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ABSTRACT

Motivation: In silico methods provide efficient ways to predict pos-

sible interactions between drugs and targets. Supervised learning

approach, bipartite local model (BLM), has recently been shown to

be effective in prediction of drug–target interactions. However, for

drug-candidate compounds or target-candidate proteins that currently

have no known interactions available, its pure ‘local’ model is not able

to be learned and hence BLM may fail to make correct prediction

when involving such kind of new candidates.

Results: We present a simple procedure called neighbor-based

interaction-profile inferring (NII) and integrate it into the existing BLM

method to handle the new candidate problem. Specifically, the

inferred interaction profile is treated as label information and is used

for model learning of new candidates. This functionality is particularly

important in practice to find targets for new drug-candidate com-

pounds and identify targeting drugs for new target-candidate proteins.

Consistent good performance of the new BLM–NII approach has been

observed in the experiment for the prediction of interactions between

drugs and four categories of target proteins. Especially for nuclear

receptors, BLM–NII achieves the most significant improvement as

this dataset contains many drugs/targets with no interactions in the

cross-validation. This demonstrates the effectiveness of the NII strat-

egy and also shows the great potential of BLM–NII for prediction of

compound–protein interactions.
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1 INTRODUCTION

Identification of interactions between drugs/compounds and

protein targets is an important part of the drug discovery pipe-

line. The great advances in molecular medicine and the human
genome project provide more opportunities to discover unknown

associations in the compound–protein interaction network. The
newly discovered interactions are helpful for discovering new

drugs by screening candidate compounds and also may help
understand the causes of side effects of existing drugs. Since

experimental way to determine drug–target interactions is

costly and time-consuming, in silico prediction becomes a

potential complement that provides useful information in an

efficient way.
Generally, the prediction performance is decided by both the

data used and the particular analysis method that is applied to.

An intuitive and straightforward way to identify new targets for

a drug is to compare the candidate proteins with those existing

targets of that drug. Different results may be obtained depending

on which perspective the comparison is made with respect to.

Keiser et al. (2009) compare targets based on the chemical struc-

ture of ligands that bind to them. As reviewed in Haupt and

Schroeder (2011), the structure of binding sites is another import-

ant way to compare proteins or to measure the similarity be-

tween proteins. Although binding site is an effective measure

for identification of new targets, the structures of binding site

are only available for a small set of proteins, of which the 3D

structures are known. To be able to consider more proteins,

amino acid sequence may be used as it is available for most

proteins. Similarly, to identify new targeting compounds for a

specific target, comparison is made on the compound side or

drug side with respect to chemical structures (Laggner et al.,

2012; Martin et al., 2002), side effects (Campillos et al., 2008)

or other possible measurements of drug.

More sophisticated statistical and machine learning methods

have been developed recently for prediction of genome-wide

drug–target interactions. In He et al. (2010) and Perlman et al.

(2011), multiple groups of drug-related features and

protein-related features have been extracted to describe each

drug–target pair. After feature selection, a certain classifier is

used to predict whether a given pair is interacting or not.

Yamanishi et al. (2008) proposed a supervised bipartite graph

learning approach. In this approach, the chemical space and the

geometric space are mapped into a unified space so that those

interacting drugs and targets are close to each other while those

non-interacting drugs and targets are far away from each other.

By mapping the query pair of drug and target to that space with

the learned mapping function, the probability of interaction

between them is then calculated as their closeness in the

mapped space. Another method called the weighted profile

method was also given in Yamanishi et al. (2008). For a query

drug, the weighted profile method assigns a probability of

interaction to the query target based on how the neighbors of

this drug interact with this target. Basically, weighted profile is a

nearest-neighbor approach and it is called drug-based/target-

based similarity inference in Cheng et al. (2012). Other than*To whom correspondence should be addressed.
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inferring interactions from the drug similarity or target
similarity, network-based inference was also studied in
Cheng et al. (2012), which infers or predicts drug–target inter-

actions based on the topology of the known interaction network.
Different from the work in Cheng et al. (2012), which makes use
of the drug similarity, target similarity and network-based simi-

larity separately, Chen et al. (2012) apply random walk on a
heterogeneous network constructed with these three types of
similarities. Another promising approach is the bipartite local

model (BLM) approach. Bleakley and Yamanishi (2009)
showed that the ensemble of independent drug-based prediction
and target-based prediction with supervised learning performs

much better than only using each single type of prediction. The
BLMmethod has been further studied and improved in Xia et al.
(2010) and Laarhoven et al. (2011). The main differences of these

three methods include the drug–drug and target–target similari-
ties, the classifiers and the way used to combine the drug-based
and target-based interaction probabilities. In Xia et al. (2010),
semi-supervised approach is used instead of supervised approach

for local model learning; while Laarhoven et al. (2011) found
that using only the kernel based on the topology of the known
interaction network is able to obtain a very good performance.

In the existing framework of BLM, the model for the query
drug or target is learned based on local information, i.e. its own
interaction profile. Despite a good performance, BLM has limi-

tations. It is unable to learn without training data and hence is
not able to provide a reasonable prediction for drug/target can-
didates that are currently new. Here, a drug-candidate com-

pound is new if it does not have any known targets, and a
target-candidate protein is new if it is not targeted by any
drugs/compounds. We call this the new candidate problem of

BLM. Since a large number of compounds and proteins, which
are possible drug candidates and target candidates, respectively,
are new, in this study, we focus on handling the new candidate

problem by proposing an improved version of BLM called BLM
with neighbor-based interaction-profile inferring (BLM–NII).
The NII procedure is developed to incorporate the capacity of

learning from neighbors into the original BLM method. More
specifically, when the query involves a new drug/target candi-
date, we first derive the initial weighted interactions for the

new candidate from its neighbors’ interaction profiles, and then
use the inferred interactions as label information to train the
model. In general, neighbors refer to compounds/proteins that

have large similarities to the query compound/protein.
The presented NII idea happen to be similar to the weighted

profile method in some sense. However, our BLM–NII method

is substantially different from the weighted profile method in the
following aspects. In BLM–NII, the derived interaction profile is
used as label information to train the local model or the classi-

fier, while in the weighted profile method, the derived weighted
interaction is directly used as the final predicted interaction prob-
ability. Moreover, in BLM–NII, the NII procedure is integrated

into the BLM framework where a certain classifier plays the
main role in model learning, and NII is activated only for new
drug/target candidates; while in the weighted profile method,

there is no other classifier and the procedure of deriving the
weighted profile acts as a classification process, which is applied
for any drug/target candidates. To sum up, the BLM–NII is an

enhanced BLM method, and it is different from the weighted

profile method, which is a nearest-neighbor approach. Our ex-

perimental results show that BLM–NII performs much better

than the weighted profile method.
Systematic experiments are conducted to simulate the task of

drug–target interactions prediction cross four datasets.

Compared with state-of-the-art approaches, our proposed

approach achieves consistent improvement in terms of area

under ROC (AUC) curve and area under precision versus

recall (AUPR) curve. As these four datasets contain different

portions of new drug candidates and target candidates in the

simulation, the improvements of BLM–NII compared with

BLM are also different for the four datasets. The most significant

improvement is achieved on the nuclear receptor dataset, which

contains the largest portion of new candidates. This shows that

the NII strategy, i.e. to infer label information or training

data from neighbors when there is no training data readily avail-

able from the query compound/protein itself, is feasible and ef-

fective for dealing with the new candidate problem of the original

BLM.

2 METHODS

2.1 Problem formalization

Assume that the bipartite interaction network N1 illustrated in Figure 1

involves md drugs/compounds and mt targets, which are referred to as

existing drug candidates and target candidates, respectively. We use

matrix A to represent this network, i.e. aij2A¼ 1 if the i-th compound

di is known to interact with the j-th target tj. All other entries of A are 0.

The problem under consideration is how to make use of the

known interactions together with the compound similarities and protein

similarities to predict new interactions between nd drug-candidate com-

pounds and nt target-candidate proteins, where nd4md and nt4mt. This

means there are md ¼ nd �md new drug candidates and mt ¼ nt �mt

new target candidates, which have no interactions currently known.

The whole network involving nd compounds and nt proteins can be rep-

resented as

Nnd � nt ¼
ðN1Þmd�mt

ðN2Þmd�mt

ðN3Þmd�md
ðN4Þmd�mt

" #
¼

A 0

0 0

� �
, ð1Þ

where known interactions correspond to non-zero entries of A. Now, we

want to predict possible interactions in N1 between existing drug candi-

dates and target candidates, as well as in other three subnetworks N2, N3

and N4, where the interactions at least involve one type of new

Fig. 1. Bipartite interaction network: a network consists of two types of

nodes, where edges only connect different types of nodes. The drug–target

interaction network is a bipartite network, where drug and target are two

types of nodes and the interactions between them are the edges
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candidates, i.e. the target candidate is new, the drug candidate is new or

both are new.

2.2 Bipartite local model

To predict pij, the probability that a drug di and a target tj interact,

the basic BLM proposed by Bleakley and Yamanishi (2009) is described

as follows. A local model for di denoted as Modd(i) is first learned

based on its interaction profile a0i and the similarities between targets

S
t, i.e.

ModdðiÞ ¼ trainðSt; a0 iÞ: ð2Þ

Here, train represents the learning process of a certain classifier, e.g.

support vector machine or (Kernel) regularized least squares (RLS), the

similarity matrix St is used as the observed data of target candidates, and

the interaction profile a0i, i.e. the i-th row vector of A, serves as label

information to label each target candidate whether interacting with this

drug. Once the model Modd(i) is learned, it is used to predict pdij, the

probability of interaction between di and the query target candidate tj:

pdij ¼ testðModdðiÞ; s
t
j Þ, ð3Þ

where stj is the j-th column of St recording the similarities between tj and

other targets. The similar model learning and prediction process are

performed independently from the query-target side to get ptij, i.e.

ModtðjÞ ¼ trainðSd; ajÞ; ð4Þ

ptij ¼ testðModtðjÞ; s
d
i Þ; ð5Þ

where aj is the j-th column vector of A or the interaction profile of target

tj. Once both pdij and ptij have been calculated, they are combined to get

probability pij:

pij ¼ gðpdij; p
t
ijÞ; ð6Þ

where g is a function that combines or integrates pdij and ptij. Examples

include pij ¼ maxfpdij; p
t
ijg and pij ¼ 0:5ðpdij þ ptijÞ, where g is the max or

average function.

After pij is calculated for each pair of compound i and protein j, the

output network of BLM may be represented as

NBLM ¼
NBLM

1 NBLM
2

NBLM
3 0

" #
; ð7Þ

with

NBLM
1 ¼ N1 þ P1ðModd;ModtÞ; ð8Þ

NBLM
2 ¼ P2ðModdÞ; ð9Þ

NBLM
3 ¼ P3ðModtÞ: ð10Þ

where P1 gives the predicted interactions between existing drug candi-

dates and existing target candidates, P2 are predicted interactions between

existing drug candidates and new target candidates and P3 gives

predicted interactions between new drug candidates and existing target

candidates.

For any classifier that is used, the known targets of di corresponding to

non-zero elements of a0i and the pairwise target similarity St are critical to

the final prediction of pdij. The model learned for di describes how this

drug selects targets. Once the model is learned, the similarities between

the query target and those known targets of di largely decide p
d
ij. Similarly,

known targeting drugs of tj or non-zero elements of tj’s interaction profile

aj and the pairwise drug similarity Sd are critical to the final prediction of

ptij. Under the same BLM framework, different results are produced due

to the differences in S
d, St, the classifier and the combination function g.

According to the study of Laarhoven et al. (2011), network-based

similarity which encodes the topology information of the interaction net-

work has been shown to provide good results. With the Gaussian kernel,

the network-based drug similarity Sd
n and network-based target similarity

St
n are calculated as:

Sd
nði; jÞ ¼ exp

�
�
ka0i � a0jk

2

�

�
; ð11Þ

St
nði; jÞ ¼ exp

�
�
kai � ajk

2

�

�
; ð12Þ

where the bandwidth � ¼ �0 �
1
n

Pn
i¼1 a

2
ij, and different bandwidths may

be used for drug and target, respectively. However, the result with

network-based similarity may not remain good when the information

contained in the interaction network is not sufficient enough. Rather

than considering one type of similarity, a more general way is to combine

several types of similarities. Here, we use both the network-based simi-

larity and chemical similarity for drug similarity S
d, and the

network-based similarity and sequence similarity for target similarity St

through linear combination:

Sd ¼ �Sd
c þ ð1� �ÞS

d
n ; ð13Þ

St ¼ �St
s þ ð1� �ÞS

t
n; ð14Þ

where Sd
c is the chemical structure similarity for drug, St

s is the amino acid

sequence similarity for protein and � is the combination weight set by

user. Although more sophisticated ways such as Kronecker product

may be used to combine two types of similarity matrices or kernel

matrices, experimental results in (Laarhoven et al. 2011) show that the

linear combination gives comparable performance with a much lower

computational complexity.

2.3 Neighbor-based interaction-profile inferring

Good performance of supervised learning is largely dependent on the

amount and quality of labeled training data. When a drug/target candi-

date is new, it has no existing interactions that can be used as label

information and the model for this candidate thus can not be learned.

As shown in (7), interactions between new drug candidates and new

target candidates remain unpredicted in BLM. To extend the application

domain of BLM to new drug/target candidates, we propose to derive

training data from their neighbors. Based on the assumption that

drugs/compounds which are similar to each other interact with the

same targets, interaction profile for new drug-candidate compounds

could be possibly inferred from their neighbors’ interactions.

Compounds with large similarities to the new drug-candidate compound

are said to be its neighbors. Since new drug-candidate compounds have

no interactions, or all the elements of its current interaction profile vector

are 0, it is not suitable to consider network-based similarity here, so only

chemical structure similarity is used to define the neighbors of a

drug-candidate compound. Formally, for a compound di which is a

new drug-candidate, we infer the j-th dimension of its interaction profile

ld(i) with

ldj ðiÞ ¼
Xmd

h¼1

sihahj; ð15Þ

where sih is the chemical similarity between two compounds di and dh. The

above formula shows that the interaction weight of this drug with respect

to the j-th target is the collection of its neighbors’ interactions to this

target. For a given new drug-candidate compound, the simple formula

given in Equation (15) defines that the inferred weight of interaction

between this compound and a target is high if many of its neighbors

interact with this target, and also it is decided more by neighbors with

large similarities than those with small similarities. Since new

target-candidate proteins have no interactions with any compound, the

J.-P.Mei et al.
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inferred interactions for di are only with existing target candidates. To be

more specific, ldj ðiÞ > 0 if the j-th target candidate is an existing one, i.e.

ahj40 for at least one h, and ldj ðiÞ ¼ 0 if the j-th target candidate is

new, i.e. ahj¼ 0 for all h. To ensure the value of each ldj ðiÞ is in the

range of [0, 1], linear scale is performed subsequently, i.e.

ldj ðiÞ ¼ ðl
d
j ðiÞ �minh l

d
hðiÞÞ=ðmaxh l

d
hðiÞ �minh l

d
hðiÞÞ. After we obtained

the inferred interaction profile, we can use it as label information to

learn the model of di:

Mod0dðiÞ ¼ trainðSt; ldðiÞÞ: ð16Þ

In the same way, this procedure is applied to a new target-candidate

protein tj to obtain its inferred interaction profile lt(j), where its neighbors

are defined based on sequence similarity. The model of tj can then be

learned with lt(j):

Mod0tðjÞ ¼ trainðSd; ltðjÞÞ: ð17Þ

This interaction profile inferring technique is particularly useful for

those new drug/target candidates, for which existing supervised methods

(e.g. BLM) fail to produce reasonable predictions. It can also be useful to

enhance the classification models for any compounds/proteins without

enough training data or label information.

2.4 BLM with NII

By integrating the above presented NII strategy into the BLM frame-

work, we have the BLM with NII (BLM–NII). The detailed steps of

BLM–NII to predict the probability pij between any compound i and

any protein j is described in Algorithms 1 and 2.

The output network of BLM–NII is expressed as

NBLM�NII ¼
NBLM�NII

1 NBLM�NII
2

NBLM�NII
3 NBLM�NII

4

" #
; ð18Þ

with

NBLM�NII
1 ¼ NBLM

1 ; ð19Þ

NBLM�NII
2 ¼ P2ðModd;Mod0tÞ; ð20Þ

NBLM�NII
3 ¼ P3ðMod0d;ModtÞ; ð21Þ

NBLM�NII
4 ¼ P4ðMod0d;Mod0tÞ: ð22Þ

Comparing NBLM�NII and NBLM, it is observed that the interactions be-

tween existing drug candiates and target candiates are the same for the

two approaches, while the interactions in the other three cases in BLM–

NII are different from those in BLM. First, BLM–NII is able to predict

P4, the interactions between drug candidates and target candidates that

are both new. Second, P2 and P3 in BLM–NII are predicted from both

the drug side and the target side, while in BLM are predicted only from

one side.

Learning from neighbors allows drug/target candidates to obtain

labeled data when themselves do not have or have insufficient labeled

data for training. This procedure actually introduces some degree of glo-

balization into the original local model to provide more chances of learn-

ing from known knowledge. However, too much globalization is not

desired as it could eliminate the local characteristics and make the

models of individual candidates less discriminative. Moreover, the low

quality of neighbors due to imprecise similarity measure may cause nega-

tive impact when the learning process replies on too much neighbors’

information. In other words, the inferred interaction profile, although

is helpful, may introduce a certain amount of noise. Therefore, in this

study, we only activate the neighbor-based learning for totally new can-

didates. For other cases, we still train the model locally with its own

known interactions.

3 MATERIALS

To facilitate comparison with published approaches, we used the

same groups of four datasets which are first analyzed by

Yamanishi et al. (2008) and then later by Bleakley and

Yamanishi (2009), Xia et al. (2010), Laarhoven et al. (2011)

and Cheng et al. (2012). These four datasets correspond to

drug–target interactions of four important categories of protein

targets, namely enzyme, ion channel, G-protein-coupled receptor

(GPCR) and nuclear receptor, respectively. The datasets were

downloaded from http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/

drugtarget/.
Table 1 gives some statistics of each dataset including the total

number of drugs (nd), the total number of targets (nt), the total

number of interactions (E), the average number of targets for

each drug ( �Dd), the average number of targeting drugs for each

target ( �Dt), the percentage of drugs that have only one target

(Dd¼ 1) and the percentage of targets that have one targeting

drug (Dt¼ 1). It is shown from this table that among the four

drug–target interaction networks, on average, each drug and

target in ion channel and enzyme have more interactions than

those in GPCR and nuclear receptor. It is also worthy noting

that in the leave-one-out cross–validation (LOOCV), drugs and

targets with one interaction are ‘new candidates’ as the only one

interaction is covered over to leave no recorded interaction, e.g.

72% drugs in the nuclear receptor are ‘new candidates’ in the

simulation.
Each dataset is described by three types of information in the

form of three matrices: (i) the drug–target interaction matrix; (ii)

the drug–drug similarity matrix and (iii) the target–target simi-

larity matrix. The interaction networks were retrieved from the

KEGG BRITE (Kanehisa et al., 2006), BRENDA (Schomburg

Algorithm 1: BLM–NII

input : A, Sd
c , S

t
s

output: pij
get pdij ¼ NII-integrated Learning and Prediction ( A, Sd

c , S
t
s) from di;

get ptij ¼ NII-integrated Learning and Prediction ( A, St
s, S

d
c ) from tj;

Combine pdij and ptij to get the final result pij ¼ gðpdij; p
t
ijÞ

Algorithm 2: NII-integrated learning and prediction

input : A, Sd
c , S

t
s

output: pdij
if di is new then

| obtain ld(i) with Eq. (15) with Sd
c

else

| l
d(i) is the i-th row of A

end

Compute St
n with Eq. (12) and St with Eq. (14);

Learn a local model for di, i.e., Modd(i)¼ train(St, ld(i)) ;

if tj is new then

| predict pdij with Modd(i) and St
s

else

| predict pdij with Modd(i) and S
t

end

Bipartite model for learning from local information and neighbors
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et al., 2004), SuperTarget (Gnther et al., 2008) and DrugBank

(Wishart et al., 2008). The drug–drug similarity is measured

based on chemical structures from the DRUG and

COMPOUND sections in the KEGG LIGAND database

(Kanehisa et al., 2006). The chemical structure similarities be-

tween drugs are computed with SIMCOMP (Hattori et al.,

2003), which uses a graph alignment algorithm to get a global

similarity score based on the size of the common substructures
between two compounds. The target–target similarity is mea-

sured based on the amino acid sequences retrieved from the

KEGG GENES database (Kanehisa et al., 2006). The sequence

similarities between proteins are computed with a normalized

version of Smith–Waterman score. More details on how the

data have been collected and calculated are given in Yamanishi

et al. (2008).

4 EVALUATION

Systematic experiments are performed to evaluate the perform-

ance of the presented approach with datasets summarized in

Table 1. As in Laarhoven et al. (2011), LOOCV is performed.

Since the real interaction to be predicted is left out, compounds

and proteins with one interaction (i.e. Dd¼ 1 or Dt¼ 1) turn out

to have no training data and thus they are treated as ‘new can-

didates’ in the cross-validation. To test the robustness of the

presented approach, we also performed 10-fold cross-validation.

The results of 10 trials 10-fold cross-validation can be found in

Tables S5–S8 of the Supplementary Material.

4.1 Compare with state-of-the-art approaches

First, we compare the performance of BLM–NII (g¼max,

�¼ 0.5) with the weighted profile method (Yamanishi et al.,

2008) and two other state-of-the-art approaches (Bleakley and

Yamanishi, 2009) and (Laarhoven et al., 2011) denoted as BY

(2009) and Laarhoven et al. (2011), respectively. The same RLS

classifier is used for BLM–NII as Laarhoven et al. (2011). We

measure the quality of the predicted interactions in terms of

AUC curve (or true-positive rate versus false-positive rate

curve) and AUPR curve.
Table 2 gives the AUC and AUPR scores of the four

approaches for the four datasets. The results of BY (2009) and

Laarhoven et al. (2011) are the best ones reported in Bleakley

and Yamanishi (2009) and Laarhoven et al. (2011), respectively.

From this table, it is clear that BLM–NII outperforms the other

three for all the datasets. Since the results of weighted profile are

much worse than those of the three BLM-based methods namely

BY (2009), Laarhoven et al. (2011) and BLM–NII, we now focus

on the comparison of these three approaches. As been discussed

in Laarhoven et al. (2011), by incorporating the network-based

similarity, the performance of BLM can be improved, i.e. the

results of Laarhoven et al. (2011) in terms of AUPR are much

better than those of BY (2009). It is also shown that the per-

formance of BLM can further be improved by integrating the

NII procedure, i.e. the results of BLM–NII is consistently better

than those of Laarhoven et al. (2011).
It is interesting to observe that different levels of improve-

ments have been achieved for different datasets. Comparing

Laarhoven et al. (2011) and BY (2009), the improvement is the

most significant on ion channel and the least significant on nu-

clear receptor. Differently, comparing BLM–NII and Laarhoven

et al. (2011), the improvement is the largest for nuclear receptor

and the least for ion channel. Such kind of differences are ex-

pected due to the differences in the structure of the datasets.

From Table 1, it is shown that among the four datasets, the

average numbers of interactions of each drug and target are

the largest for ion channel and the smallest for nuclear receptor.

This means that the interaction network of ion channel contains

more information than nuclear receptor and thus the

network-based similarity of ion channel is more robust and in-

formative than that of nuclear receptor. Therefore, incorporating

the network-based similarity results in larger improvement for

ion channel. Since drugs or targets with one interaction are ‘new

candidates’ in the simulation, it is also shown from Table 1 that

the nuclear receptor contains the largest portion of ‘new candi-

dates’ while the ion channel contains the least. Thus, by applying

the NII procedure, BLM–NII has more chances to improve the

results for nuclear receptor than for Ion Channel.

4.2 Comparison between BLM and BLM–NII

To directly show the improvements attributed to the NII strat-

egy, we now compare BLM–NII and BLM, i.e. the results of

Table 2. Comparison with existing approaches for the four datasets

Dataset Method AUC AUPR

Enzyme Weighted profile 86.4 6.30

BY(2009) 97.6 83.3

Laarhoven et al. (2011) 97.8 91.5

BLM–NII 98.8 92.9

Ion channel Weighted profile 81.9 17.2

BY(2009) 97.3 78.1

Laarhoven et al. (2011) 98.4 94.3

BLM–NII 99.0 95.0

GPCR Weighted profile 76.5 10.9

BY(2009) 95.5 66.7

Laarhoven et al. (2011) 95.4 79.0

BLM–NII 98.4 86.5

Nuclear receptor Weighted profile 74.9 17.1

BY(2009) 88.1 61.2

Laarhoven et al. (2011) 92.2 68.4

BLM–NII 98.1 86.6

Table 1. Some statistics of the four datasets

Dataset Enzyme Ion channel GPCR Nuclear

receptor

nd 445 210 223 54

nt 664 204 95 26

E 2926 1476 635 90
�Dd 6.58 7.03 2.85 1.67
�Dt 4.41 7.24 6.68 3.46

Dd¼ 1(%) 39.78 38.57 47.53 72.22

Dt¼ 1(%) 43.37 11.27 35.79 30.77
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BLM–NII where new candidates are treated as existing ones. We

applied both BLM and BLM–NII with three different groups of

inputs by setting � in Equations (13) and (14) to 1, 0 and 0.5.
We obtained the AUC and AUPR scores of both methods

with g¼max. The results of both with g¼ average or mean

have also been produced, which can be found in Tables S1–S4

of the Supplementary Material. Since the same conclusion can be

drawn with respect to either of the two metrics, we put the AUC

scores in the Supplementary Material and plot the AUPR scores

of BLM and BLM–NII for the four datasets with three different

types of similarities in Figure 2. It is shown that for any type of

similarities, BLM–NII performs better than BLM for all the

datasets. Again, the improvements made by BLM–NII are

more significant for nuclear receptor and GPCR than for the

other two datasets.
Now using nuclear receptor, we make further comparison of

the performance between BLM and BLM–NII. Figure 3 plots

the precision–recall curve of BLM and BLM–NII. Table 3 shows

the sensitivity (or recall), PPV (positive predictive value or pre-

cision) and MCC (Matthews correlation coefficient). The two

groups of results in Table 3 are calculated by considering the

1% and 3% pairs with the highest pij values as positive, respect-

ively. It is clearly shown from these results that with NII being

integrated, the performance of BLM has been improved.

4.3 Detailed analysis of the effectiveness of NII

To take a close look at the difference in the results attributed to

the NII strategy, we now compare those top ranked interactions

of the nuclear receptor dataset produced by BLM–NII and

BLM. Since this dataset has 90 known interactions, we inspect

the 90 interactions with the highest probabilities predicted by

each algorithm.

(a) (b) (c)

Fig. 2. AUPR of BLM and BLM–NII for nuclear receptor with different types of similarities: (a) �¼ 1, (b) �¼ 0 and (c) �¼ 0.5

(a) (b) (c)

Fig. 3. Precision–recall curve of BLM and BLM–NII for nuclear receptor with different similarities: (a) �¼ 1, (b) �¼ 0 and (c) �¼ 0.5

Table 3. Compare 1% and 3% top ranked pairs of BLM and BLM–NII for nuclear receptor

Top 1% Top 3%

� Method Sensitivity PPV MCC Sensitivity PPV MCC

1 BLM 13.3 85.7 32.5 35.6 76.2 50.0

BLM–NII 15.6 100.0 38.3 44.4 95.2 63.7

0 BLM 16.7 93.8 38.3 32.2 67.4 44.3

BLM–NII 18.9 100.0 42.3 45.6 97.6 65.4

0.5 BLM 15.6 100.0 38.3 40.0 85.7 56.9

BLM–NII 15.6 100.0 38.3 45.6 97.6 65.4
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As summarized in Table 4 (More detailed results are in Table

S11 of the Supplementary Material), among the top 90 predicted

interactions, BLM only correctly detected 58 known interactions

while BLM–NII detected 71, and 57 known interactions are

ranked within 90 by both. Although one interaction detected

by BLM is missed by BLM–NII, this one ranks 104 in BLM–

NII, which indicates that this pair is still recognized to be inter-

acting with a highly possibility by BLM–NII. Nevertheless, 14

interactions detected by BLM–NII are missed by BLM. The

average rank of these 14 interactions produced by BLM is 388

as some of them ranks very low.
Among these 14 drug–target pairs, three pairs namely D00163

(Chenodeoxycholic acid) – hsa9971 (nuclear receptor subfamily

1, group H, member 4), D00506 (Phenobarbital) – hsa9970

(nuclear receptor subfamily 1, group I, member 3) and D05341
[Palmitic acid (NF)] – hsa3174 (hepatocyte nuclear factor 4,
gamma), which are assigned extremely low ranks by BLM are
successfully detected by BLM–NII as shown in Figure 4. After

checking, we find that the query drug D00163 of the first pair
only has one target which happens to be the query target
hsa9971, and the query target is known to be only interacting

with the query drug. The other two pairs have the same situation
as this pair. As we left out the true interaction in our simulation,
the testing for these three pairs becomes to predict interaction

between new drug-candidate compound and new target-
candidate protein. Since training data are absent for both the
query drug and query target, BLM fails to detect interactions

for those three pairs. Although difficulty is presented for such
kind of cases, BLM–NII successfully detected these three pairs to
be interacting. This shows the effectiveness of NII for prediction
of interaction involving new candidates.

Now using D00163 and hsa9971 as an example, we give inter-
mediate results to illustrate how NII helps detect the interactions
between new drug-candidate compounds and new target-

candidate proteins. Figure 5 shows the local model learned for
D00163 with the help of inferred training data. Specifically,
Figure 5a shows the inferred interaction profile of D00163, i.e.

the weighted interactions between D00163 and 25 non-query tar-
gets calculated with Equation (15). It shows that the associations
between D00163 and several targets such as hsa2099 are large.
This is because many of D00163’s neighbors or similar drugs,

such as D00066, interact with this target as seen from Figure 5b.
Using this inferred interaction profile as label information,
Figure 5c shows the learned local model of D00163, or the

weight of each of the targets learned with the classifier with re-
spect to D00163. With this learned model, BLM–NII successfully
detected the interaction between D00163 and hsa9971 based on

the similarities between the query target hsa9971 and other tar-
gets especially those with large weights in the model of D00163.
In the same manner, the local model of the query target which is

a ‘new’ candidate can be learned with NII. This example illus-
trates the feasibility and effectiveness of the presented approach
to infer training data or label information from the interaction
profiles of neighbors.

5 CONCLUSION AND DISCUSSION

We proposed an intuitive solution to the new candidate problem
of BLM by integrating a NII procedure, i.e. infer training data

Table 4. Performance of BLM and BLM–NII on nuclear receptor

Total known interactions: 90

Interactions detected by BLM 58

Interactions detected by BLM–NII 71

Interactions detected by both BLM and BLM-–NII 57

(a) (b) (c)

pair1

pair2

pair3

Fig. 4. Drug–target interaction matrix of nuclear receptor. (a) Predicted

by BLM, (b) predicted by BLM–NII, (c) real interaction matrix. Each

entry of the interaction matrix is plotted as a pixel. The brightness of a

pixel represents the interactionpossibility of the corresponding pair, i.e. the

brighter the more possible that the pair interacts. Three pairs are circled in

(b). These three pairs which consist of drug candidate and protein candi-

date that are both ‘new’ in Loo validation are detected by BLM–NII

(a) (b) (c) (d)

Fig. 5. Local model learning for D00163 with BLM–NII. (a) inferred interaction profile ld of D00163, (b) weighted interaction of D00163’s neighbors to

hsa2099 calculated with s(D00163, i)� a(i, hsa2099) for each drug i, (c) learned model of D00163 by the RLS classifier, (d) similarities between hsa9971

and other proteins, i.e. sthas9971
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from neighbors’ interaction profiles. Through systematic
experiments with benchmark datasets, we demonstrated the
effectiveness of BLM–NII for predicting interactions between
new drug-candidate compounds and new target-candidate

proteins.
In the presented approach, we allow all the neighbors to par-

ticipate in training data inferring. To allow only neighbors with

large similarities to contribute, a threshold may be used to reduce
the impact of those non-important neighbors to 0. Alternately, a
Gaussian function may be introduced to gradually decrease the

influence of neighbors based on their distances to the new drug/
target candidate in query.
In the current work, we only apply the NII procedure for those

completely new candidates that have no existing training data at
all, and we find that the results are already good enough to show
the usefulness of NII. Since it is quite common that drugs only
activate or inhibit a small number of targets and targets are only

activated or inhibited by very limited drugs, the NII procedure
may be applied to drugs and targets which do not have sufficient
training data. We expect that more accurate prediction models

may be build by using neighbors’ information to enhance the
limited training examples. However, too much emphasis on
neighbors tends to eliminate the local characteristics of each

drug and target and could cause deterioration in the prediction
performance. Nevertheless, it would be an interesting future
work to explore the balance between local information and
global information in model learning.
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