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Abstract

Background: Identifying drug-target interaction is a key element in drug discovery. In

silico prediction of drug-target interaction can speed up the process of identifying

unknown interactions between drugs and target proteins. In recent studies,

handcrafted features, similarity metrics and machine learning methods have been

proposed for predicting drug-target interactions. However, these methods cannot fully

learn the underlying relations between drugs and targets. In this paper, we propose a
new framework for drug-target interaction prediction that learns latent features from

drug-target interaction network.

Results: We present a framework to utilize the network topology and identify

interacting and non-interacting drug-target pairs. We model the problem as a

semi-bipartite graph in which we are able to use drug-drug and protein-protein

similarity in a drug-protein network. We have then used a graph labeling method for

vertex ordering in our graph embedding process. Finally, we employed deep neural

network to learn the complex pattern of interacting pairs from embedded graphs. We

show our approach is able to learn sophisticated drug-target topological features and

outperforms other state-of-the-art approaches.

Conclusions: The proposed learning model on semi-bipartite graph model, can

integrate drug-drug and protein-protein similarities which are semantically different

than drug-protein information in a drug-target interaction network. We show our

model can determine interaction likelihood for each drug-target pair and outperform

other heuristics.

Keywords: Drug-target interaction, Link prediction, Deep learning, Weisfeiler-Lehman

algorithm
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Background

Prediction of Drug-Target Interactions (DTI) is a critical part of drug discovery in

pharmaceutical research. Compared to biochemical experimental methods which are

laborious, time consuming and extremely expensive, computational methods are of high

interest because they can efficiently identify potential DTIs or narrow down the search

space for biologists and biochemists.

Most of traditional approaches for predicting DTI, either for drug discovery or repo-

sitioning (reusing already available drugs for new targets) are ligand-based approaches.

These techniques predict drug-target interactions based on the similarity between the

target proteins’ ligands [1, 2]. Docking-based methods utilize 3D structure information of

a target protein. Ligand’s and docking methods then run simulations to estimate the like-

lihood that it will interact with a certain drug based on their binding affinity and strength

[3, 4]. However, these approaches often lead to poor prediction results when a target has

only a small number of known binding ligands. On the other hand, the performance of

docking-based approaches is limited to availability of 3D structures of target proteins and

can be quite poor.

Machine learning methods for computational prediction of DTI have become more

popular in recent years [5, 6]. In these approaches, DTI has been modeled using different

techniques such as recommendation systems [7, 8], supervised classification problem [9],

bipartite graph [10, 11] and network-based approaches [12, 13].

In recent years, several approaches tried to take advantage of drug chemical structure

and protein sequence by integrating them into the known drug-target network in the

form of drug-drug and protein similarities. These methods are based on guilt by associ-

ation assumption where similar drugs may share similar targets and vice versa. Mostly,

these approaches treated similarity information as input features and formulated the DTI

prediction as a binary classification task in which presence of an interaction between

drugs and targets is captured. For instance, bipartite local model (BLM) is proposed

to model DTI network and a support vector machine is used for prediction task [10].

This work is further extended by Mei et al. by combining BLM with a neighbor-based

interaction-profile inferring (NII) technique (called BLMNII) [14]. This method is able

to learn the DTI features from neighbors and predict interactions for new drug or target

candidates. In another study, Xia et al. proposed NetLapRLS which is a semi-supervised

learning method for DTI prediction [15]. NetLapRLS applies Laplacian regularized least

square and incorporates both similarity and interaction kernels into the prediction frame-

work. Van Laarhoven et al. introduced a Gaussian interaction profile (GIP) kernel-based

approach coupled with RLS for DTI prediction [16, 17]. Zheng et al. proposed a collabo-

rative matrix factorization (MSCMF) for DTI [18]. They incorporated drug and protein

similarity matrices to regulate the DTI network. In [19] and [20], random walk with

restart algorithm is presented to predict new drug target interactions using known DTI

as well as drug-drug and protein-protein similarities and interactions. Network-based

Inference (NBI) models the prediction problem as a network where the drugs and targets

are represented as nodes, and the interacting drug-target pairs and similarities are repre-

sented as edges. The network diffusion technique is then applied to propagate interaction

information throughout the drug-target interaction network [21].

A large number of network-based methods, mostly identify DTI based on specific

heuristics. For example, BLM uses common neighbors as heuristic by measuring the
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weighted nearest neighbor. In another study the shortest path between drugs and tar-

get is proposed as a heuristic [22]. Recently, Yu et. al [11] investigated the predictive

power of similarity indices such as common neighbors and Jaccard Index on predicting

DTI, purely based on known DTI information. Although these heuristic make sense in

drug-target interaction, they cannot fully reveal the underlying relations between drugs

and targets. Very recently, deep learning techniques have gained much attention for their

promising performance to learn complex networks such as social and biological networks

[23–25]. DTI network is no exception and recently some deep learning basedmethods are

proposed to deal with limitation of handcrafted feature, and similarity metrics [26–28].

Inspired by link prediction methods for complex graphs, in this paper we propose a

supervised learning heuristic for drug-target interaction prediction that unlike traditional

methods that rely on hand-engineered graph features, it learns the network topology by

itself. First, we construct a semi-bipartite graph by exploiting known DTIs and drug-drug

and protein-protein similarities. Then, in pre-processing step, we provide positive sam-

ples among known interactions and likely negative samples among unknown data. We

then propose a sub-graph extraction algorithm to extract sub-graphs for each drug-target

pair sample. Our algorithm captures the closest neighbors by considering geometric dis-

tances in drug target nodes as well as drug-drug and protein-protein similarities. Each

sub-graph represents the graph topology surrounding of each drug-target pair. To learn a

meaningful model and preserve the ordering of graph vertices, an ordering mechanism is

required to assign similar indices to nodes with similar structural role from different sub-

graphs. For this purpose, we employed a graph labeling method to measure the similarity

between nodes and sub-graphs. After ordering the vertices, sub-graphs are encoded into

embedding vectors. Finally, we use deep neural network to learn nonlinear topological

features and complex patterns from the enclosing sub-graphs.

Methods

DTI problem formulation

Predicting drug-target interaction can be formulated as link prediction of a bipartite

graph in which nodes represent drugs and targets in two sets and the edges denote the

interactions. To capture the drug-drug and target-target similarities, we formulate the

DTI network as an un-directed semi-bipartite graph G =< D,T ,E, F ,H >, where D and

T are set of drug (chemical compound) and target (protein) nodes respectively, E ⊂ D×T

is the set of edges (observed links) between D and T, i.e. E = {(di, tj)|di ∈ D, tj ∈ T},

F ⊂ D × D is the set of edges between the nodes in D, i.e. F = {(di, dj)|di, dj ∈ D} and

H ⊂ T×T is the set of edges between the nodes in T, i.e.H = {(ti, tj)|ti, tj ∈ T}. An exam-

ple of such a network is shown in Fig. 1a where drug-drug and target-target similarities

are integrated into the graph. The drug-target interaction network can be represented by

am × n adjacency matrix Y as follows:

yij =

{

1, if there is a known (di, tj) interaction

0, otherwise.
(1)

where yij denotes the < i, j >th element of matrix Y (1 ≤ i ≤ m, 1 ≤ j ≤ n) and

(di, tj) denotes drug di and target tj pair. The goal here is to assign a score to each yij that

ultimately help to classify it as whether they interact or not. Note that elements with yij =

1 and yij = 0 correspond to positive and unknown interactions, respectively. Throughout
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Fig. 1 Our model workflow. a Data representation. A semi-bipartite graph is constructed by Drug-target

interactions, drug-drug similarity and protein-protein similarities. b Drug-target positive and negative pairs

(extracted based on [29]) samples are represented as sub-graphs capturing the topological environment

around drug target pairs. c A graph labelling method is applied on each sub-graph in order to preserve the

ordering of graph vertices. d The final sub-graphs are converted to adjacency matrices and the upper

triangle of each matrix is representing embedded features to train a classifier. e A deep neural network is

trained and used for predicting new drug target pairs

this paper, the set of protein targets that interact with drug di and drugs that interact

with protein tj are shown by Tdi ⊂ T and Dti ⊂ D, respectively. Drug-drug and protein-

protein similarities, are also represented by SD ∈[ 0, 1]m×m and ST ∈[ 0, 1]n×n matrices,

respectively.

Workflow

Figure 1 presents the proposed framework in this work. After data preparation and

constructing the semi-bipartite graph, positive samples are determined randomly from

the graph. Negative samples, however, are determined by a method to be discussed in

pre-processing step (subsection “Pre-processing”) which selects reliable negatives among

unknowns. Then, our learning model is applied to learn drug target interaction from

prepared samples. Our method consists of three steps shown in Fig. 1.

1. Extracting enclosing sub-graphs: In this step, for each (di, tj) pair sample, an

enclosing sub-graph with K vertices are created to capture the neighboring

information of (di, tj).

2. Encoding sub-graphs: In this step, a vertex ordering is applied on each sub-graph

and then the new sub-graphs are converted to embedding vectors.

3. Learning phase: A deep neural network is trained to learn non-linear graph

topological features to predict unknown links.

Pre-processing

One of the challenges to train a model using DTI network is that, only a small num-

ber of interactions (positive samples) are known. Those that do not interact with each

other are not known (i.e. missing edges in the network). Therefore, in most approaches

(e.g. [28, 30–32]), negative samples are chosen randomly from the dataset. However, this
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might result in inaccurate findings and impact the classifier’s decision boundary. In fact,

a study by Liu et. al. [29] showed properly choosing reliable negative samples can dras-

tically improves the performance. This is the case in some approaches such as Bayesian

Matrix Factorization [33], BLM [10] and Gaussian kernel profile [17]. In this work, simi-

lar to [29], first we identify reliable negative samples. The main idea is the drugs that are

dissimilar to every known drug of a given target are not much likely to interact by the

target and vice versa. First, we create a pool of negative candidate pairs of drugs and tar-

gets. This set excludes the set of known interacting pairs (i.e. corresponding yij = 1). Any

negative candidate interaction is defined by a triplet (di, tj, sij) where sij is a score between

drug di and target tj. We compute sDTij =
∑

tk∈Tdi
STtjtk , that sums up similarity of every

target that interacts with di with tj. Similarly, we compute sTDji =
∑

dk∈Dtj
SD
didk

, that sums

up similarity of every drugs that interact with tj with di. Finally, a similarity score between

di and tj is computed by:

sij = e
−

(

sDTij +sTDji

)

(2)

The negative candidate pool is then ranked based on the similarity score computed

above in decreasing order and those with the highest values of the score are considered

to be the reliable negatives. Using these reliable negative samples and randomly drawn

positive samples from known interactions, we will train a neural network classifier.

Extracting enclosing sub-graph

For each (di, tj) pair chosen from the graph G = (D,T ,E, F ,H) where di ∈ D and tj ∈ T ,

an enclosing sub-graph Gditj which is also a semi-bipartite graph is extracted that cap-

tures the surrounding environment of (di, tj). Here, we only consider E edges to find

neighbors of any drug are target nodes and vice versa. The challenge is how to identify

a sub-graph with K number of vertices for a drug-target pair considering both DTI and

similarity information which are semantically different. K is a predefined parameter also

called sub-graph size. The most important information are first-order (first-hop) drug-

target interaction links from (di, tj). In the first step, target neighbors of di, N(di) ⊂ T

and drug neighbors of tj, N(tj) ⊂ D are added into sub-graph. If the number of vertices in

the sub-graph is less than K, we construct a pool of vertices (χ ), consisting of neighbors

of nodes that have been included into the sub-graph but their neighbors have not been

included yet and will be processed. Then, we sort the pool based on similarity of drugs

with di and target proteins with tj (using S
D and ST , respectively) in decreasing order and

keep adding to the sub-graph from top of the pool till size of the sub-graph meets K. If the

number of vertices in the sub-graph is more than K, first use graph labeling to impose an

ordering for sub-graph, and then reorder it using this order. After that, if |Gdi,tj | > K , the

bottom |Gdi,tj | −K vertices are discarded. At the end, the sub-graph induces by identified

vertices. This process is summarized in Algorithm 1.

Sub-graph pattern encoding

Unlike some recent approaches that provide embedding features for each node of the

graph [34], we provide an embedding feature only for each sub-graph representing a drug-

target pair’s topological structure. To learn a meaningful model, it is necessary to find a

vertex ordering for each sub-graphs. For this purpose, we use graph labeling. The idea is
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Algorithm 1 Extracting Enclosing Sub-graphs

1: Input: Semi-bipartite graph G = (D,T ,E, F ,H), Size of sub-graph K, (di, tj)

2: Output Gditj

3: χ ← di, tj , D
′
← di,T

′
← tj

4: χ ←
(

⋃

v∈χ N(v)
)

\D
′ ⋃

T
′

5: D
′
← D

′ ⋃

N(tj),T
′
← T

′ ⋃

N(di)

6: while (|D
′ ⋃

T
′
| < K & |χ | > 0) do

7: pool ← Sort(χ)

8: while (|D
′ ⋃

T
′
| < K & |pool| > 0) do

9: v ← pool.pop()

10: if v ∈ D then

11: D
′
← D

′ ⋃

{v}

12: else

13: T
′
← T

′ ⋃

{v}

14: end if

15: end while

16: χ ← (
⋃

v∈χ N(v))\D
′ ⋃

T
′

17: end while

18: Subgraph Gditj induced by D′
⋃

T ′

to make vertices from different sub-graphs that have similar structural role, get assigned

to similar orders (rankings). A graph labeling function is a map f : V → C from vertices

V to an ordered set C, conventionally called colors in literature. In our problem, f must

be a one-to-one function, so each vertex is mapped to a unique color.

Among graph labeling algorithms, Weisfeiler-Lehman (WL) algorithm [35] is well-

known because of its graph isomorphism test. WL provides vertex ordering based on

topological structure of a graph. In this algorithm, initially, all vertices get the same label.

Then, in an iterative fashion, each vertex gets a signature string by concatenating its own

labels and their immediate neighbors’ labels. Then, signature strings are sorted lexico-

graphically in ascending order and each vertex gets a new label based on its signature

string order. For instance, let vertex x with label 2 has neighbors with labels {1, 2, 3} and

vertex y with label 3 has neighbors with labels {2, 2, 4}. The signature string of x and y are

{2, 123} and {3, 224}, respectively. Since, {2, 123} is lexicographically smaller than {3, 224},

x gets smaller label than y. This process is repeated until vertices get unique labels. At the

end, vertices with similar structural roles get similar labels [36].

Since WL ranks vertices based on topological structure of the graph and structural role

of the vertices, it is suitable for any classifier model. WL treats any vertex in the graph

identically. However, in our application, we construct each sub-graph for a particular

drug-target pair and therefore WL is not able to capture that information. In addition,

as WL requires reading and sorting of the vertices’ signature strings, it becomes com-

putationally expensive since the signature strings can be very long for nodes with high

degrees. Fast hashing-based WL algorithms were proposed [25, 37] which map unique

signature strings to unique real values. To deal with issues mentioned above, we borrowed

the Pallete-WL algorithm [25] in which it can take advantage of vertex ordering capabi-
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lity of WL while capturing the core information of each sub-graph (i.e. initial drug-target

pair) using a hashing function.

In Pallete-WL, initially, geometric mean distance of any node in the sub-graph Gditj to

di and tj is computed. Then, distance values are mapped to colors by function f. Function

f first maps the smallest real number to color 1, and then maps the second smallest real

number to color 2, and so on until every real number is mapped to a color. If two or more

real numbers are equal, they are mapped to the same color. Then, a refinement process is

iteratively done by mixing their original colors and nearby colors in such a way that the

colors’ relative ordering is preserved. This process is driven using a hash function [25]. An

example of this algorithm is shown in Fig. 2. In this example, first a sub-graph is extracted

for (di, tj) pair from the semi-bipartite graph. Then, labels for vertices in the sub-graph

are assigned based on their geometric distances to di and tj. Finally, by the refinement

process, each vertex is assigned to a unique label.

After vertex ordering is done on sub-graphs with K vertices, sub-graphs are encoded

to adjacency matrices with size of K × K . Each matrix includes {0, 1} for (di, tj) indices,

depending of the existence of an edge between them, and values in (0, 1] range for (di, dk)

and (tj, tk) indices (using S
D and ST ). As the matrices are symmetric, only upper-triangle

part is used (Fig. 1d) and vertically converted to K(K−1)
2 vectors.

Learning phase by neural network

After we encode the enclosing sub-graphs and identify embedding vectors for positive

(di, tj) pair samples ((di, tj) ∈ E) and negatives (di, tj) pair samples (when (di, tj) �∈ E), we

feed the information into a deep neural network to learn the non-linear topological pat-

terns. After the training phase, interaction for any given drug-target pair can be predicted

by the trained neural network. The output of neural network would give us a probabil-

ity estimate to predict the interaction between testing drug-target pair (i.e. positive or

negative - see Fig. 1e).

Fig. 2 An example of our approach. a Extracting sub-graph from the semi-bipartite graph (Algorithm 1). b

Assign initial colors to vertices according to their geometric mean distance to the link. c Refine the colors to

impose a vertex ordering which preserves the initial color order
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Datasets

We adopted a well-known dataset for prediction and evaluation of our DTI prediction

method. This dataset has been constructed by [32]. This dataset includes drug-protein

interaction network (extracted from the DrugBank database Version 3.0 [38]). It also

includes drug chemical structure similarity network (i.e. a pair-wise chemical structure

similarity network measured by the dice similarities of the Morgan fingerprints with

radius 2, which were computed by RDKit [39]), and protein sequence similarity network

(which was obtained based on the pair-wise Smith-Waterman scores [40]). DTI network

consists of binary edge weights (i.e. 1 represents a known interaction, and 0 otherwise)

and the drug structure similarity network and the protein sequence similarity network

consist of real-valued edge weights between 0 and 1. This datasets include 708 drugs,

1,512 protein targets and 1,923 known drug-target interactions. These datasets have

widely been used by researchers [28, 41, 42].

Results

Performance evaluation metrics and protocols

We used a neural network architecture with three fully-connected layers with 32, 32 and

16 hidden neurons, respectively. For neurons’ activation, we used Rectified Linear Unit

(ReLU). A softmax layer is used as the output layer (i.e. assigns estimated probability to

each class). These hyper parameters are selected empirically based on trial and error.

After training the neural network, we can predict the interaction between any testing

drug-target pair. Similar to training phase, first, we extract enclosing sub-graph for testing

pairs. Then, we use our encoding methodology to construct the feature embedding sub-

graphs and feed them to the neural network. Neural network provides a prediction score

for (di, tj), which represents the estimated likelihood of interaction. In our paper, for all

experiments, 10-fold cross validation is used to estimate the performance of our method

on the data. In this method, the data is divided into 10 non-overlapping subsets. 9 out of

these 10 subsets are used for training and the remaining 1 subset is used for testing. Pos-

itive samples are randomly selected from known drug-target interactions and negative

samples are selected based on the method explained in Subsection “Pre-processing”. Like

other researchers in this field, we employed the Area Under Receiver Operating Char-

acteristic (AUROC) curve and Area Under Precision-Recall (AUPR) curve to evaluate

prediction performance for all methods [43]. In general, ROC curves show the trade-off

between the true positive rate (TPR) and false positive rate (FPR), and PR curves show

the trade-off between the precision and recall using different probability thresholds.

We comprehensively compared our approach with four baselinemethods in drug-target

interaction predictions reported in literature, namely BLMNII [14], CMF [18], HNM [44]

and NetLapRLS [15]. First, we compared the performance of our method with others

when the data is balanced (i.e. number of positive and negatives are roughly equal). The

AUROC and AUPR results show our approach achieved higher performance than other

methods (Fig. 3a-b).

In practice, DTI network is often very sparse with only few known DTIs. To mimic

this imbalanced data situation, we randomly sample negative pairs 10 times more than

positive pair samples [28] (positive to negative ratio α = 10%). As expected, in all meth-

ods, both AUROC and AUPR scores decreased in compared to the case that number of

positives and negatives were balanced (Fig. 3c-d). Although in our method AUROC and
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Fig. 3 10-fold cross-validation performance evaluation of our approach compared with baseline methods in

terms of AUROC and AUPR. a AUROC and b AUPR scores, in which all methods are trained and tested on

balanced datasets. c AUROC and d AUPR scores in which number of negative samples was 10 times more

than the number positive samples (α = 10%). e AUROC and f AUPR scores in which all unknown drug-target

interacting pairs are considered (α = 0.18%). All results were summarized over 10 trials and expressed as

mean ± SD

AUPR scores dropped around 4% and 10% respectively, we observed our method still

outperformed other methods with significant improvement.

To further mimic the practical situation and decrease the positive to negative ratio, we

chose all unknown interactions as negative samples. In this case, the positive to negative

ratio α ≃ 0.18%. The performance of this setup is shown in Fig. 3e-f. We observed that in

this case, our method achieved a higher performance over baseline methods as well. As

stated in [17, 32], in this case that the dataset is highly unbalanced, AUPR can provide a

better assesment than AUROCmetric. The reason is in this scenario, there aremanymore

negatives than positives and AUPR does not account for true negatives. Although the

performance of most methods in terms of AUROC are comparable (Fig. 3e), our approach

significantly achieved better performance in terms of AUPR (Fig. 3f ).

Since the datasetsmay contain redundant DTIs (i.e. a same protein is connected tomore

than one similar drugs and vice versa), the performance of prediction can be inflated. To

analyze the robustness of our algorithm against removal of homologous proteins or simi-

lar drugs, we performed an experiment similar to [28] and [32], in whichDTIs with similar

drugs (i.e. drug structural similarity) >60% or similar proteins (i.e. protein sequence sim-

ilarity) >40% are removed. The removal operations reduced the number of interactions

from 1,923 to 900. Similar to other experiments, 10-fold cross validation is used to provide

AUROC and AUPR performance (shown in Fig. 4). The results indicates our approach

outperformed other predictionmethods in term of both AUROC andAUPR. As expected,

compared to non-removal case, prediction performance is decreased (Fig. 3a-b).

As our model lies under the category of heuristic based approaches, we further com-

pared the performance of our model with other heuristics employed in DTI prediction
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Fig. 4 Performance evaluation of our model in terms of AUROC and AUPR in the case that drug-target

interactions with similar drugs and proteins are removed

by Lu et. al [11]. These heuristics used for link prediction which can be categorized into

first-order, second-order and high-order heuristic methods, based on the most distant

node necessary for computing the heuristic [32]. Namely, heuristics proposed for DTI

prediction in [11] are Preferential Attachment (PA) (i.e. first-order heuristic) [45], mod-

ified common neighbors (CN) and modified Jaccard Index (i.e. second-order heuristic)

and Katz Index (i.e higher-order heuristic). The results illustrated in Fig. 5 show our

model outperforms other heuristics in terms of AUROC (as AUPR performance for all

other methods were close to zero, this metric is not shown). This is expected as [24]

shows, learning high-order heuristics is feasible with a small sub-graph size (K) usingWL

algorithm.

To show the effect of similarity information in our model, we conducted an experiment

based on only drug-target (DT) interaction network (i.e bipartite-graph), DT interaction

network with drug-drug structural similarities (DD), DT interaction network with pro-

tein sequence similarities (TT) and all networks. The results are shown in Fig. 6. It shows

Fig. 5 Comparing AUROC performance of our method with other heuristic-based methods
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Fig. 6 Incorporating the drug-drug structure similarity network (DD) or/and protein sequence similarity

network (TT) can improve the prediction performance of our approach

additional networks such as drug or/and protein (target) similarity matrices improve the

prediction performance. We observed 14% and 18% improvement when all networks

are used compared to when only DT network is used in terms of AUROC and AUPR,

respectively. Also, this experiment evaluates the robustness of our approach by providing

different types of networks.

As our proposed model relies on topological features, we investigated the effect of the

size of sub-graph representing drug-target pair in prediction task. Figure 7 shows the

overall trend that as the number of vertices in sub-graphs increases, the AUROC per-

formance also increases. However, the performance of our model for K > 15 remains

flat. It is also observed that AUPR score decreases for K > 15. The trend shown in our

work confirms a study by Zhang et. al [24] that shows the most useful information is pro-

vided by closer vertices to the link being predicted by WL algorithm. Specifically, we see

a diminishing return for AUPR for large values of K due to overfitting.

Fig. 7 The effect of number of vertices in sub-graph on prediction performance
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Fig. 8 Comparison of the performance of our model with random negative samples and reliable negative

samples in terms of AUROC

To investigate how negative sampling technique affects the performance of our model,

we compared the performance of our model with negative sampling techniquementioned

in Subsection “Pre-processing” and random sampling of unknown interactions. The 10-

fold cross validation results in terms of AUROC and AUPR are provided in Figs. 8 and 9,

respectively. As expected, the performance when reliable negatives are used for training

is higher than randomly selected negative samples. The importance of using reliable neg-

ative samples can be even more pronounced where positive to negative ratio α is low (i.e.

10%).

We additionally tested our method on four datasets introduced in [46] (so-called

Yamanishi dataset). These datasets correspond to four different target protein types,

namely nuclear receptors (NR), G protein-coupled receptors (GPCR), ion channels (IC)

and enzymes (E). Dataset specification is provided in Additional file 1: Table S1. Results

Fig. 9 Comparison of the performance of our model with random negative samples and reliable negative

samples in terms of AUPR
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in Additional file 1: Figure S1 show our approach achieved consistent results in Yaman-

ishi dataset. For NR dataset, the performance is relatively lower than other categories. We

surmise this happens due to lack of enough training data.

Discussion

Although our methodology is not fully end-to-end learning, it eliminates the use of hand-

crafted features and lets neural network learns features based DTI network. An important

step in our methodology is to capture the network topology surrounding drug-target

link by enclosing sub-graphs. All first-order heuristics such as common neighbors can

be calculated from the 1-hop enclosing sub-graphs. However, researchers have shown

that high-order heuristics such as Katz perform much better than first and second-order

methods [47]. This is reflected in our comparisons shown in Fig. 5. To effectively learn

high-order features, one may think that a very large hop number h is always needed.

However, this leads to very large enclosing sub-graph which dramatically increases the

computational complexities. Moreover, Zhang et al. showed that we do not necessarily

need a very large h to learn high-order graph structure [24]. The authors reported that

features can be learnt using even small h-hop sub-graphs. This can indirectly be observed

in Fig. 7 which shows the performance of our model quickly ramps up when number of

nodes (K which is proportional to h) in sub-graph increases.

Our methodology, similar to other graph/node labeling techniques, relies on preserving

two key attributes, i.e. structural role topological directionality [24, 25]. Specifically in our

approach, Pallete-WL algorithm (Subsection “Sub-graph pattern encoding”) achieves this

preservation by labeling structural differences hence providing additional information to

facilitate training process.

Although our neural network approach has advantage over methods that use hand-

crafted features by learning from network topology information, it has some limitations.

Firstly, our method trains a fully-connected neural network on flattened upper triangular

of adjacency matrices (see Fig. 1 and its explanation) Since fully-connected neural net-

works only accept fixed size feature vectors as input, sub-graphs with different sizes need

to be truncated. Consequently, our methodmay not consistently learn from the full h-hop

neighborhood of each link andmaymiss some structural information whichmay limit our

model’s performance. Secondly, due to the limitation of adjacencymatrix representations,

our approach cannot learn from explicit features [24].

Very recently, other type of relations such as drug-drug and protein-protein interac-

tions, drug-disease and drug-side-effect associations have been considered for DTI pre-

diction by researchers [28, 32, 48]. In future, we intend to incorporate these associations

within our methodology.

We acknowledge that ultimate validation of drug-target prediction is to show how the

prediction method can re-discover some FDA-approved drugs. We can certainly generate

the top (highest prediction scores) of drug-target pairs for further inspection. However,

full-fledge validation requires a much more comprehensive study of the FDA-approved

drugs that is beyond the scope of this work.

Conclusion

We have proposed a DTI prediction methodology using drug-target network, drug struc-

tural similarities and protein sequence similarities. We modeled this problem as link
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prediction in a semi-bipartite graph and used deep learning as a learning tool. One advan-

tage of our model is that, it captures more useful relational information and automatically

learns topological features from DTI network. Additionally, it uses neural networks to

learn complex topological features which heuristics cannot express. Through compre-

hensive experimentation, we have shown that our model achieves better performance

compared to other methods reported in literature.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12859-020-3518-6.

Additional file 1: Supplementary table and figure.
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