eq 3 describing antibiotic concentration as a function

of time (see Methods).

@Bðx; tÞ

@t
þ

@

@x
ðvBðx; tÞBðx; tÞÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{
Binding kinetics
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Fig 1. Clinical data confirm linear correlation between MICs and affinities of quinolones to gyrase.We analyzed
MIC and drug-target affinity data from 11 Enterobacteriaceae isolates and seven different quinolones. The x-axes show
the affinities (KD) as reported in the literature [24, 26–28], and the y-axes show the MICs, both in mol/L. The adjusted
R2 and p-value of each correlation are given. In cases where there was more than one KD value reported in the
literature, we used the mean for this analysis. The tested MIC values are the median of several clinical isolates described
previously [28].

https://doi.org/10.1371/journal.pcbi.1008106.g001
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Fig 2. Illustration of modeling approach. a, Schematic illustration of binding kinetics (adapted from [59]). The grey squares depict the
drug target molecules, and the blue circles represent antibiotic molecules within bacteria. The arrows indicate individual binding and
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where vB ¼ vf � vr; vf ¼ k̂ fA tð Þ y� xð Þ and vr = krx. vB, vf, and vr can be seen as a generalized

velocity v ¼ dx
dt
.

Eq 4 (part of the replication term in Eq 2) describes how daughter cells inherit bound target

molecules from the mother cell during replication:

SBðx; tÞ ¼ 2

Z y

x

hðx; zÞrðzÞBðz; tÞdz; 8x 2 ½0; y� ð4Þ

Eq 5 (part of the replication term in Eq 2) is a logistic growth model describing reduced

bacterial replication as the carrying capacity is approached:

Flim ¼ 1�

Z y

0

Bðx; tÞdx

K

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð5Þ

Model fit to ciprofloxacin time-kill data

We used the quinolone ciprofloxacin to quantitatively fit bacterial time-kill curves, since this is

a commonly used antibiotic for which binding parameters have been directly measured. S1

Table gives an overview of the known parameters used for fitting; S2 Table gives the parame-

ters resulting from our fit.

The functional relationship between the levels of bacterial replication and death on the frac-

tion of bound target molecules is extremely hard to obtain experimentally. We therefore

treated the relationships between the fraction of bound target and bacterial replication and

death as free parameters in our model fitting. Ciprofloxacin is considered to have both bacteri-

ostatic and bactericidal action (mixed action)[30, 31], and we fitted functions for a monotoni-

cally decreasing replication and a monotonically increasing killing with each successively

bound target molecule (see Methods & S1 Fig).

Overall, we found that COMBAT could fit the time-kill curves well (R2 = 0.93, Fig 3A). Fig

3B shows the predicted bacterial replication r(x) and death as a function of target occupancy δ
(x) based on the fit obtained in Fig 3A. After model calibration, we simulated bacterial replica-

tion during exposure to different antibiotic concentrations for 18 h. For this simulation, posi-

tive values indicate an increase in the number of bacteria, and negative values indicate a

decrease in the number of bacteria. We estimated a MIC of 0.0139 mg/L (Fig 3C), a value that

is within the range of MIC determinations for wt E. coli (0.01 mg/L, 0.015 mg/L, 0.017 mg/L

and 0.023 mg/L [15, 32–34]).

unbinding events of the antibiotic to its target molecule in the cell. k̂ f is the adjusted forward reaction rate, kr is the reverse reaction rate,

A is the concentration of antibiotics inside the bacterium, x is the number of bound targets, θ is the number of targets and Bx is the
number of bacteria with x bound targets. b, Modeled sample time-kill curve, in which the sum of bacteria in all binding states (i.e., the
entire population of living bacteria) is followed over time after exposure to antibiotics. The vertical dotted lines indicate the time points
depicted in (c); 1 min (grey), 14 min (yellow), and 80 min (purple). c, The percentage of bound antibiotic targets in the bacterial
population at indicated time points. d, Illustration of how the partial differential equation describes the bacterial population as a surface
in a three-dimensional coordinate system, the dimensions of which represent percent bound target (x-axis), time (y-axis), and number
of bacteria (z-axis). The three time points shown in (c) represent two-dimensional cross-sections at different points of the y-axis. e,
Overview of used parameters and functions.

https://doi.org/10.1371/journal.pcbi.1008106.g002
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Accurate prediction of target overexpression from time-kill data

Having shown that COMBAT can quantitatively fit experimental data on antibiotic action

within biologically plausible parameters, we continued to test the predictive ability of the

model. Given our hypothesis that modifications in antibiotic-target interactions lead to pre-

dictable changes in bacterial susceptibility, we experimentally induced changes in the antibi-

otic-target interaction of ciprofloxacin in E. coli. We then quantified these biochemical

changes by fitting COMBAT to corresponding time-kill curves and compared them to the

experimental results. Ciprofloxacin acts on gyrase A2B2 tetramers [22]. We used an E. coli

strain for which both gyrase A and gyrase B are under the control of a single inducible

Fig 3. Model predictions for the MIC and the bacteriostatic and bactericidal effects of ciprofloxacin. a, Model fit to
experimental time-kill curves. The points indicate the experimental data of three independent replicates, and the lines
indicate the model fit. Each color indicates a ciprofloxacin concentration as reported in the figure. b, The blue line
indicates the bacteriostatic effect (r(x), replication rate) of ciprofloxacin and the red line the bactericidal effect (δ(x),
death rate) as a function of the number of bound targets predicted by the model fit in (a). The values of the fitted
parameters are listed in S2 Table. c, The net growth rate as determined by the slope of a line connecting the initial
bacterial density and the final bacterial density of a time-kill curve at 18 h on a logarithmic scale, is given as function of
the drug concentration (blue). The dotted horizontal line indicates zero net growth, and the intersection with the blue
line predicts the MIC (0.0139 mg/mL).

https://doi.org/10.1371/journal.pcbi.1008106.g003
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promoter (PlacZ), such that the amount of gyrase A2B2 tetramer can be experimentally manipu-

lated [35]. We measured net growth rates for this strain at different ciprofloxacin concentra-

tions in the presence of 10 μM isopropyl β-D-1-thiogalactopyranoside (IPTG; mild

overexpression) and 100 μM IPTG (strong overexpression) and compared it to the wild-type

in the absence of the inducer (Fig 4A).

Like previously reported, we find that increasing gyrase content makes E. colimore suscep-

tible to ciprofloxacin [35]. We fitted net growth rates allowing the target molecule content, i.e.

gyrase A2B2, to vary. We assumed that the only change between the different conditions was

the amount of target. We further assumed that the relationship between bound target and bac-

terial replication or death did not differ between the control strain containing a mock plasmid

(no IPTG) and the experiments with overexpression (Fig 4B, between 0% and 100%). Finally,

we assumed that the maximal kill rate at very high antibiotic concentrations was accurately

measured in our experiments and forced the function describing bacterial death through the

measured value when all target molecules are bound. We found the best fit for a 1.31x increase

in GyrA2B2 target molecule content for bacteria grown in the presence of 10 μM IPTG and a

2.02x increase in GyrA2B2 target molecule content for those grown in the presence of 100 μM

IPTG.

We subsequently tested these predictions experimentally by analyzing Gyrase A and B con-

tent by western blot Figs 4C and S2). Using realistic association and dissociation rates for bio-

logical complexes [36], we predicted a range of functional tetramers based on the relative

amount of Gyrase A and B proteins (Fig 4D). S3 Table details the individual measurements,

and the procedure to estimate tetramers is provided in the methods section. We found that the

observed overexpression was very close to our theoretical prediction, with 1.43x [95% CI 1.19–

1.81] overexpression (model prediction = 1.31x overexpression) in the presence of 10 μM

IPTG and 2.15x [95% CI 1.73–2.87] overexpression in the presence of 100 μM IPTG (model

prediction = 2.02x overexpression).

Accurate prediction of target occupancy at MIC from time-kill data

Next, we tested whether COMBAT can be applied to the action of the beta-lactam ampicillin, a

very different antibiotic with a distinct mode of action from quinolones. Using published phar-

macodynamic data of E. coli exposed to ampicillin [34] also allowed us to compare COMBAT

predictions to established pharmacodynamic approaches. Most of the biochemical parameters

for ampicillin binding to its target, penicillin-binding proteins (PBPs), have been determined

experimentally (S1 Table). Ampicillin is believed to act as a bactericidal drug [37], and this

mode of action is supported by findings from single-cell microscopy [29]. We therefore

assume that ampicillin binding does not affect bacterial replication. In order to model the con-

sumption of beta-lactams at target inhibition and eventual target recovery, we made small

adjustments to Eq 13 (see Methods, description of beta-lactam action).

We fitted COMBAT to published time-kill curves of E. coli exposed to ampicillin (Fig 5A).

Again, COMBAT provides a good fit to the experimental data between 0 min and 40–60 min.

After that time, observed bacterial killing showed a characteristic slowdown at high ampicillin

concentrations which is often attributed to persistence [21] (Fig 5A). For the sake of simplicity,

we chose to omit bacterial population heterogeneity in this work and therefore cannot describe

persistence, even though COMBAT can be adapted to capture this phenomenon [21]. Because

ampicillin acts in an entirely bactericidal manner, we assume a constant replication rate (see

Methods & S1 Fig) and fitted bacterial death as a function of target binding, δ(x) (Fig 5B, fitted
parameters in S4 Table). Fig 5C shows the predicted net growth rate over a range of drug con-

centrations. We estimated a MIC of 2.6 mg/L. This MIC is based on the Clinical & Laboratory
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Standards Institute definition of the MIC determined at 18 h. The original source of the MIC,

which was based on experimental data and a pharmacodynamic model [34] determined an

MIC of 3.4 mg/L at 1 h. If we change our prediction to 1 h, our estimated MIC is 3.32 mg/L,

which is within 2.5% of the reported value [34].

Having established that COMBAT can also adequately capture the pharmacodynamics of

ampicillin, we next tested whether we can estimate experimentally determined target occu-

pancy at the MIC. Our estimated mean occupancy considering both living and dead bacteria is

89% (Fig 5B), a value within previously reported experimental estimates from Staphylococcus

aureus (84–99%)[38].

Sensitivity of antibiotic efficacy to parameters of drug-target binding

It is possible to vary all parameters in COMBAT and explore their effect. We used this to test

how hypothetical chemical changes to ampicillin or ciprofloxacin would affect antibiotic effi-

cacy (S3–S11 Fig). These changes could reflect either bacterial resistance mutations or modifi-

cations of the antibiotics themselves. We predict that changes in drug-target affinity, KD, have

more profound effects than changes in target molecule content, bacterial reaction to increas-

ingly bound target (i.e. δ(x) and r(x)), or changes in target molecule content. We also predict

that the individual binding rates kr and kf, and not just the ratio of these terms, the KD, are

important factors in efficiency. The faster a drug binds, the more efficient we predicted it will

be. One intuitive explanation for the observation that kf drives efficacy is that a slow binding

Fig 4. Prediction of relative antibiotic target molecule content from time-kill curves. a, Dose-response curves of E.
coli expressing gyrA and gyrB under the same IPTG-inducible promoter (SoA3329) grown in the presence of 10 μM
IPTG (mild overexpression; red) and 100 μM IPTG (strong overexpression; yellow). A control strain (SoA3330), which
expresses wild-type GyrAB levels and contains a mock plasmid, is grown in the absence of inducer (blue). The x-axis
indicates the ciprofloxacin concentration, and the y-axis indicates the fold change in colony forming units over time.
The dotted lines indicate experimental data, and the solid lines indicate the model fit. The best model fit was obtained
for relative target molecule contents of 131% (mild overexpression) and 202% (strong overexpression) relative to the
control strain (WT). b, Death rates of E. coli expressing different levels of GyrAB. The colors represent GyrAB
expression conditions as in (a). The x-axis shows the percentage of bound antibiotic target normalized to the control
strain; the y-axis shows the death rate δ(x). Each line represents the best fit for δ(x). c, Western blot analysis of GyrA&B
in the strains/conditions shown in (a). CRP (cAMP receptor protein) was used as loading control. A representative
example of six replicates is shown; see S2 Fig for full blots. d, comparison of theoretical prediction (from (b), solid
colors) and GyrA2B2 tetramer levels estimated from relative GyrA&Bmonomer levels (quantified in (c), translucent
colors). For the experimental measurements, the bars indicate the mean, and the whiskers represent the 95%
confidence interval.

https://doi.org/10.1371/journal.pcbi.1008106.g004
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fails to rapidly interfere with bacterial replication, which may allow for the production of addi-

tional target molecules and thereby reduce the ratio of free antibiotic to target molecules.

Forecasting the resistance selection window

Finally, we illustrate how COMBAT can be used to explore how the molecular mechanisms of

resistance mutations affect antibiotic concentrations at which resistance can emerge, i.e., the

resistance selection window. We compared predicted net growth rates as a function of cipro-

floxacin concentrations for a wild-type strain and an archetypal resistant strain. For this analy-

sis, we assumed that the resistant strain has a 100x slower drug-target binding rate (i.e. ~100x

Fig 5. Model prediction of MIC and target occupancy at MIC for ampicillin. a, Model fit to previously published
time-kill curves [34]. The points represent experimental data, and the lines represent the fit of the model. Each color
indicates a single ampicillin concentration, as described in the legend. b, Replication (blue) and death (red) rates as a
function of the number of bound targets predicted by the model fit in (a). The black line indicates the predicted
distribution of target occupancies in a bacterial population (both living and dead cells) exposed to ampicillin at the
MIC for 18 h. c, The net growth rate, as determined by the slope of a line connecting the initial bacterial density and
the bacterial density at 18 h on a logarithmic scale predicted from the model fit in (a), is shown as function of the drug
concentration (blue). The dotted horizontal line indicates zero net growth, and the intersection with the blue line
predicts the MIC (2.6 mg/mL).

https://doi.org/10.1371/journal.pcbi.1008106.g005
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increased MIC, realistic for novel point mutations [39]) and that the maximum replication

rate of the resistant strain is 85% of the wild type strain [40]. We then predicted the antibiotic

concentrations at which resistance would be selected. Interestingly, when comparing COM-

BAT to previous pharmacodynamics models (Fig 5), we observed that estimates of replication

rates depend on the selected time frame (Fig 6A). When the timeframe for MIC determination

is set to 18 h as defined by CLSI [41], the “competitive resistance selection window”, i.e., the

concentration range below the MIC of both strains where the resistant strain is fitter than the

wild type, ranges from 0.002 mg/L to 0.014 mg/L for ciprofloxacin (Fig 6A) and 1 mg/L to 2.6

mg/L for ampicillin (S12 Fig), respectively. This corresponds well with previous observations

that ciprofloxacin resistance is selected for well below MIC [15]. However, when measuring

after 15 min or 45 min, the results are substantially different. The reason for this is illustrated

in Fig 6B. COMBAT reproduces non-linear time kill curves where bacterial replication contin-

ues until sufficient target is bound to result in a negative net growth rate. This compares well

with experimental data around the MIC in Figs 3A and 5A. In Fig 6B, we show model predic-

tions for ciprofloxacin concentrations corresponding to a zero net growth (i.e. same popula-

tion size) after 15 min, 45 min and 18 h (MICResistant; 15 min, MICResistant; 45 min, MICResistant; 18

h). In all cases, the bacterial population first increases and then decreases slowly. This may

have consequences for the selection of resistant strains. Fig 6C illustrates how the resistance

selection windows depending on the observed time frame. This suggests that even at concen-

trations above the 18 h MIC of the resistant strain, there may be initial growth of the resistant

strain. In this case, the resistant strain could continue growing at concentration of up to 7 mg/

L ciprofloxacin at 15 min, even though the MIC at 18 h is 1.27 mg/L.

Thus, we estimate that sustained levels of 1.27-7mg/L would safeguard against resistance.

While ciprofloxacin plasma concentrations typically reach concentrations of 2mg/L after oral

uptake and 6mg/L after intravenous administration [42], levels of 2.6 mg/L and above were

shown to be chondrotoxic in young animals [43] and concentrations of 40 mg/L are toxic to

mitochondria [44]. Clearly, toxicity and risk of resistance must be carefully weighed when

deciding on dosing.

Discussion

Optimizing dosing levels of antibiotics is important for maximizing drug efficacy against wild-

type strains as well as for minimizing the rise of resistant mutants. Antibiotic efficacy is tradi-

tionally described by a single value, the minimal inhibitory concentration (MIC), which has lim-

ited predictive power [7, 8]. In more sophisticated dose-response measurements, bacteria are

exposed to multiple antibiotic concentrations and the kill rate is assessed at each concentration

individually in dose-response curves (pharmacodynamic profiles). However, this approach

requires substantial experimental effort and is too time-consuming when testing large libraries

of new drug candidates. Limited predictive power of standard measures of pharmacodynamics

is not only a problem for antibiotic development, drug attrition in general is mainly due to

insufficient predictions of pharmacodynamics rather than pharmacokinetics [45].

Because of the experimental effort, pharmacodynamic profiles for either novel drug candi-

dates or novel resistant strains are often not obtained. Thus, we need a transferrable frame-

work that allows quantitative predictions based on parameters that can be determined a priori.

Recent studies have reported methods to predict MICs from whole genome sequencing data

[46, 47]. However, these methods require transfer of prior knowledge on how the resistance

mutations affect MICs in other organisms. There are no methods that could predict a priori

how chemical changes to an antibiotic structure or novel resistance mutations affect bacterial

growth at a given antibiotic concentration.
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Here, we accurately predict antibiotic action on the basis of accessible biochemical parame-

ters of drug-target interaction. Our computational model, COMBAT provides a framework to

predict the efficacy of compounds based on drug-target affinity, target number, and target

occupancy. These parameters may change both when improving antibiotic lead structures as

well as when bacteria evolve resistance. Importantly, they can be measured early in drug devel-

opment and may even be a by-product of target-based drug discovery [48]. When these data

are available, COMBAT makes only one assumption: that the rate of bacterial replication

decreases and/or the rate of killing increases with successive target binding. While fitting, we

allow this relationship to be gradual or abrupt and select the best fit. This means we do not

model specific molecular mechanisms down-stream of drug-target binding, but their effects

are subsumed in the functions that connect the kinetics of drug-target binding to bacterial rep-

lication and death.

In previous work, for example on antipsychotics [18], antivirals [19] and antibiotics [20,

21], models of drug-target binding kinetics have been used to improve our qualitative under-

standing of pharmacodynamics. Our study substantially advances this work by making quanti-

tative predictions across antibiotics and bacterial strains when measurable biochemical

characteristics change with extremely high accuracy. This is possible because COMBAT

employs an efficient and versatile mathematical approach, based on partial differential

Fig 6. Predicted mutation selection windows for E. coli exposed to ciprofloxacin. a, The drug concentration of
ciprofloxacin is shown on the x-axes, and the average bacterial net growth rate in the first 15 min (grey panel), 45 min
(yellow panel), and 18 h (purple panel) of exposure is given on the y-axes. The blue line represents the wild-type strain
based on the fits shown in Fig 3, and the red line represents a strain with a hypothetical resistance mutation that
decreases the binding rate (kf) 100-fold and imparts a 15% fitness cost. The horizontal dotted line indicates no net
growth. The vertical dotted line indicates where the resistant strain becomes more fit than the wild-type, the solid
vertical line indicates the MIC of the wild-type, and the dashed vertical line indicates the MIC of the resistant strain. b,
Modeled time kill curves of the resistant strain for ciprofloxacin concentrations at which there is no growth at 15 min
(grey; MIC15 min = 7 mg/L), 45 min (yellow; MIC45 min = 3 mg/L) and 18 h (purple; MIC18 h = 1.27 mg/L). The
horizontal dotted line indicates the initial population size; the vertical dotted lines represent the time points at which
the initial and final population size is the same. c, The mutation selection window depends on the time at which
bacterial growth is observed. The x-axis shows the observed time at which replication rates were determined, the y-axis
shows ciprofloxacin concentrations. The dotted curve shows the ciprofloxacin concentration at which the resistant
becomes fitter than theWT (FitnessResistant> FitnessWT), the solid line the MIC of the WT (MICWT), and the dashed
line the MIC of the resistant strain (MICResistant). The area between the dotted and dashed line indicates the
competitive resistance selection window.

https://doi.org/10.1371/journal.pcbi.1008106.g006
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equations, that makes it computationally feasible to fit the model to a large range of data.

Importantly, we are not only able to predict antibiotic action from biochemical parameters,

but can also vice versa use COMBAT to accurately predict biochemical changes from observed

patterns of antibiotic action. We have confirmed the excellent predictive power of COMBAT

with clinical data as well as experiments with antibiotics with very different mechanisms of

action. The high predictive power makes it possible to use modeling to guide dosing. This

gives us confidence that biochemical parameters are major determinants of antibiotic action in

bacteria and that COMBAT helps to make rational decisions about antibiotic dosing.

In drug development, our mechanistic modeling approach provides insight into which

chemical characteristics of drugs may be useful targets for modification. For example, our sensi-

tivity analyses indicate that antibiotics with a similar affinity but faster binding inactivate bacte-

ria more quickly and therefore prevent replication and production of more target molecules,

which would change the ratio of antibiotic to target. Furthermore, because e.g. antibiotic bind-

ing and unbinding rates can be determined early in the drug development process, such insight

can help the transition to preclinical and clinical dosing trials. This may contribute to reducing

bottlenecks between these phases of drug development and thereby save money and time.

Avoiding antibiotic concentrations that select for resistance is challenging for two reasons.

First, the differences in the pharmacodynamic curves of wild-type and resistant strains are not

trivial. Resistance can affect not only the MIC, but also the maximal kill rate at high drug con-

centrations and the steepness of the dose-response curve [10]. Therefore, one would need to

record full pharmacodynamic profiles rather than just MICs to assess the mutation selection

window for resistant mutants. Second, this process would have to be repeated for all (or at

least a representative set of) potential emerging resistant mutants. This makes it extremely

time- and resource-consuming to safeguard against resistance by determining the resistance

selection window.

COMBAT offers insight into determinants of the resistance selection window and builds

transferrable knowledge that allows estimating useful dose ranges. In concordance with a

recent meta-analysis of experimental data [49], our sensitivity analyses predict that changes in

drug target binding and unbinding have a greater impact on susceptibility than changes in tar-

get molecule content or down-stream processes. Thus, a more comprehensive characterization

of the binding parameters of spontaneous resistant mutants would allow an overview of the

maximal biologically plausible levels of resistance that can arise with one mutation. Dosing

above this level should then safeguard against resistance. This is especially useful for com-

pounds for which it is difficult to saturate the mutational target for resistance, or for safeguard-

ing against resistance to newly introduced antibiotics for which we do not yet have a good

overview of resistance conferring mutations.

Good quantitative estimates on the dose-response relationship of new drugs would also

help defining the therapeutic window, i.e. the range of drug concentrations at which the drug

is effective but not yet toxic. For example in ciprofloxacin, the doses found necessary to pre-

vent resistance after marketing were found to be toxic [50], and an early assessment of doses

that might become necessary after resistance is wide-spread might preserve antibiotic utility. If

toxicity, solubility or other constraints do not allow dosing above the MIC of expected resistant

strains, COMBAT can also predict the concentration range at which resistance is less strongly

selected. This could guide decisions on treating with low versus high doses, which is currently

controversially debated [11, 12]. COMBAT therefore offers new promise to reduce the failure

rates of candidate compounds late in the drug development process when resistance is

observed in patients and substantial resources have been invested.

Our quantitative work can help to identify optimal dosing strategies at constant antibiotic

concentrations for homogeneous bacterial populations. These measures are commonly used to
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assess antibiotic efficacy. In addition, previous work has demonstrated that drug-target bind-

ing models outperform traditional pharmacodynamic models for the fluctuating concentra-

tions that actually occur in patients [29, 51]. To illustrate this, we coupled a pharmacokinetic

model describing different modes ampicillin administration in patients and predict the patho-

gen load in infected tissues based on the realistic, fluctuating antibiotic concentrations (S1

Text, S13 and S14 Figs and S5 Table). They can also explain complicated phenomena such as

biphasic kill curves, the post-antibiotic effect, or the inoculum effect [20, 21, 52] that often

complicate the clinical phase of drug development. COMBAT has similar characteristics that

allow capturing these complex phenomena. Therefore, employing COMBATmay be useful for

guiding drug development to maximize antibiotic efficacy and minimize de novo resistance

evolution.

Materials andmethods

Mathematical model

COMBAT incorporates the binding and unbinding of antibiotics to their targets and describes

how target binding affects bacterial replication and death. This work extends the model devel-

oped in [21]. COMBAT consists of a system of two mass balance equations: one PDE for bacte-

ria (describing replication and death as a function of both time and target binding) and one

ODE for antibiotic molecules (describing the concentrations as function of time).

In the most basic version of COMBAT, we ignored differences between extracellular and

intracellular antibiotic concentrations and only followed the total antibiotic concentration A,

assuming that the time needed for drug molecules to enter bacterial cells is negligible. We

model ciprofloxacin (to which there is a limited diffusion barrier [53]) and ampicillin (where

the target is not in the cytosol, even though the external membrane in gram negatives has to be

crossed to reach PBPs). We therefore believe that this assumption is justified in wild-type E.

coli. This basic version of COMBAT is therefore more accurate for describing antibiotic action

where the diffusion barrier to the target is weak.

Binding kinetics

We describe the action of antibiotics as a binding and unbinding process to bacterial target

molecules [21]. For simplicity, we assume a constant number of available target molecules θ.

The binding process is defined by the formula A + TÐ x, where the intracellular antibiotic

molecules A react with target molecules T at a rate kf and form an antibiotic-target molecule

complex x, where values for x range between 0 and θ. If the reaction is reversible, the complex

dissociates with a rate kr.

In [21], the association and dissociation terms are described by the following terms

dBiðtÞ

dt
¼ k̂ fAðtÞððy� iþ 1ÞBi�1ðtÞ � ðy� iÞBiðtÞÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Association term

� krðiBiðtÞ � ðiþ 1ÞBiþ1ðtÞÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Dissociation term

; i�½0; y� ð6Þ

where k̂ f ¼
kf

VtotnA
, kf is the association rate, Vtot is the volume in which the experiment is per-

formed, nA is Avogadro’s number, kr is the dissociation rate, Bi is the number of bacteria with i

bound targets, and θ is the total number of targets.

This approach requires the use of a large number of ordinary differential equations, (0 + 1)

for the bacterial population and one for the antibiotic concentration. To generalize this

approach, we assume that the variable of bound targets is a real number x 2R. Under this
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continuity assumption, we consider the bacterial cells as a function of x and the time t, thereby

reducing the total number of equations to two.

Under the continuity approximation (x 2R), we can rewrite the binding kinetics in the

form

@Bðx; tÞ

@t
¼

@

@x

�

k̂fAðtÞðy� xÞBðx; tÞ
�

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Association term

�
@

@x

�

krxBðx; tÞ
�

zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{

Dissociation term ð7Þ

or simply

@Bðx; tÞ

@t
¼

@

@x

�

vf ðx; tÞBðx; tÞ � vrðx; tÞBðx; tÞ
�

ð8Þ

where vf ¼ k̂ fA tð Þ y� xð Þ and vr = krx can be considered as two velocities, i.e., the derivative

of the bound targets with respect to the time dx
dt
.

Replication rate. We assume that the replication rate of bacteria, r(x), is dependent on the

number of bound target molecules x. The function r(x) is a monotonically decreasing function

of x, such that fewer bacteria replicate as more target is bound. r(0) is the maximum replication

rate, corresponding to the replication rate of bacteria in absence of antibiotics. Thus, r(x)

describes the bacteriostatic action of the antibiotics, i.e., the effect of the antibiotic on bacterial

replication.

Carrying capacity. Replication ceases as the total bacterial population approaches the car-

rying capacity K. At that point, the replication term of the equation is

@Bðx; tÞ

@t
¼ rðxÞBðx; tÞ

K �

Z y

0

Bðx; tÞdx

K
¼ rðxÞBðx; tÞFlim ð9Þ

where Flim ¼
K�
R y

0
B x;tð Þdx

K
is the replication-limiting term due to the carrying capacity K, and 0�

Flim� 1.

Distribution of target molecules upon division. We assume that the total number of tar-

get molecules doubles at replication, such that each daughter cell has the same number as the

mother cell. We also assume that the total number of drug-target complexes is preserved in the

replication and that the distribution of x bound target molecules of the mother cell to its prog-

eny is described by a hypergeometric sampling of nmolecules from x bound and 2θ−x

unbound molecules. Under the continuity assumption, we generalize the concept of hypergeo-

metric distribution. Because the hypergeometric distribution is a function of combinations

and because a combination is defined as function of factorials, we can use Γ functions in place

of factorials and redefine a continuous hypergeometric distribution as a function of Γ func-

tions. A Γ function is

GðzÞ ¼

Z 1

0

xz�1e�xdx; ReðzÞ > 0 ð10Þ

where z is a complex number. In this way, the distribution can be expressed as a probability

density function of continuous variables. The amount of newborn bacteria is given by the term

r(x)B(x, t)Flim(t). We assume that bound target molecules are distributed randomly between

mother and daughter cells, with each of them inheriting 50% upon division on average. This

means that twice the amount of newborn cells must be redistributed along x to account for the
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random distribution process. For example, if a mother cell with 4 bound targets divides, we

have two daughter cells, each with a number of bound targets between 0 and 4 (their sum has

to be 4), following the generalized hypergeometric distribution. For simplicity, we define S(x,t)

to be a function related to the replication rate that depends on the number of bacteria with a

number of bound target molecules ranging between x and θ, their specific replication rate r(x),

and the fraction of their daughter cells expected to inherit x antibiotic-target complexes h(x,z):

Sðx; tÞ ¼ 2

Z y

x

hðx; zÞrðzÞBðz; tÞdz ð11Þ

Death rate. The death rate function δ(x) depends on the number of bound target mole-

cules. The function δ(x) is assumed to be a monotonically increasing function of x, where δ(θ)
is the maximum death rate, when all targets in the bacteria have been bound by antibiotics.

The shape of this function describes the bactericidal action of the antibiotic.

Bacteriostatic and bactericidal effects. We consider several potential functional forms of

the relationship between the percentage of bound targets and replication and death rates,

because the exact mechanisms how target occupancy affects bacteria is unknown (S1 Fig). We

use a sigmoidal function that can cover cases ranging from a linear relationship to a step func-

tion. When the inflection point of a sigmoidal function is at 0% or 100% target occupancy, the

relationship can also be described by an exponential function. We assume that replication in

bactericidal and death in bacteriostatic drugs is independent of the amount of bound target.

With sufficient experimental data, the replication rate r(x) and/or the death rate δ(x) can be

obtained by fitting COMBAT to time-kill curves of bacterial populations after antibiotic expo-

sure. The sigmoidal shape of r(x) and δ(x) can be written as:

rðxÞ ¼
r0

1þ egrðx�xrthÞ
; dðxÞ ¼

dmax
1þ e�gdðx�xdthÞ

ð12Þ

where xrth is the replication rate threshold, xdth is the death rate threshold, and both represent

the point where the sigmoidal function reaches½ of its maximum. γr and γd represent the
shape parameters of the replication and death rate functions, respectively. These factors deter-

mine the steepness around the inflection point. When they are extreme, the relationship

approaches a linear or a step function.

Full equation describing bacterial population. Putting these components together, the

full equation describing a bacterial population is:

@Bðx; tÞ

@t
þ

@

@x
ðvf ðx; tÞBðx; tÞ � vrðx; tÞBðx; tÞÞ

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Binding kinetics

¼

�rðxÞBðx; tÞFlimðtÞ þ SBðx; tÞFlimðtÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{

Replication and its effects on binding

� dðxÞBðx; tÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

Death ð13Þ

where B(x,t) is the number of bacteria.

Equation describing antibiotic concentration. The free antibiotic concentration results

from mass conservation, i.e., all antibiotic molecules associating with their target are sub-

tracted and all dissociating antibiotic molecules are added. Eq 3 in the results section describes

the dynamics of the antibiotic concentration.
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Description of beta-lactam action. Beta-lactams acetylate their target molecules (PBPs)

and thereby inhibit cell wall synthesis. The acetylation of PBPs consumes beta-lactams. How-

ever, PBPs can recover through deacetylation. We modified the term of drug-target dissocia-

tion in the equation describing antibiotic concentrations (Eq 3), and set the unbinding rate kr
= 0. To reflect the recovery of target molecules, we substituted the dissociation rate kr in the

equation describing the bacterial population with the deacetylation rate ka, as described in

[29].

Initial and boundary conditions. At t = 0, we assume that all bacteria have zero bound

targets (x = 0), and the initial concentration of bacteria is B(x, 0) = 0, x> 0, and B(0,0) = B0.

At the boundaries of the partial differential equation (x = 0, x = θ), we specify that the out-

going velocities are zero. For x = 0, i.e. no bound target molecules, the unbinding velocity vr(0,

t) = 0, and in x = θ, i.e. all targets are bound, the binding velocity vf (θ, t)=0. When the replica-

tion term at x = 0 and the death term at x = θ are known, we can solve the partial differential

equation with two ordinary differential equations at the boundaries. They are similar to the

equations at x = 0 and at x = θ described by Abel zur Wiesch et al. [21], but taking into account

that x is a continuous variable instead of a natural number.

Numerical schemes. To solve our system of differential equations, we used a first-

order upwind scheme. Specifically, we used the spatial approximation uf� ¼ u ið Þ�uði�1Þ

Dx
for

the binding term (vf > 0) and the spatial approximation u
f
þ ¼ u iþ1ð Þ�uðiÞ

Dx
for the unbinding

term (vr < 0). For the time approximation of both the PDEs and the ODEs, we used the

forward approximation DB
Dt
¼ Bnþ1�Bn

Dt
[54]. We also verified that the Courant-Friedrichs-

Lewy condition is satisfied. For fitting the experimental data of bacteria exposed to cipro-

floxacin and ampicillin, we used the particle swarm method (“particleswarm” function in

Matlab, MathWorks software).

Concentrations of gyrase A2B2 tetramers. We assumed that gyrases A and B first homo-

dimerize to A2 and B2, respectively, which in turn bind to each other to form the tetramer TR

[55]. The following system of equations describes their binding kinetics:

dA

dt
¼ �2k1A

2 þ 2k�1A2

dB

dt
¼ �2k2B

2 þ 2k�2B2

dA2

dx
¼ k1A

2 � k�1A2 � k3A2B2 þ k�3TR

dB2

dt
¼ k2B

2 � k�2B2 � k3A2B2 þ k�3TR

dTR

dt
¼ k3A2B2 � k�3TR

ð14Þ

8

>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Aþ AÐ
k1

k�1

A2

Bþ BÐ
k2

k�2

B2

A2 þ B2Ð
k3

k�3

TR

ð15Þ

8

>>>>>>>><

>>>>>>>>:

First, we calibrated the model to ensure that we obtain the correct number of gyrase A2B2
tetramers (~100) per wild type bacterial cell [56, 57]. This results in an average of each 206
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gyrase A and B monomers. Because the association and dissociation rates of the dimers and

tetramers are unknown, we sampled 104 sets of six parameters in Eq 14 (k−3, . . . k3) in a Latin

hypercube approach from a biologically plausible range where the association rates are

between 107–109M-1 s-1 and the dissociation rates between 10−3–10−1 s-1 [36]. This results in

104 estimates for each of the six experimental replicates quantifying gyrase A and B (Figs 4 and

S2 and S3 Table).

Experimental methods

Strains, growth conditions and strain construction. Escherichia coli strain BW25113 [58]

(SoA2740) was transformed with plasmids pCA24N-SC101-gyrAB [35] and pCA24N-SC101-

ΔP-YFP [35] using electroporation, resulting in strains BW25113/pCA24N-SC101-gyrAB

(SoA3329) and BW25113/pCA24N-SC101-ΔP-YFP (SoA3330), respectively. pCA24N-SC101-

gyrAB encodes the E. coli gyrAB genes under control of the IPTG inducible LacZ promoter.

pCA24N-SC101-ΔP-YFP encodes a promoterless copy of YFP and was used as a control. Bacte-

ria were grown at 30˚C on either LB agar or in LB broth, both supplemented with 10 μg/mL

chloramphenicol (Cm) and 10 μM (mild induction) or 100 μM (strong induction) of isopropyl

β-D-1-thiogalactopyranoside (IPTG) (43714 5X, VWR Chemicals) when necessary.

Time-kill curves. Overnight cultures of BW25113 or SoA3329 and SoA3330 were diluted

1:1000 in pre-warmed LB or LB-Cm and LB-Cm-IPTG, respectively, and grown with shaking

to OD600 ~0.5. A 1:3 dilution series of ciprofloxacin was made and added to the cultures at

indicated concentrations. Additional cultures without antibiotics and with a very high concen-

tration of ciprofloxacin (2.187 mg/L) were used to determine the minimal and maximal kill

rate, respectively. Samples were taken immediately prior to addition of the antibiotic and in

~20 min intervals or after 45 min, respectively. Samples were washed once in phosphate buff-

ered saline (PBS) before colony forming units (CFUs) were determined for each sample by

plating a 1:10 dilution series in PBS on LB agar plates.

GyrAB quantification. To quantify the relative amount of GyrAB, samples of SoA3329 and

SoA3330 were collected after 45 min of drug treatment as described above. An equal number of

cells corresponding to 1 mL culture at OD600 = 1 were harvested by centrifugation. Pelleted cells

were lysed at room temperature for 20 min using B-PER bacterial protein extraction reagent

(90078, Thermo Scientific) supplemented with 100 μg/mL lysozyme, 5 units/mL DNaseI (all part

of B-PER with Enzymes Bacterial Protein Extraction Kit, 90078, Thermo Scientifc) and 100 μM/

mL PMSF (52332, Calbiochem). Samples were stored at -80˚C until further use.

Samples were heated to 70˚C for 10 min after addition of 1x Bolt sample reducing agent

(B0009, Life Technologies) and 1x fluorescent compatible sample buffer (LC2570, Invitrogen).

Proteins in whole-cell lysates were separated on 4–15%Mini-Protean TGX Precast gels (456–

1085, Bio-Rad) and transferred to 0.2 μmNitrocellulose membranes (1704158, Bio-Rad).

Membranes were blocked in Odyssey blocking buffer-TBS (927–50000, Li-Cor) for at least

one hour at room temperature. Primary antibodies raised against GyrA (Rabbit α-Gyrase A,
PA005, Inspiralis), GyrB (Rabbit α-Gyrase B, PB005, Inspiralis), and CRP (Mouse α-E. coli CRP,
664304, Nordic Biosite antibodies) were diluted 1:250, 1:250, and 1:2,000 in Odyssey blocking

buffer-TBS, respectively. The blocked membranes were incubated with the appropriate primary

antibodies overnight at 4˚C, washed 4x for 15 min each in TBS-T solution (Tris buffered saline

supplemented with Tween20: 0.138 M sodium chloride, 0.0027 M potassium chloride, 0.1%

Tween20, pH 8.0 at 25˚C), and incubated for 2 h at room temperature with fluorescent labelled

secondary antibodies (1:10,000 of IRDye 680RD Goat anti-Mouse IgG, P/N 925–68070, Li-Cor

and 1:5000 of IRDye 800CWGoat anti-Rabbit IgG, P/N 925–32211, Li-Cor) in Odyssey blocking
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buffer-TBS. Finally, the membranes were washed 4x for 15 min each in TBS-T solution and

imaged at 700 nm and 800 nm using a Li-Cor Odyssey Sa scanning system.

Band intensities were quantified from unmodified images using the record measurement

tool of Photoshop CS6, normalized to the CRP loading control after background subtraction,

and reported relative to SoA3330. For clarity, the “levels” tool of Photoshop CS6 was used to

enhance the contrast of shownWestern blot images.

Supporting information

S1 Fig. Functions connecting successive antibiotic target binding with bacterial replication

and death in bacteriostatic and bactericidal drugs. These graphs show which functions were

used to fit the dependence of bacterial replication, r(x), and death, δ(x), on target occupancy

for antibiotics with bacteriostatic, bactericidal or mixed action. Solid lines indicate a sigmoidal

relationship, dotted lines indicate a step function, dashed lines indicate a linear relationship,

and dash-dotted lines indicate independence, i.e. a constant replication or death rate. The left

panels, show the replication rates (blue), the right panels show the death rates (red). The top

panels, show rates for a bacteriostatic drug, the middle panels, show rates for a bactericidal

drug, and the bottom panels, show rates for a drug with mixed effects. The sum of the replica-

tion and death rates at certain target occupancies gives the net growth or decline rate of the

bacterial population.

(TIF)

S2 Fig. Western blots of GyrA, GyrB and CRP in E. coli whole cell lysates. a, b, E. coli

expressing gyrA and gyrB under control of the same IPTG-inducible promoter (SoA3329)

grown in the presence of 10 μM IPTG (mild overexpression) and 100 μM IPTG (strong over-

expression). A control strain containing a mock plasmid (SoA3330), representing wild-type

GyrAB levels, was grown in the absence of inducer. Whole cell lysates were separated on a

SDS-PAGE gel, blotted, and detected with specific fluorescent antibodies against GyrA

(green), GyrB (green) and CRP (red). CRP (cAMP receptor protein) was used as loading con-

trol.

(TIF)

S3 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the binding rate kf.We use the

model fitted to experimental data to explore the sensitivity of our results to changes in kf
(0.01x, 0.1x, 1x, 10x, and 100x original value). a, Net growth rate (log10(bacterial number at 18

h)—log10(bacterial number at 0 h))/18 h) as function of drug concentration for different values

of the binding rate kf (see legend). The dotted horizontal line indicates zero net growth. The

intersections of the simulated dose-response curves with this line indicate the corresponding

MICs. b, Sensitivity of the MIC to kf obtained from simulations in (a). The color code indicates

the MIC corresponding to the simulation with the same color in (a).

(TIF)

S4 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the dissociation rate kr.We use

the model fitted to experimental data to explore the sensitivity of our results to changes in kr
(0.01x, 0.1x, 1x, 10x, and 100x original value). a, Net growth rate (log10(bacterial number at 18

h)—log10(bacterial number at 0 h))/18 h) as function of drug concentration for different values

of the binding rate kr (see legend). The dotted horizontal line indicates zero net growth. The

intersections of the simulated dose-response curves with this line indicate the respective MICs.

b, Sensitivity of the MIC to kr obtained from simulations in (a). The color code indicates the

MIC corresponding to the simulation with the same color in (a).

(TIF)
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S5 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the drug-target turnover rate.

We use the model fitted to experimental data to explore the sensitivity of our results to changes

in the turnover rate of the drug-target complex. We changed kr and kf (0.01x, 0.1x, 1x, 10x,

100x, and 1000x original value) while keeping the ratio between kf and kr, the affinity KD, con-

stant. a, shows the net growth rate (log10(bacterial number at 18 h)—log10(bacterial number at

0 h))/18 h) as function of drug concentration for different values of the turnover rate. The dot-

ted horizontal line indicates zero net growth. The intersections of the simulated dose-response

curves with this line indicate the respective MICs. b, Sensitivity of the MIC to turnover rate

obtained from simulations in (a). The color code indicates the MIC corresponding to the sim-

ulation with the same color in (a).

(TIF)

S6 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the replication rate with increas-

ingly bound target r(x).We use the model fitted to experimental data to explore the sensitivity

of our results to changes in the replication rate with increasingly bound target r(x). We change

the value of bound target at which we obtain a half-maximal replication rate, x1/2. a, Functions

connecting bacterial replication rates r(x) to percentage of bound target molecules with differ-

ent half-maximal replication rates. b, Net growth rate (log10(bacterial number at 18 h)—log10(-

bacterial number at 0 h))/18 h) as function of drug concentration for different values of x1/2
(see legend). The dotted horizontal line indicates zero net growth. The intersections of the sim-

ulated dose-response curves with this line indicate the respective MICs. c, Sensitivity of the

MIC to r(x) obtained from simulations in (b). The color code indicates the MIC corresponding

to the simulation with the same color in (a&b).

(TIF)

S7 Fig. Sensitivity analysis of ciprofloxacin fit: Changes in the death rate with increasingly

bound target δ(x).We use the model fitted to experimental data to explore the sensitivity of

our results to changes in the death rate with increasingly bound target δ(x). We change the

value of bound target at which we obtain a half-maximal death rate, x1/2. a, Functions connect-

ing bacterial death rates δ(x) to percentage of bound target molecules with different half-maxi-

mal death rates. b, Net growth rate (log10(bacterial number at 18 h)—log10(bacterial number at

0 h))/18 h) as function of drug concentration for different values of x1/2 (see legend). The dot-

ted horizontal line indicates zero net growth. The intersections of the simulated dose-response

curves with this line indicate the respective MICs. c, Sensitivity of the MIC to δ(x) obtained
from simulations in (b). The color code indicates the MIC corresponding to the simulation

with the same color in (a&b).

(TIF)

S8 Fig. Sensitivity analysis of ampicillin fit: Changes in the binding rate kf.We use the

model fitted to experimental data (Fi 5) to explore the sensitivity of our results to changes in kf
(0.01x, 0.1x, 1x, 10x, and 100x original value). a, Net growth rate (log10(bacterial number at 18

h)—log10(bacterial number at 0 h))/18 h) as function of drug concentration for different values

of the binding rate kf (see legend). The dotted horizontal line indicates zero net growth. The

intersections of the simulated dose-response curves with this line indicate the respective MICs.

b, Sensitivity of the MIC to kf obtained from simulations in (a). The color code indicates the

MIC corresponding to the simulation with the same color in (a).

(TIF)

S9 Fig. Sensitivity analysis of ampicillin fit: Changes in the deacetylation rate ka.We use

the model fitted to experimental data (Fig 5) to explore the sensitivity of our results to changes
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in ka (0.01x, 0.1x, 1x, 10x, and 100x original value). a, Net growth rate (log10(bacterial number

at 18 h)—log10(bacterial number at 0 h))/18 h) as function of drug concentration for different

values of the binding rate ka (see legend). The dotted horizontal line indicates zero net growth.

The intersections of the simulated dose-response curves with this line indicate the respective

MICs. b, Sensitivity of the MIC to ka obtained from simulations in (a). The color code indi-

cates the MIC corresponding to the simulation with the same color in (a).

(TIF)

S10 Fig. Sensitivity analysis of ampicillin fit: Changes in the drug-target turnover rate.We

use the model fitted to experimental data (Fig 5) to explore the sensitivity of our results to changes

in the turnover rate of the drug-target complex. We changed values for ka and kf (0.01x, 0.1x, 1x,

10x, and 100x original value) while keeping the ration of ka/kf constant. a, Net growth rate (log10(-

bacterial number at 18 h)—log10(bacterial number at 0 h))/18 h) as function of drug concentra-

tion for different values of the turnover rate (see legend). The dotted horizontal line indicates

zero net growth. The intersections of the simulated dose-response curves with this line indicate

the respective MICs. b, Sensitivity of the MIC to turnover rate obtained from simulations in (a).

The color code indicates the MIC corresponding to the simulation with the same color in (a).

(TIF)

S11 Fig. Sensitivity analysis of ampicillin fit: Changes in the death rate with increasingly

bound target δ(x).We use the model fitted to experimental data (Fig 5) to explore the sensitiv-

ity of our results to changes in the death rate with increasingly bound target δ(x). We change

the value of bound target at which we obtain a half-maximal death rate, x1/2 (see legend). a,

Functions connecting bacterial death rates δ(x) to percentage of bound target molecules with

different half-maximal replication rates x1/2 (see legend). b, Net growth rate (log10(bacterial

number at 18 h)—log10(bacterial number at 0 h))/18 h) as function of drug concentration for

different values of δ(x) (see legend). The dotted horizontal line indicates zero net growth. The
intersections of the simulated dose-response curves with this line indicate the respective MICs.

c, Sensitivity of the MIC to δ(x) obtained from simulations in (b). The color code indicates the

MIC corresponding to the simulation with the same color in (a&b).

(TIF)

S12 Fig. Predicted mutation selection windows for E. coli exposed to ampicillin. The drug

concentration of ampicillin is shown on the x-axes, and the average bacterial net growth rate

over 18 h is given on the y-axes. The blue line represents the wild-type strain based on the fits

shown in Fig 5, and the red line represents a strain with a theoretical resistance mutation that

decreases the binding rate (kf) 100-fold and imparts a 15% fitness cost. The dotted horizontal

line represents no net growth. The first vertical dotted line indicates where the resistant strain

becomes fitter than the wild-type (the start of the competitive resistance selection window),

the solid vertical line indicates the MIC of the wild-type (the start of the classical resistance

selection window), and the dashed vertical line indicates the MIC of the resistant strain, above

which selection for resistance should be minimal because both growth of the wild-type and the

resistant strain is inhibited.

(TIF)

S13 Fig. Schematic of pharmacokinetic model.We simulate plasma and tissue concentra-

tions of ampicillin with a two-compartment pharmacokinetic model. This model described

intravenous drug input into the “plasma” compartment, which has an apparent volume of V1.

From there, it can enter the peripheral “tissue” compartment, characterized by the apparent

volume V2, with a rate k12. Conversely, the drug can also re-enter the plasma compartment
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with a rate k21. From the plasma compartment, the drug is eliminated with a rate k10.

(TIF)

S14 Fig. Coupling a pharmacokinetic model to COMBAT. Two modes of drug administra-

tions, 2 g of drug per day given as single, 5 min i.v. infusions (blue line) and 2 g of drug per day

given as continuous i.v. infusion (red line), are simulated. a, Simulated drug concentrations in

the tissue (i.e., infected) compartment of a two compartment pharmacokinetic model over two

days. The dotted black line indicates the MIC of the pathogen (2.6 mg/L). b, Pathogen load in

the tissue compartment in response to fluctuating drug concentrations predicted by COMBAT

over the same timeframe.

(TIF)

S1 Table. Kinetic parameters for used antibiotics. To our knowledge, the association rate for

ciprofloxacin has not been determined directly. Because the values of the ratio of dissociation

rate kr and association rate kf, KD, diverge by more than an order of magnitude in the litera-

ture, we chose to fit the association rate kf as a free parameter in our model while constraining

KD to remain within the published range (the resulting value of kf is given together with other

fitted parameters in S2 Table).

(DOCX)

S2 Table. Parameters resulting frommodel fit to experimental time-kill curves of cipro-

floxacin in wild-type E. coli. Fig 3A shows the model fit and Fig 3B shows the resulting func-

tions for the replication rate r(x) and the death rate δ(x) as a function of the number of bound

targets.

(DOCX)

S3 Table. Results of gyrase level determination and estimated GyrA2B2 tetramer levels.

(m) indicates mild overexpression, (s) indicates strong overexpression. Columns headed GyrA

and GyrB show the experimentally determined overexpression as fold expression compared to

the wild type. The columns headed GyrA2B2 show the estimated tetramer levels resulting from

each measurement. For the GyrA2B2 tetramer estimation, we sampled 104 sets association and

dissociation rates from a uniform distribution within their reported limits (Latin hypercube

approach). We report the standard deviation for each estimate. We give summary estimates in

the last row of the table.

(DOCX)

S4 Table. Parameters resulting frommodel fit to experimental time-kill curves of ampicil-

lin in wild-type E. coli. Fig 5B shows the resulting death rate δ(x) as an exponential function

of the number of bound targets δ(x) = a3 e
b3x + c3.

(DOCX)

S5 Table. Parameters used in pharmacokinetic model. The parameters were obtained from

[60].

(DOCX)

S1 Text. Predicting pathogen load in patient by coupling COMBAT with a pharmacoki-

netic model.

(DOCX)
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