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ABSTRACT

A fundamental challenge that arises in biomedicine is

the need to characterize compounds in a relevant cel-

lular context in order to reveal potential on-target or off-

target effects. Recently, the fast accumulation of gene

transcriptional profiling data provides us an unprece-

dented opportunity to explore the protein targets of

chemical compounds from the perspective of cell tran-

scriptomics and RNA biology. Here, we propose a novel

Siamese spectral-based graph convolutional network

(SSGCN) model for inferring the protein targets of

chemical compounds from gene transcriptional profiles.

Although the gene signature of a compound perturba-

tion only provides indirect clues of the interacting tar-

gets, and the biological networks under different

experiment conditions further complicate the situation,

the SSGCNmodel was successfully trained to learn from

known compound-target pairs by uncovering the hidden

correlations between compound perturbation profiles

and gene knockdown profiles. On a benchmark set and

a large time-split validation dataset, the model achieved

higher target inference accuracy as compared to previ-

ous methods such as Connectivity Map. Further exper-

imental validations of prediction results highlight the

practical usefulness of SSGCN in either inferring the

interacting targets of compound, or reversely, in finding

novel inhibitors of a given target of interest.

KEYWORDS drug target inference, transcriptomics,

deep learning, experimental verification

INTRODUCTION

Because most drugs exert their therapeutic effects by inter-

acting with their in vivo targets, target prediction plays a

pivotal role in early drug discovery and development, par-

ticularly during the era of polypharmacology (Anighoro et al.,

2014). In the context of polypharmacology, the “magic bullet”

is likely an exceptional case, and in silico target prediction

can be used to explore the whole therapeutic target space

for a given molecule. This procedure might help deepen our

understanding of the mechanisms of action, metabolism,

adverse effects, and drug resistance of a molecule. By pre-

dicting targets of approved drugs, these clinically used

chemicals can be repurposed for other diseases (Ashburn

and Thor, 2004); for example, sildenafil (Terrett et al., 1996)
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is used to treat erectile dysfunction but was first developed

for the treatment of angina.

Targets of candidate molecules can either be identified via

biochemical experiments, such as protein proteomic mass

spectrometry, or predicted using computational approaches.

Computational target prediction has gained momentum due

to its low cost and high-throughput nature. The classical

methods generally include ligand-based (Geppert et al.,

2010) and structure-based methods (Schomburg et al.,

2014) : the former methods mainly model drug-target inter-

actions using features of small molecules, such as molecular

fingerprints and pharmacophores, and the latter methods

often rely on molecular docking to unveil potential interac-

tions between small molecules and proteins. Both of these

methods rely on the similarity assumption: “similar molecules

target similar proteins or vice versa” (Sydow et al., 2019).

However, this molecular similarity assumption does not

always hold, e.g., structurally similar molecules can display

different activities, such as the frequently observed activity

cliffs (Bajorath, 2014). Moreover, ligand-based methods tend

to exhibit decreased generalizability for new scaffold mole-

cules that are not similar to any known drugs, and structure-

based methods are limited by the lack of protein structures,

inaccurate scoring functions, and a long computation time

(Svensson et al., 2012).

The rapid accumulation of transcriptional profiling data

provides a new perspective for computational target predic-

tion. For example, the Library of Integrated Network-Based

Cellular Signatures (LINCS) L1000 dataset (Subramanian

et al., 2017) is a comprehensive resource of gene expres-

sion changes observed in human cell lines perturbed with

small molecules and genetic constructs. Several computa-

tional methods that involve the exploration of differential

expression patterns have been proposed (Bernardo et al.,

2005; Lamb et al., 2006; Iorio et al., 2010; Chua and Roth,

2011; Woo et al., 2015; Filzen et al., 2017; Noh et al., 2018;

Xie et al., 2018; Xu et al., 2018; Madhukar et al., 2019;

Salviato et al., 2019), and the strategies used in these

methods mainly include comparative analysis, network-

based analysis, and machine learning-based analysis (Cer-

eto-Massagué et al., 2015). The comparative analysis-based

methods infer targets based on gene signature similarities

(Lamb et al., 2006; Subramanian et al., 2017; Xu et al.,

2018). An example is Connectivity Map (CMap), which

assigns the target or mechanism of action (MOA) information

of the most similar reference chemical/genetic perturbations

to the new molecule by querying its gene expression sig-

nature against the reference L1000 library (Subramanian

et al., 2017). The network-based approach systematically

integrates gene expression profiles with cellular networks

(Gardner et al., 2003; Cosgrove et al., 2008; Woo et al.,

2015; Noh and Gunawan, 2016; Noh et al., 2018; Wang

et al., 2020). For example, the mode-of-action by network

identification (MNI) algorithm applies the network dynamics

model learning from chemical perturbations and knockdown

(KD) genetic perturbation to infer the drug targets ( Bernardo

et al., 2005). ProTINA applies a dynamic model to infer drug

targets from differential gene expression profiles by creating

a cell type-specific protein-gene regulatory network and

provides improved prediction results compared with similar

methods (Noh et al., 2018). Different machine learning

algorithms have also been used in mining transcription pro-

file data, which have formal standardized statistical frame-

work and optimization criteria and may show generalization

capability. Pabon et al. implemented a random forest (RF)

model to explore the correlations between compound-in-

duced signatures (CP-signatures) and gene KD-induced

signatures (KD-signatures) from CMap and predict drug

targets (Pabon et al., 2018). Their study and that conducted

by Liang et al. (2019) revealed that the comparison of the

differential expression patterns induced by chemical pertur-

bation with those induced by genetic perturbation might shed

light on potential information on the targets of a compound.

Because these gene expression profile-based methods go

beyond relying on the structural similarity between mole-

cules, they are more suitable for discovering the targets of

molecules with novel scaffolds. For these machine learning

models, a central question is how to incorporate information

about biological graph such as protein-protein interaction

networks. Conventional machine learning approaches often

rely on summary graph statistics or carefully engineered

features to measure local neighbourhood structures, which

do not systematically consider the relationship among the

nodes in biological networks (Hamilton et al., 2017). In

addition, there are many other influencing factors, such as

the effects of compound concentrations, the cellular back-

ground, and differences in the time scales between com-

pounds and shRNAs, making the modelling more

complicated. As a result, even if chemical and genetic per-

turbations interfere with the same target, the correlation

between their gene signatures calculated using traditional

methods might be very low because it is difficult to uncover

the potential relevance of the gene signatures in biological

networks under different conditions. To address this chal-

lenge, we propose a new graph convolution network (GCN)

model, SSGCN. A trainable SSGCN was employed to inte-

grate protein-protein interaction (PPI) information with raw

signatures to derive graphical embeddings, and the results

were then used to calculate the correlation between mole-

cule-induced and KD-induced signatures. By concatenating

the correlation results with the experimental CP time (the

time from compound perturbation to measurement), dosa-

ges, cell lines, and KD time (time from KD perturbation to

measurement), our model can predict drug targets across

durations and dosages. Moreover, both external validations

with LINCS phase II data and subsequently validated

experimental findings demonstrate the usefulness of

SSGCN in drug target identification and drug repositioning.
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RESULTS

Spectral-based GCN for learning the network

perturbation similarities

To capture the drug-target interactions and thus identify drug

targets, we propose a SSGCN model that learns the undis-

covered correlations between CP-signatures and the corre-

sponding KD-signatures at the network level.

Overall architecture of the model

The key idea of our target prediction model was to capture

the correlations between chemical and genetic perturbation-

induced gene expression in a more systematic manner.

Based on this notion, targets of a compound can be pre-

dicted by comparing the corresponding perturbed gene

expression profiles with a large number of KD-induced gene

expression profiles that are publicly available. To learn

potentially relevant information, as shown in Fig. 1A, two

spectral-based GCNs were built: one for compound pertur-

bation analyses, and one for gene perturbation analyses.

This new architecture of the SSGCN model can also be

divided into three main modules: the input module, the fea-

ture extraction module and the classification module. (1) The

PPI network and differential gene expression profiles were

the input of the first module. To unify information on the

topology of the PPI network and the differential gene

expression profiles, a property graph called a “gene signa-

ture graph” was constructed. Each node in the property

graph represents a protein, and the property of each node

was the corresponding differential gene expression value.

Any two nodes are connected by an edge if two proteins can

interact with each other. To represent compounds and tar-

gets, two gene signature graphs were constructed using

compound and gene perturbation data. (2) In the feature

extraction module, the spectral-based GCN was used for

graph embedding to integrate the PPI network topological

structure information and differential gene expression pro-

files. Graph embedding provides a compressed represen-

tation of the gene signature graph. To obtain graph

embeddings of the compounds and targets, two parallel

GCNs were established for feature extraction. Because

vector operations are more efficient than operations on

graphs, after the gene signature graphs were transformed

into graph embeddings, a simple linear regression layer

could be used to characterize the degree of correlation

between these two graph embeddings of compounds and

targets. Gene expression profiles are also related to cell

types, durations, and compound dosages (Musa et al.,

2018). Therefore, correlation values terms of Pearson R2

concatenated with the experimental meta-data (cell types,

durations, and compound dosages) were fed into the clas-

sification module. (3) The classification module was com-

posed of a fully connected hidden layer for extracting input

features and an output layer for binary classification. The

softmax function was applied in the output layer to compute

the probabilities of whether the compounds show activity

towards the potential targets (CPI scores). A label of 1 was

assigned to a compound-protein pair if the compounds

interacted with the corresponding protein, and a label of 0

was assigned to the opposite case.

The SSGCN model was implemented in the TensorFlow

framework (version TensorFlow-GPU 1.14.0) in Python 3.7.

Target prediction with the SSGCN model

As shown in Fig. 1B, for a given compound C, the pipeline of

predicting targets using the trained SSGCN model is as

follows: (1) Obtain the compound perturbation gene profile

on any of the eight cell lines, and extract the 978 landmark

genes defined by the LINCS consortium (see METHODS for

more details). In addition to L1000 assay, any cell-level

transcriptomic profiling methods such as commercial gene

expression microarrays or RNA sequencing (RNA-Seq) that

could provide such information will be also applicable. We

provided an “RNA-Seq application protocol” (a practical

example included) in the Supplementary Information. (2)

Feed the CP-signature and an existing KD-signature repre-

senting the gene perturbation profile of target T and their

related experimental conditions, i.e., CP time, dosage, KD

time, and cell line, to the trained SSGCN model for calcu-

lation of the CPI score of compound C and target T. (3)

Repeat step 2 for the reference library of 179,361 KD-per-

turbation profiles. (4) Sort the potential targets by descend-

ing the mean CPI score of KD-perturbation profiles of the

same target under different conditions. The top ranked tar-

gets are considered to be more likely to interact with com-

pound C. Similarly, for a given Target T of interest, the

pipeline can be reversely used to identify active compounds

by screening the reference library of 22,426 CP-perturbation

profiles (Fig. 1C).

Optimization and internal test of the model using LINCS

phase I data

The detailed process of data preprocessing can be found in

the article METHODS section of the article. In general, the

internal data set (training set, validation set, test set) and

external test set are essential for modeling. Since the

SSGCN model is sensitive to the combination of hyperpa-

rameters, hyperparameter search is important for model

optimization. To optimize the model, as shown in Fig. 2A,

different combinations of hyperparameters were evaluated

with the validation dataset through grid searching. Because

the number of negative samples was larger than that of

positive samples (3:1), both the area under the precision-

recall curve (AUPRC) and F1-score are more suitable for

evaluating the classification performance of the model. As

summarized in Fig. 2A, the final model showed the best

performance on the validation set with a learning rate of

10−3, a layer size of 2,048, and a dropout of 0.3. As shown in

Fig. 2B and 2C, the model has the best performance with an
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Figure 1. Target prediction using the SSGCN model. (A) Architecture of the SSGCN. Compound graph embedding is obtained by

a spectral-based graph convolutional network (GCN) to integrate the protein-protein interaction (PPI) network topological structure

information and compound perturbation profile. Target graph embedding is obtained by another GCN to integrate PPI and gene

knockdown perturbation profile. The correlation coefficient Pearson R2 is calculated between the compound graph embedding and

target graph embedding. The CP time is the duration of compound (CP) treatment and the KD time is the duration of gene knockdown

(KD) perturbation. CPI score is the classification probability of whether the compound interacts with the protein. (B) Pipeline of the

target inference using the SSGCN model. (C) Pipeline of identifying the novel active compound using the SSGCN model.
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AUPRC of 0.84 and an F1 score of 0.79 on the test dataset

when the epoch is 169.

External test and model comparison using LINCS

phase I data

Model performance and analysis using the external test set

in LINCS phase I data

Although the model exhibited satisfactory results with the

internal test dataset, we were more interested in its gener-

alization ability for real-world target prediction tasks. Based

on both the direct and indirect similarities between the

chemical and KD perturbation signatures of cells, Pabon

et al. applied an RF classification model to predict drug tar-

gets and constructed a dataset of 123 compounds and 79

targets, which could be considered a benchmark test for

target prediction based on transcriptional profiles. To facili-

tate comparison, we used the same performance metric, top

N accuracy, to evaluate the performance of our model. This

metric reflects the proportion of tested compounds whose

any true target can be correctly predicted among the top

ranked N targets, and in this study, N values of 100 and 30

were evaluated. This is a non-stringent but well-accepted

performance metric in the field of target inference. For

example, a top 30 value close to 0.7 means that for a set 100

of test compounds, there are about 70 compounds whose

real targets can be correctly ranked within the top 30 inferred

targets list. The prediction results of the random forest model

reported by Pabon et al. were directly used for model com-

parison. In addition, we also retrained the random forest

model with our dataset. For further comparison, CMap was

also implemented as a baseline model. For each compound

Figure 2. Heat maps for hyperparameters search. (A) The colormap reflects the magnitude of AUPRC (the area under precision

recall curve) value on the validation dataset. The detailed description of the model evaluation metric can be found in the METHODS

section of the article (Table 3). (B) Model performance shown in radar chart with six evaluation metric and (C) AUPRC-epoch curves.

The “epoch” means an entire dataset is passed through a neural network once.
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in the external dataset, its top and bottom ranked 150 dif-

ferentially expressed genes were used as the signature to

query all the compounds in the LINCS phase I training data

based on the CMap score. The value of the CMap score

ranged from −100 to 100, where a large and positive value

indicates that a reference compound could induce a signa-

ture similar to that induced by the query compound.

Accordingly, all the known targets of the retrieved reference

compounds with higher CMap scores were collected, and

the top ranked 100 and 30 targets were assigned to the

query compound as its candidate targets for calculating the

top 100 and 30 accuracy values, respectively. Moreover, the

network-based analytical method ProTINA was also bench-

marked. Following the steps used in a previous study (Noh

et al., 2018) and the provided code (https://github.com/

CABSEL/ProTINA), the protein targets of the compound

were ranked in descending order based on the magnitudes

of the protein scores provided by ProTINA. It should be

noted that different methods have different predicable target

coverages. For SSGCN and the method reported by Pabon

et al., the number of predicable targets corresponds to the

number of different genes with available knockdown profiles

in given cell lines. For CMap, the number is restricted to

compound target-encoding genes. Among these methods,

ProTINA covers more predicable targets because any genes

with gene expression values can be considered potential

targets. Finally, we reported the performance for a random

prediction to indicate how these models are better than blind

guessing.

For a fair comparison, the gene expression profiles of

these 123 compounds were excluded from the training

dataset to avoid any potential information leakage. The

Figure 3. Model comparison and analysis. (A) Performance of the SSGCN models tested on different cell lines compared with that

of the model developed by Pabon et al. (B) Effects of the cell lines on target prediction performance. The standard method is the

SSGCN model trained on the KD profiles of all 8 cell lines. (C) The correlation between the KD signatures of A549 and MCF7 cells is

significantly lower than that between the CP-signatures of these two cell lines. (D) Effects of the compound treatment time on target

prediction performance.
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remaining data were then used to train our model and predict

targets for these 123 compounds according to the pipeline

shown in Fig. 3. As shown in Table 1, the top 100 accuracy

values of the model in eight cell lines were higher than 0.7,

and the model tested on the PC3 cell line showed the best

prediction performance. The relative ranks of the true targets

were computed across eight cell lines. As shown in Fig. 3A

and Table 1, our prediction accuracies on different cell lines

were higher than those reported by Pabon et al. (***, P < 1 ×

10−10), CMap (***, P < 1 × 10−10), ProTINA (***, P < 1 ×

10−10), and random prediction (***, P < 1 × 10−10). It should

be noted that retraining the RF model of Pabon et al. with our

training set did not yield significant improvement in predic-

tion, suggesting that the higher accuracy of SSGCN cannot

be simply attributed to the introduction of more training data.

To analyse the effects of the cell lines on the prediction

performance, the datasets were split according to their cell

lines (PC3, A549, MCF7, HT29, A375, HA1E, VCAP and

HCC515). Eight individual submodels were constructed for

each cell line and then separately tested on the external test

dataset. As shown in Fig. 3B, these submodels could not

make transferable predictions across cell lines, with the

exception of the submodel trained with the transcriptional

data of PC3, which showed only moderate prediction capa-

bility (Top 100 accuracy = 0.33) on A375. The limitation of

these submodels can be attributed to the poor correlation

between the KD-signatures among different cell lines when

interfering with the same gene. As revealed in the original

study (Subramanian et al., 2017; Pabon et al., 2019), the

similarity between shRNAs targeting the same gene is only

slightly greater than random. Such similarity is even lower

than that of signatures obtained after interfering with the

same compound. Taking A549 and MCF7 as an example

(Fig. 3C), the correlation of the KD signatures between these

two cell lines was significantly lower than that of the CP-

signatures. As shown in Fig. 3B, the standard method is the

SSGCN model trained on the KD profiles of all 8 cell lines,

and it shows good prediction performance on any of them.

This result suggests that the application domain of the model

can be expanded by further incorporating more data from

different cell lines. Similarly, to analyse the effects of the CP

time on the target prediction, two individual submodels for

different time scales (6 h and 24 h) were built and tested. As

shown in Fig. 3D, the models built from the LINCS-CP-6h

dataset achieved a top 100 accuracy of 0.72 with the LINCS-

CP-24 h test dataset, and those built from the LINCS-CP-24

h dataset achieved a top 100 accuracy of 0.64 with the

LINCS-CP-6 h test dataset. These results showed that the

model could make transferable predictions across CP times.

In this study, the effects of the KD time on the target pre-

diction were not analysed because most available KD-sig-

natures were profiled at the same time (96 h, shown in

Table S1).

The SSGCN model reveals a “deep correlation”

between signatures

It is of interest to investigate whether our SSGCN model

could help reveal the “deep correlation” that cannot be

revealed by conventional normalization and scoring.

Intriguingly, the external test set contains gene expression

profiles of 38 different NR3C1 antagonists and thus

Table 1. Target prediction performance on the external test set in 8 cell lines

Methods Number of compounds Top 100 accuracy Top 30 accuracy

SSGCN (PC3) 123 0.84 0.71

SSGCN (A549) 123 0.73 0.59

SSGCN (MCF7) 117 0.82 0.64

SSGCN (HT29) 123 0.72 0.46

SSGCN (A375) 122 0.74 0.58

SSGCN (HA1E) 123 0.80 0.63

SSGCN (VCAP) 120 0.71 0.43

SSGCN (HCC515) 111 0.77 0.63

RF (Pabon et al.) 123 0.26 0.14

RF (Using our training dataset) 123 0.27 0.17

CMap (PC3) 123 0.15 0.024

ProTINA (PC3) 120 0.033 (0.058)* 0.017 (0.033)*

Random prediction 123 0.02 0.008

* Because many more genes can be considered by ProTINA, the top 255 and 77 accuracy values, which denote the accuracy values at the

same ratio of top 100 and 30 ranked targets, respectively, are also provided in parentheses for reference (255 = 100/3,980 ×10,174, 77 =

30/3,980 × 10,174). The bold means the best model.
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constitutes an ideal subset for comparing expression profiles

after different chemical and genetic interferences on the

same target. Using this subset, the target NR3C1 of 11

ligands was identified among the top 100 candidate targets

by the method developed by Pabon et al. In comparison, for

all these 38 ligands, NR3C1 can be successfully predicted

within the top 100 targets by our SSGCN model. As shown in

Fig. 4, raw R2 and KEGG Tanimoto coefficient represent two

conventional correlation scoring methods for comparing

gene expression values or KEGG pathway level features. No

significant correlation was found between the chemical and

shRNA-induced gene expression profiles using these two

methods. In contrast, the correlations calculated by com-

paring graph embeddings from the PPI network and differ-

ential gene expression profiles, termed deep R2, were

markedly higher. These results highlight that our SSGCN

model was able to determine the “deep correlation” between

gene expression profiles upon heterogeneous drug treat-

ments and explain why our model showed a markedly

improved prediction performance in inferring targets based

on transcriptional data.

Model verification using LINCS phase II data

To further evaluate the generalization capability of the model

in such a setting, LINCS phase II data were collected for

stricter “time-split” testing (Sheridan, 2013). This dataset

provides a more realistic prospective prediction setting in

which the test data were generated later than the data used

for modelling. After removing the overlapping compounds in

the LINCS phase 1 data, the external test dataset includes

250 compounds and 488 targets. The trained model was

employed to predict the targets of these compounds based

on the target prediction pipeline shown in Fig. 1. For com-

parison, a baseline model, CMap, was again implemented.

The time-split validation represents a more rigorous esti-

mate of the model performance. As summarized in Table 2,

the top 100 accuracy values of the SSGCN on the time-split

external test set ranged from 0.51 to 0.66 in six cell lines.

Although the accuracy declined slightly compared with the

previous internal test with phase I data, it might be caused by

different coverages of the target space (Fig. S1) and batch

effects such as temperature, wetness and different

Figure 4. Correlation analysis of gene expression profiles. The raw R2, KEGG Tanimoto coefficient and deep R2 were used to

represent the correlations of the raw gene expression values, KEGG pathway level features and graph embedding, respectively.

NR3C1_96_PC3 means the gene NR3C1 knockdown profiles was selected with a duration of 96 h in the PC3 cell line.
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laboratory technicians (Leek et al., 2010; Subramanian et al.,

2017), the overall results of the SSGCN model are still highly

reasonable. In comparison, the baseline model using the

CMap score for drug target prediction only yielded accuracy

values lower than 0.31. We further performed a literature

search for the discovered targets of these external test

compounds. For example, MAPK14 was ranked at the 26th

position of the potential targets for saracatinib, and we

searched European patents and found that the Kd value of

saracatinib for MAPK14 is 0.332 μmol/L. Similarly, MAPK1

was ranked at the 29th position among the potential targets

of adenosine (Fedorov et al., 2007). This literature evidence

further demonstrated the strong generalization capability of

the SSGCN model for drug target prediction. For better

visualization, a few external test compounds and their

interaction network with the top 30 targets predicted by

SSGCN are presented in Fig. 5 (more details are provided in

Table S2). For example, the compound SB-939 is a potent

pan-histone deacetylase (HDAC) inhibitor that inhibits class

I, IIA, IIB and IV HDACs (HDAC1-11) (Novotny-Diermayr

et al., 2010). As shown in Fig. 5A, the top ranked 11 targets

for this compound were all HDACs, which are in accordance

with the interacting targets reported previously. HDACs are

the relatively easily predictable targets for transcription-only

based target prediction methods, like CMap (Liu et al.,

2018). Alpelisib is an oral α-specific PI3K kinase inhibitor

that has shown efficacy in targeting PIK3CA-mutated cancer

(André et al., 2019), and its combination with fulvestrant has

recently been approved by the US Food and Drug Admin-

istration for the treatment of metastatic or otherwise

advanced breast cancer. Interestingly, as shown in Fig.5B,

the top ranked 30 targets of alpelisib are all types of different

kinases, and PIK3CA can be successfully identified among

the top three candidates. As a selective bromodomain-con-

taining protein (BET) inhibitor, PFI-1 reportedly interacts with

BRD4 with an IC50 of 0.22 μmol/L (Fish et al., 2012). As

shown in Fig. 5C, BRD4 was ranked third in the list of can-

didate targets. Moreover, our model predicted that PFI-1

might show cross-activity with a range of kinases. Because

an increasing number of studies have shown that BRD4/BET

inhibitors and kinase inhibitors might act synergistically in a

range of cancer types (Sun et al., 2015), the predicted off-

target interactions with kinases might provide clues and

starting points for further study of related dual functional

inhibitors (Timme et al., 2020). In some cases, the predic-

tions were unsuccessful, e.g., ATM and RAD3-related (ATR)

kinase is a reported target of VE-821, but this target was

ranked at the 1594th position. As shown in Fig. 5D, the top

30 ranked targets identified by SSGCN cover a wide range

of protein categories, including kinases, GPCRs and ion

channels. Because compounds with smaller molecular

weights might show promiscuity across different target

families, we cannot rule out the possibility that VE-821

interacts with the predicted targets, but none of these inter-

actions are supported by reported experimental evidence.

This example also suggested that the candidate target list

should be refined through further experimental verification

and combination with other complementary methods, such

as structure-based or similarity-based approaches. More-

over, we studied the relationship between protein family and

prediction performance of the SSGCN model (Fig. S2).

Among the 100 targets giving the best performing predic-

tions, we may find that a wide range of different types of

protein targets are included, not only epigenetic regulators or

kinases that may induce strong transcriptional signatures,

but also other enzymes, ion channels and membrane

receptors. These results suggest that our model indeed

learns the ability of target inference, but not simply remem-

bers some eminent transcriptional features. Overall, as

indicated in Table 2 and Fig. 5, it can be concluded that the

SSGCN model shows strong generalization ability for infer-

ring targets of previously unevaluated compounds and pro-

vides insights on cell-level transcriptomic responses to

chemical intervention and related polypharmacological

effects.

Compound-centric prediction of Cyclophilin

A as a novel target for nelfinavir

Nelfinavir (NFV) is a potent protease inhibitor that has been

widely used for many years for the treatment of human

immunodeficiency virus type 1 (HIV-1) infection. Recently,

Table 2. Target prediction performance on the LINCS phase II data

Cell lines Number of compounds Top 100 accuracy

(SSGCN)

Top 30

accuracy

(SSGCN)

Top 100

accuracy

(CMap)

Top 30

accuracy

(CMap)

PC3 249 0.53 0.30 0.29 0.12

A549 41 0.66 0.51 0.31 0.20

MCF7 240 0.53 0.30 0.24 0.10

A375 245 0.51 0.31 0.30 0.15

HA1E 238 0.56 0.34 0.27 0.13

HCC515 39 0.65 0.46 0.15 0.05

The bold means the best model.
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there is a rapidly expanding literature on the in vitro anti-

SARS-CoV-2 activity of NFV, which includes NFV signifi-

cantly inhibited SARS-CoV-2 replication in Vero E6 cells

(Arshad et al., 2020; Ianevski et al., 2020; Ohashi et al.,

2020; Xu et al., 2020a, b; Yamamoto et al., 2020), in silico

modeling showed NFV bound to SARS-CoV-2 main pro-

tease consistent with its inhibition of viral replication (Ohashi

et al., 2020; Xu et al. 2020). Besides, another in silico

modeling also suggested that NFV may bind inside the S

trimer structure and thus inhibited SARS-CoV-2 spike-me-

diated cell fusion, suggesting that NFV may efficiently inhibit

the spread of SARS-CoV-2 from cell-to-cell (Musarrat et al.,

2020). A major underlying cause of COVID-19 patient mor-

tality is a hyperinflammatory cytokine storm syndrome in

Figure 5. Examples of predicted targets (top 30) using the LINCS phase II data in PC3 cell lines. The following compounds

were used for target prediction: (A) SB-939, (B) alpelisib, (C) PFI-1 and (D) VE-821. The nodes in rectangles represent compounds,

and the nodes in circles represent the predicted targets. Predicted targets with a higher rank are indicated by a larger circle size. The

corresponding true targets are indicated by red borders. The links between predicted targets denote protein-protein interactions that

are curated from the STING database with a combined score greater than or equal to 800. Protein classification annotations come

from ChEMBL database.
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severe/critically ill patients (Huang et al., 2020). NFV has

been reported to significantly inhibit inflammatory cytokines

in vitro (Equils et al., 2004; Wallet et al., 2012), and to reduce

inflammatory cytokine in a cohort of pediatric HIV-1 patients

for over 2 years of the therapy (Wallet et al., 2012), which

may be possible to help alleviate the cytokine storm syn-

drome of COVID-19. However, the anti-viral and/or anti-cy-

tokine-storm human targets of NFV have never been

identified and reported in the literature. Thus, investigations

of the potential anti-viral and/or anti-cytokine-storm human

targets of NFV is considered to be a significant work.

Therefore, we experimentally verified compound-centric

target inference pipeline (Fig. 1) by analyzing the gene

expression profile of NFV perturbation and potential target

protein-NFV direct binding. For the top 30 targets predicted

for NFV via the compound-centric target inference pipeline,

Calcineurin B, type II (CNBII, also known as PPP3R2),

Cyclophilin A (CYPA, also known as PPIA) and Calcineurin

A alpha (CNA1, also known as PPP3CA) were ranked 2th,

7th and 13th respectively and caught our attention. It has

been reported that the outcome of COVID-19 in a cohort of

patients undergoing treatment with calcineurin inhibitors is

promising, mainly due to the immunosuppressive role for

calcineurin inhibitors (Cavagna et al., 2020). CYPA has been

reported to regulate viral infectivity (Braaten and Luban,

2001), and its inhibition could inhibit the replication of coro-

naviruses and the inflammatory cytokine expression and

inflammation (Tanaka et al., 2013; Dawar et al., 2017). It’s

well known that CYPA and calcineurin are the upstream

regulators of nuclear factor of activated T cells (NF-AT)

activity, inhibition of CYPA and/or calcineurin blocks the

translocation of NF-AT from the cytosol into the nucleus, thus

preventing the expression of interleukin-2 (IL-2) (Tanaka

et al., 2013).

Given the possibility that NFV is a potential CYPA or

calcineurin inhibitor, we firstly measured the transcription

and secretion of IL-2 in Jurkat T cells upon phorbol

12-myristate 13-acetate (PMA) and ionomycin stimulation.

The results showed that NFV inhibited transcription of IL2 in

a dose-dependent manner (Fig. 6A). Similarly, NFV also

inhibited the secretion of IL-2 in a dose-dependent manner

and IC50 was 3.30 ± 0.34 μmol/L (the inhibition rate was

almost 100% at 20 μmol/L), which was inferior than IC50 of

cyclosporine A (CsA) (8.49 ± 0.17 nmol/L) (Fig. 6B and 6C),

a well-known immunosuppressive drug that is the main

inhibitor of CYPA (Tanaka et al., 2013). These results

inspired us to conduct further experiments to confirm the

possibility that NFV is a potential CYPA or calcineurin inhi-

bitor. We then evaluated the potential of NFV to inhibit the

calcineurin phosphatase activity using the RII phosphopep-

tide as substrate, and the results showed that NFV had no

obvious effect on calcineurin phosphatase activity (Fig. S3).

Therefore, we immediately performed chymotrypsin-coupled

CYPA peptidyl-prolyl cis-trans isomerase (PPIase) activity

assay to test whether NFV can affect the PPIase activity of

CYPA. The results showed that NFV exhibited significant

inhibition of CYPA PPIase activity, while the role was weaker

than CsA (Fig. 6D). To determine whether NFV directly bind

to CYPA and inhibit its activity, we examined the direct

binding of NFV to purified CYPA in vitro using surface

plasmon resonance technology. As shown in Fig. 6E, the

binding curve of NFV showed a fast-on, fast-off kinetic pat-

tern in dose-dependent manner with a KD of 0.94 μmol/L.

Furthermore, we measured the thermal stability of purified

CYPA in the presence of NFV. Protein thermal shift assay

showed that NFV destabilized CYPA conformation and

decreased the melting temperature (Tm) in a dose-depen-

dent manner (Fig. 6F–H), suggesting direct NFV-CYPA

binding. Although the ligand induced protein destabilization

is not typical, it has been frequently observed in the specific

binding of inhibitors to enzymes (Zhao et al., 2015; Pacold

et al., 2016). Here, we argue that NFV may destabilize the

native conformation of CYPA upon binding preferentially to

its less populated conformational state (Cimmperman et al.,

2008; Kabir et al., 2016), but the exact mechanism is not

clear and falls outside of the scope of the current study. To

gain the binding mode between NFV and CYPA, we docked

the NFV to the structure of CYPA (PDB ID: 2X2C). The

docking result showed that the NFV occupied the catalytic

pocket at the binding site (Fig. 6I), which may explain how

NFV affects the PPIase activity of CYPA. Taken together,

these results showed that NFV directly binds to CYPA and

inhibits its activity, and CYPA is a novel target for NFV. It has

been demonstrated that low concentration of IL-2 effectively

prevents excessive inflammation in a wide range of pre-

clinical models of inflammatory diseases, including beryl-

lium-induced lung inflammation, by maintaining activity and

survival of T regulatory cells (Treg) that play a crucial role in

the control of immune responses, in part by inhibiting over-

active inflammation, while high concentration of IL-2 has an

opposite effect inducing cytokine storm (Hirakawa et al.,

2016; Abbas et al., 2018; Xu et al., 2019). COVID-19 dis-

ease severity is associated with high plasma level of IL-2,

which may be considered therapeutic targets for COVID-19

to combat hyperinflammatory responses and cytokine

storms (Behm et al., 2020; Huang et al., 2020). The efficacy

of low dose IL-2 in improving clinical course and oxygenation

parameters in COVID-19 patient is now in clinical phase II

trials (NCT04357444). Based on these effects of NFV on

CYPA activity and IL-2 production, further research of NFV's

effect in human COVID-19 patients is warranted.

Target-centric prediction of methotrexate as a novel

ENPP1 inhibitor

Stimulator of interferongenes (STING) is anendogenoussensor

of cGAMP, which is synthesized by cyclic GMP-AMP synthase

(cGAS) following detection of cytoplasmic DNA. STING activa-

tion leads to interferon production and downstream innate and

adaptive immune responses (Corrales et al., 2015). Ectonu-

cleotide pyrophosphatase/phosphodiesterase-1 (ENPP1) is the
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phosphodiesterase that negatively regulates STING by

hydrolyzing cGAMP (Li et al., 2014). It is pivotal and significant to

develop ENPP1 inhibitor for cancer immune therapy.

As shown in Fig. S4, the pipeline of the target-centric

prediction was applied to find the novel ENPP1 inhibitor. The

reference library of 22,425 compound perturbation profiles in

Figure 6. Compound-centric prediction of CYPA as a novel target for NFV. (A–C) NFV inhibited the transcription and secretion of

IL-2 in a dose-dependent manner. Jurkat T cells were treated with different concentration of NFV or CsA for 2 h, following stimulation

with PMA (100 nmol/L) and Ionomycin (10 μmol/L) for 24 h. After treatment, cells and culture supernatant were collected and

subjected to RT-qPCR and ELISA. IL2 mRNA levels were normalized to ACTB and fold induction was calculated relative to untreated

cells, data showed pooled technical replicates from three independent experiments. (D) CYPA peptidyl-prolyl cis-trans isomerase

(PPIase) activity was assessed using the α-chymotrypsin-coupled assay. Isomerization of the succinyl-AAPF-pNA peptide substrate

was reflected by an increase in absorbance at 390 nm. The curves represent isomerization of this substrate at 4 °C over the course of

360 s in the absence of CYPA (Blank), or in the presence of 2 μmol/L CYPA, or in the presence of 2 μmol/L CYPA incubated with 10

μmol/L NFV or CsA. Data are representative of three independent experiments with similar results. (E) NFV bound to CYPA protein as

shown by surface plasmon resonance measurements. Graphs of equilibrium response unit responses versus compound

concentrations were plotted. (F–H) Thermostability of CYPA treated with 0, 50, 100, 200 μmol/L NFV. The thermal stability of

CYPA was quantified by the ΔTm in pooled technical replicates from at least three independent experiments. Data are represented as

mean ± SD (n = 6), ***, P < 0.001; by 2-tailed, unpaired t-test. (I) The putative binding mode of NFV (stick) to human CYPA (surface,

2X2C). Error bars represent SD around the mean (A–C, H).
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the PC3 cell line were screened, and those compounds with

the CPI score greater than 0.5 were selected, leading to 190

compounds considered potentially active against ENPP1.

Considering the complexity of biological networks, comple-

mentary approaches should be integrated to produce the

most reliable target and mechanistic hypotheses (Schenone

et al., 2013). In computational target inference, Pabon et al.

have also demonstrated that molecular docking will reduce

the false positives and further enrich predictions of model

based on transcriptomics (Pabon et al., 2018, 2019).

Therefore, we also incorporated the structural screening as

an orthogonal approach in the pipeline, and we docked the

190 compounds to structures of ENPP1 (PDB ID: 4GTW)

and selected the top ranked 7 available compounds for fur-

ther experiment validation. We firstly evaluated the potential

of these 7 compounds to inhibit the ENPP1 enzyme activity

in vitro using thymidine 5’-monophosphate p-nitrophenyl

ester (p-Nph-5’-TMP) as substrate, the results showed

methotrexate (MTX) displayed promising inhibition activity

(>50%) at the concentration of 10 μmol/L, which was iden-

tified as an ENPP1 inhibitor with IC50 of 4.52 ± 0.04 μmol/L

(Figs. 7A and S5), while the effect was weaker than the

reported ENPP1 positive inhibitor ENPP-1-IN-1 (E1) (Gal-

latin et al., 2019). Similar ENPP1 inhibition effect of MTX was

observed using ATP as substrate by Liquid chromatography

and tandem mass spectrometry (Fig. 7B). To gain the

structural insight of the interaction between MTX and

ENPP1, we docked MTX with mouse ENPP1 (PDB ID:

4GTW). As shown in Fig. 7C, hydrogen bonds were formed

between N (1), N (8) atoms of pteridine ring and LYS-277, -

NH2 (2) of pteridine group and PHE-303. In addition, pi-pi

stacking interactions were formed between the pteridine ring

and TYR-322, PHE-239. These interactions might lock

pteridine moiety in the pocket tightly. Moreover, a salt bridge

and another hydrogen bond were formed between the tail

carboxyl groups and zinc ions, LYS-237, which might make

the conformation of MTX more stable in the pocket. To fur-

ther verify the interaction between MTX and ENPP1 protein,

cellular thermal shift assay (CETSA) was performed. The

thermostability of ENPP1 in 293T cell lysates with or without

50 μmol/L MTX was analyzed. As showed in representative

western blot (Fig. 7D), the detected soluble ENPP1 protein

exhibited a clear difference between being untreated and

treated with MTX at denaturation temperatures ranging from

52 °C to 62 °C, indicating MTX directly bound to the ENPP1

protein. To assess the effect of ENPP1 inhibition by MTX, we

detected representative STING-TBK1-IRF3 pathway down-

stream cytokines. As expected, MTX enhanced transcription

and secretion of interferon beta (IFN-β) induced by 500

nmol/L cGAMP in THP-1-derived macrophages, while MTX

alone administration didn’t (Fig. 7E and 7F), indicating the

enhancement was due to inhibition of cGAMP hydrolysis. In

same condition, MTX showed more effective activation than

the reported ENPP1 positive inhibitor E1 (Fig. 7E and 7F).

MTX enhanced transcription of IFNB1 (Fig. 7G), CXCL10

(Fig. 7I), IL6 (Fig. 7J) and secretion of IFN-β (Fig. 7H)

induced by cGAMP in THP-1-derived macrophages in a

dose-dependent manner. However, MTX could not enhance

the transcription of IFNB1 induced by GSK3 (Fig. S6),

another STING activator that does not have phosphodiester

linkage (Ramanjulu et al., 2018). Besides, MTX didn’t show

cytotoxicity at up to 100 μmol/L in THP-1-derived macro-

phages (Fig. S7). Similar STING pathway activation results

were observed in RAW 264.7 cells (Fig. 7K–N). Taken

together, MTX was identified as an ENPP1 inhibitor that

promoted STING activation in vitro. By inhibiting dihydrofo-

late reductase, MTX was originally developed and continues

to be used for the treatment of various types of cancer

including breast cancer (Sramek et al., 2017). Radiation

therapy, commonly used to treat cancer, was reported to

increase cytosolic DNA and induce STING activation (Car-

ozza et al., 2020). Our findings validated the SSGCN pre-

diction that MTX can be repurposed toward ENPP1.

Furthermore, MTX promoted STING pathway activation by

inhibiting ENPP1 and provided clinical potential for

Figure 7. Target-centric prediction of MTX as a novel

ENPP1 inhibitor. (A and B) Inhibition of MTX and E1 on

hydrolysis of p-Nph-5’-TMP (A) or ATP (B) by ENPP1 in vitro.

(C) The in silico simulation analysis of the binding site of the

ENPP1 (cyan, 4GTW) with MTX (violet). (D) Representative

immunoblot for the effect of MTX on thermal stability of ENPP1

protein in cellular thermal shift assay. 293T cell lysates with or

without MTX (50 μmol/L) treatment were incubated at different

temperatures, then ENPP1 turnover was monitored by Western

blot. (E and F) MTX and E1 increased the transcription (E) and

secretion (F) of IFN-β in cGAMP treated THP-1-derived

macrophages. THP-1-derived macrophages were treated with

MTX (20 μmol/L) or E1 (20 μmol/L), following stimulation with

cGAMP (500 nmol/L) for 24 h, then cells and culture super-

natant were collected and subject to RT-qPCR and ELISA. Data

are represented as mean ± SD (n = 3). *, P < 0.05; ***, P <

0.001; by 2-tailed, unpaired t-test. (G–J) MTX increased the

transcription of IFNB1 (G), CXCL10 (I), IL6 (J) and secretion of

IFN-β (H) in a dose-dependent manner in cGAMP treated THP-

1-derived macrophages.THP-1-derived macrophages were

treated with the indicated concentration of MTX, following

stimulation with cGAMP (500 nmol/L) for 24 h, then cells and

culture supernatant were collected and subjected to RT-qPCR

and ELISA. (K–N) MTX increased the transcription of Ifnb1 (K),

Cxcl10 (M), Il6 (N) and secretion of IFN-β (l) in a dose-

dependent manner in cGAMP treated RAW 264.7 cells. RAW

264.7 cells were treated with the indicated concentration of

MTX, following stimulation with cGAMP (5 μmol/L) for 24 h, then

cells and culture supernatant were collected and subjected to

RT-qPCR and ELISA. All above data showed pooled technical

replicates from three independent experiments. mRNA levels

were normalized to ACTB and fold induction was calculated

relative to untreated cells. Error bars represent SD around the

mean (A, B, E–N).
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combining MTX with radiation therapy for the treatment of

breast cancer in which ENPP1 shows hyper-expression

(Carozza et al., 2020).

DISCUSSION

The drug-induced perturbation of cells leads to complex

molecular responses upon target binding, such as the

feedback loop that changes the expression level of the target

node or its upstream and downstream nodes. These drug-

induced responses likely resemble those produced after

silencing the target protein-coding gene, which provides a

rationale for comparing the similarity between chemical- and

shRNA-induced gene expression profiles for target predic-

tion (Pabon et al., 2018). The encoding and denoising of a

given experiment’s transcriptional consequences constitute

a challenge. In this study, we proposed a new deep neural

network model, the Siamese spectral-based graph convo-

lutional network (SSGCN), to address this challenge.

The SSGCN model takes two differential gene expression

networks (a chemical-induced network and a shRNA-in-

duced network) as input and integrates heterogeneous

experimental condition information to account for variances

such as cell line-, dose- and time-dependent effects. By

training using known compound-target interaction data, the

model can automatically learn the hidden correlation

between gene expression profiles, and this “deep” correla-

tion was then used to query the reference library of 179,361

KD-perturbation profiles with the aim of identifying candidate

target-coding genes. The pipeline improved target prediction

performance on a benchmark test set. For more rigorous

time-split validation using LINCS phase II data, the target

prediction results obtained with our method achieved better

performance compared with those achieved with the con-

ventional CMap-based approach. Furthermore, to test the

practical usefulness of the approach, we simulated two

potential application scenarios and experimentally verified

the prediction results. In the first case, a compound-centric

target inference pipeline (Fig. 1B) was established to identify

the potential host targets of nelfinavir (NFV). In the second

case, the pipeline of a target-centric prediction was estab-

lished to find novel small molecule inhibitors of ectonu-

cleotide pyrophosphatase/phosphodiesterase 1 (ENPP1),

by screening 22,425 compound perturbation profiles. Our

experimental findings successfully validated that Cyclophilin

A (CYPA) ranked 7th place is a novel target of NFV, and

methotrexate (MTX) may promote STING pathway activation

by inhibiting ENPP1. These two examples highlight our

model as a useful tool to infer the interacting targets of active

compounds, or reversely, to find novel inhibitors of a given

target of interest. Moreover, we checked the similarity

between the predicted and the known drug-target interaction

pairs. The maximum chemical similarity between MTX and

the known ENPP1 inhibitors is 0.23, and the maximum

chemical similarity between NFV and the known CYPA

inhibitors is 0.22; The highest homology between CYPA and

known targets of NFV is 0.06773, and the highest homology

between ENPP1 and known targets of MTX is 0.1008. These

results indicate that our model is orthogonal to standard

approaches based on chemical/protein similarities and can

identify novel drug-target interactions, and clearly demon-

strate the importance of SSGCN as an orthogonal approach

to the conventional similarity based approaches. Overall, the

SSGCN model allows in silico target inference based on

transcriptional data and is of practical value for repurposing

existing drugs or exploring the MOA of not-well-character-

ized bioactive compounds and natural products.

METHODS

Materials and methods

Data collection

LINCS: The Library of Integrated Network-Based Cellular Signatures

(LINCS) program, which is funded by the NIH, generates and cat-

alogues the gene expression profiles of various cell lines exposed to

a variety of perturbing agents in multiple experimental contexts. Both

the LINCS phase I L1000 dataset (GSE92742, 2012–2015) and the

LINCS phase II L1000 dataset (GSE70138, 2015–2020) were

downloaded from the Gene Expression Omnibus (GEO) provided by

the Broad Institute. These profiles were produced by a high-

throughput gene expression assay called the L1000 assay, in which

a set of 978 “landmark” genes. This reduced “landmark” gene set

enabled the LINCS program to generate a million-scale transcrip-

tional profile. For the sake of connectivity analysis and convenience,

our analysis focused on the level 5 signature data (replicate-col-

lapsed z-score vectors) and used only real measured expression

values of the landmark genes. The Python library cmapPy (Enache

et al., 2019) was used to access the level 5 signatures from GCTx

files.

STRING: STRING (Szklarczyk et al., 2019) is a database com-

piled for PPIs from both known experimental findings and predicted

results. The human PPI network from the STRING v11.0 database

was downloaded.

Data preprocessing

LINCS: The pipeline used for the preprocessing of the LINCS

dataset is shown in Fig. 8A. (1) Profile signatures after perturbation

with shRNAs (Phase I). shRNA experiments might exhibit off-target

effects due to the “shared seed” sequence among shRNAs (Jackson

et al., 2003; Subramanian et al., 2017). To gain an abundant set of

robust KD signatures, we performed k-mean (k = 1) clustering of the

“trt_sh” signatures separated by the cell lines and KD time and

maintained the core signature, which is the central signature of the

cluster, as a representation of the corresponding cluster (Xie et al.,

2018). The core signatures across eight data-rich cell lines (A375,

A549, HA1E, HCC515, HT29, MCF7, PC3, and VCAP) were filtered

to obtain the corresponding 978 “landmark” vectors, which are 978
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differential gene expression values defined by the LINCS consor-

tium. These 978 vectors constituted the input of curated KD signa-

tures. (2) Profile signatures after perturbation with compounds

(phase I). The targets of the compounds were retrieved using the

application programming interface (API) from the cloud platform

(clue.io) provided by the Broad Institute. This retrieval resulted in

2,027 compounds with 755 targets. Consistent with the curated KD

signatures, CP-signatures were curated by filtering “trt_cp” signa-

tures out of the data-poor cell lines and non-landmark vectors. (3)

Profile signatures after perturbation with compounds (phase II). We

first filtered out those compounds contained in the phase I dataset

and then retrieved the targets of the compounds from the aggre-

gated ChEMBL bioactivity data on LINCS Data Portal through a

representational state transfer API (Koleti et al., 2018). The targets

with pKd, pKi or pIC50 values greater than or equal to 6.5 were

treated as the “true” targets (Lenselink et al., 2017). The retrieval

resulted in 250 compounds with 488 targets. The raw signatures of

these 250 compounds across eight data-rich cell lines (A375, A549,

HA1E, HCC515, HT29, MCF7, PC3, and VCAP) were then extracted

from the LINCS phase II dataset. As mentioned above, only the 978

“landmark” vectors were retained. We preferred to select the sam-

ples with a dosage of 10 μmol/L and a duration of 24 h, and for the

data without a dosage of 10 μmol/L or a duration of 24 h, the gene

signature for the closest conditions is used as an alternative.

STRING: We only kept the nodes present in the “landmark” gene

set and the PPI edges with a “combined score” greater than or equal

to 800. Accordingly, the curated PPI network consists of 978 nodes

and 7,528 edges (Fig. 8B).

Data sampling

The test set compiled by Pabon et al., which contained 123 FDA-

approved drugs that had been profiled in different LINCS cell lines

and whose known targets were among the genes knocked down in

the same cells, was used for benchmarking. Moreover, another

benchmark dataset was prepared based on 250 compounds from

LINCS phase II. The test dataset compiled by Pabon et al. and the

dataset from LINCS phase II are taken as two external datasets.

After excluding CP-signatures in these two external datasets, the

remaining data of the phase I of LINCS database is regarded as the

internal dataset. The internal dataset was divided into three sets:

training, validation, and test data set in the ratio of 8:1:1, by random

splitting based on chemical structures. In different drug discovery

projects, the proportion of active compounds may vary significantly

but in most cases those inactives appear more often than actives.

Here, for each compound three negative targets were generated for

each positive target through a random cross combination of com-

pounds and proteins. In addition, the performance of the model

trained with different data proportions was discussed in Fig. S8.

Definition of the spectral-based GCN

An undirected graph G with 978 nodes was applied to represent the

landmark PPI network. Each node in graph G represents a protein,

and each edge represents a specific PPI interaction. Neighbourhood

information is included in the edges. Traditional convolutional neural

network structures are unfit for convolution operations on this graph,

which is a non-Euclidian structure. Based on the Fourier transform of

Figure 8. Pipeline of the data processing. (A) Processing pipeline for LINCS L1000 data. (B) Processing pipeline for STRING

v11.0 PPI data. “trt_sh” and “trt_cp” are official tags that denote knock down treatment and compound treatment in LINCS dataset

respectively. “cell type filter” filtered out other cell type data except those in eight cell lines (A375, A549, HA1E, HCC515, HT29,

MCF7, PC3, and VCAP). “Landmark filter” filtered out other gene values in signatures except those in 978 “landmark” genes. The

“combined score” is measure score offered by STRING database for the confidence of several types of evidence which support a

protein-protein association.
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the graph and convolution theorem, spectral-based convolution

operations on the graph can be applied to capture the properties of

the graph network (Bruna, 2014).

For a given graph G, its Laplacian matrix L can be defined as

L=D --A , ð1Þ

where A is the adjacency matrix of graph G and D is the degree

matrix of graph G. In graph theory, the symmetric normalized

Laplacian is more often used due to its mathematical symmetry. The

symmetric normalized Laplacian Lsys can be defined as

Lsys =D
-- 1=2LD -- 1=2 . ð2Þ

Based on the classical Fourier transform, we redefined the

Fourier transform of the feature function in the node as the inner

product of the function and the corresponding eigenvectors of the

Laplacian matrix:

f̂ = f , vkh i , ð3Þ

where k is the node on the graph, f is the feature function in node k,

and vk is the eigenvector in the node of the Laplacian matrix. If

spectral decomposition is performed on the Laplacian matrix, Lsys

can be expressed as

Lsys =UλUT ð4Þ

U is the orthogonal matrix of which the column vector is the

eigenvector of the Laplacian matrix and λ is the diagonal matrix in

which the diagonal is composed of the eigenvalues. The Fourier

transform of the feature function f on the graph can then be rewritten

as

f̂ =U
T f ð5Þ

Because U is an orthogonal matrix, the inverse Fourier transform

of function f on the graph can be written as

f =Uf̂ . ð6Þ

According to the convolution theorem in mathematics, a

convolution procedure of two functions is the inverse Fourier

transform of the product of their Fourier transforms. Defining h as

the convolution kernel, the convolution operation on the graph can

be expressed as

(f�h)graph =U((UTh)(UT f )) . ð7Þ

For the convolution operation in the first layer of the GCN, the

Fourier transform of h is directly defined as the trainable diagonal

matrix ω. Therefore, the convolution operation on the graph can be

expressed as

(f�h)graph =UωUT f . ð8Þ

After the above derivation, the final form of the single layer of the

spectral-based GCN can be expressed as

Hn+1 =σ(UωUTHn) . ð9Þ

where σ is the activation function of the layer, Hn is the input features

of layer nth, and Hn+1 is the output of layer (n+1)th. According to the

above definitions, the spectrum (eigenvalue) plays an important role

in the convolution operation; thus, the GCN is called the spectral-

based GCN. To effectively extract features and deeply learn from

data, the multilayer perceptron can be connected to the graph

convolution layer to increase the capacity of the model.

Training protocol

The model was trained on the training set using the Adam optimizer

(Kingma and Ba, 2014). The model was trained to minimize the

cross entropy between the label and the prediction result as follows:

loss= --
1

n
∑ ylnp+ (1 -- y) ln(1 --p)½ � ,

where p refers to the prediction result and y refers to the label. Early

stopping was used to terminate the training process if the perfor-

mance of the model on the validation dataset shows no further

improvement in specified successive steps, which helps selection of

the best epoch and avoid overfitting. The computational perfor-

mance took 2–3 h to train the model (through 380 epochs and 24 s

each) with a NVIDIA TITAN RTX graphics processing unit (GPU) on

an Intel platform.

Model evaluation metric

The predictive performance of the model on the test set was eval-

uated using six classification metrics: accuracy, precision, recall, F1

score, area under the receiver operating characteristic (ROC), and

area under the precision-recall curve (PRC). TP is the number of

true positives, TN is the number of true negatives, FP is the number

of false positives, and FN is the number of false negatives. All the

metrics were calculated using the scikit-learn package, and a

detailed introduction of the metrics is shown in Table 3.

Reagents

Succinyl-AAPF-pNA peptide (S7388), α-chymotrypsin (C4129),

SYPRO orange (S5692) and p-Nph-5’-TMP (T4510) were pur-

chased from Sigma-Aldrich. PolyJet (SL100688) was purchased

from SignaGen. CellTiter-Glo reagent (G7571) was purchased from

Promega. Nelfinavir Mesylate (NFV, S4282) and Cyclosporin A

(CsA, S2286) was purchased from Selleck. Methotrexate (MTX,

CSN16844) was purchased from CSNpharm. GSK3 (HY-112921B),

ENPP1-IN-1 (E1, HY-129490), ATP (HY-B2176), 2’3’-cGAMP

sodium (HY-100564A), Phorbol 12-myristate 13-acetate (PMA, HY-

18739) and Ionomycin (HY-13434) were purchased from

MedChemExpress. Isopropyl β-D-thiogalactoside (IPTG, A100487)

Table 3. Introduction of the metrics

Metric Description

Accuracy (TP + TN)/(TP + TN + FP + FN)

Precision TP/(TP + FP)

Recall TP/(TP + FN)

F1 score 2 × (Recall×Precision)=(Recall+Precision)

AUPRC Area under the precision-recall curve

AUROC Area under the receiver operating characteristic
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was purchased from Sangon Biotech. Tris-(2-carboxyethyl)-phos-

phine (TCEP, MB2601) was purchased from Meilun Biotech.

Peptidyl-prolyl cis-trans isomerase (PPIase) activity assay

CYPA isomerase activities were quantified using a α-chymotrypsin

coupled assay in a 96-well plate. The enzymatic reaction mixture

(195 μL) contained 50 mmol/L HEPES (pH 8.0), 100 mmol/L NaCl, 1

mg/mL BSA, 1 mg/mL α-chymotrypsin, 2 μmol/L CYPA and 10 μmol/

L NFV or CsA. The enzyme reactions were initiated by the addition

of 5 μL of 3.2 mmol/L Succinyl-AAPF-pNA peptide dissolved in tri-

fluoroethanol containing 470 mmol/L LiCl. Changes in absorbance

due to released p-nitroaniline were monitored at 390 nm every 4 s for

6 min at 4 °C using a Tecan Spark microplate reader (Tecan, Man-

nedorf, Switzerland). This experiment was performed three inde-

pendent times.

ENPP1 enzyme activity assay

Evaluation of the ENPP1 activity was carried out with p-Nph-5’-TMP

or ATP as the substrate. Enzymatic reactions were performed at 37 °

C in a total volume of 100 μL in a clear 96-well plate. The reaction

mixture (90 μL) contained 50 mmol/L Tris-HCl (pH 8.5), 130 mmol/L

NaCl, 1 mmol/L CaCl2, 5 mmol/L KCl, 10 μL ENPP1 cell lysate and

different concentration of MTX. The enzyme reactions were initiated

by the addition of 10 μL of 1 mmol/L p-Nph-5’-TMP dissolved in

deionized water. Changes in absorbance due to released p-nitro-

phenolate were measured at 405 nm every minute for 60 min at 37 °

C using a Tecan Spark microplate reader (Tecan, Mannedorf,

Switzerland). In the assays where ATP was used as the substrate,

the reaction was stopped after 30 min by heating samples at 95 °C

for 3 min. The ATP consumption was analyzed by LC-MS/MS (Sciex

API-4000). This experiment was performed three independent times.

Statistical analysis

Statistical analysis for in vitro experiments was done by GraphPad

Prism software, version 7.0. Statistical analysis for the model was

done by scipy, version 1.2.1. Data are presented as mean ± SD.

Differences in the quantitative data between groups were calculated

using 2-tailed unpaired t-test. P < 0.05 was considered to be

significant.

ABBREVIATIONS

API, application programming interface; ATR, ATM and RAD3-re-

lated; AUPRC, area under the precision-recall curve; BET, bro-

modomain-containing protein; CETSA, cellular thermal shift assay;

cGAS, cyclic GMP-AMP synthase; Cmap, Connectivity Map; CNA1,

Calcineurin A alpha; CNBII, Calcineurin B, type II; CP, Compound;

CPI scores, the probabilities of whether the compounds show

activity towards the potential targets; CP-signatures, compound-in-

duced signatures; CsA, cyclosporine A; CYPA, cyclophilin A; DMSO,

dimethyl sulfoxide; ENPP1, ectonucleotide pyrophosphatase/phos-

phodiesterase-1; GCN, graph convolution network; GEO, Gene

Expression Omnibus; GPU, graphics processing unit; HDAC, pan-

histone deacetylase; HIV-1, human immunodeficiency virus type 1;

IFN-β, interferon beta; IL-2, interleukin-2; KD, knockdown; KD-

signatures, gene KD-induced signatures; LINCS, the Library of

Integrated Network-Based Cellular Signatures; MNI, the mode-of-

action by network identification; MOA, mechanism of action; MTX,

methotrexate; NF-AT, nuclear factor of activated T cells; NFV, nelfi-

navir; PMA, phorbol 12-myristate 13-acetate; PPI, protein-protein

interaction; PPIase, peptidyl-prolyl cis-trans isomerase; PRC, the

precision-recall curve; RF, random forest; RNA-Seq, RNA

sequencing; ROC, the receiver operating characteristic; SSGCN,

Siamese spectral-based graph convolutional network; STING,

stimulator of interferon genes; TCEP, Tris-(2-carboxyethyl)-phos-

phine; Tm, melting temperature; Treg, T regulatory cells.
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