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Abstract

The discovery of novel drug targets is a significant challenge in drug development. Although the human genome comprises
approximately 30,000 genes, proteins encoded by fewer than 400 are used as drug targets in the treatment of diseases.
Therefore, novel drug targets are extremely valuable as the source for first in class drugs. On the other hand, many of the
currently known drug targets are functionally pleiotropic and involved in multiple pathologies. Several of them are
exploited for treating multiple diseases, which highlights the need for methods to reliably reposition drug targets to new
indications. Network-based methods have been successfully applied to prioritize novel disease-associated genes. In recent
years, several such algorithms have been developed, some focusing on local network properties only, and others taking the
complete network topology into account. Common to all approaches is the understanding that novel disease-associated
candidates are in close overall proximity to known disease genes. However, the relevance of these methods to the
prediction of novel drug targets has not yet been assessed. Here, we present a network-based approach for the prediction
of drug targets for a given disease. The method allows both repositioning drug targets known for other diseases to the
given disease and the prediction of unexploited drug targets which are not used for treatment of any disease. Our approach
takes as input a disease gene expression signature and a high-quality interaction network and outputs a prioritized list of
drug targets. We demonstrate the high performance of our method and highlight the usefulness of the predictions in three
case studies. We present novel drug targets for scleroderma and different types of cancer with their underlying biological
processes. Furthermore, we demonstrate the ability of our method to identify non-suspected repositioning candidates
using diabetes type 1 as an example.
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Introduction

Finding novel ways to treat and cure diseases is a fundamental

challenge in biomedical research. Although many advances have

been made over the last decades, drug discovery is still a very

lengthy, increasingly risky and costly process [1]. There is a lack of

reliable drug target prediction methods as reflected by the low

clinical target validation success rate. Therefore, new bioinfor-

matics approaches are required, which are able to accurately

predict drug targets for a disease [2]. These predicted drug targets

can be of two types. 1. Novel drug targets: unexploited targets that can

be used for developing first in class drugs and combination

therapies. 2. Drug targets for repositioning: drug targets that are

currently used in the treatment of a different disease. Many targets

are functionally important and are pleiotropically involved in

multiple pathologies [3,4]. As pathologies are often shared

between diseases, the existing or experimental drugs against these

targets can be re-tested for such additional indications [5].

Over the last years, various network-based methods have been

developed for identification of unknown disease-associated genes

[6]. There is evidence that these methods may be applied to the

prediction of novel drug targets as disease-associated genes and

successful drug targets significantly overlap [7]. However, the

actual performance of network-based methods for drug target

prediction has not been comprehensively assessed to date. Early

approaches for disease gene prioritization incorporated knowledge

about disease linkage intervals with protein interaction networks

and prioritized direct interactors of known disease genes [8–10].

Following these methods, research was focused on integrating

additional local information to the prioritization by exploiting the

network neighborhood of known disease genes. Dezso and

colleagues, for example, prioritized disease-associated candidates

by their presence on shortest paths between known disease genes

[11]. Other approaches identified modules that are differentially

regulated in the disease of interest: Ideker and colleagues first

developed a method to identify subnetworks that exhibit distinct

regulation patterns across different biological conditions [12]. A

following study by Ulitsky et al built on this idea, resulting in a

method for unraveling dys-regulated pathways in a disease of

interest [13]. Recent approaches improved the previous ones even

further by incorporating the complete global network topology into

the disease gene prioritization. Koehler and colleagues applied

random walks to predict novel disease-associated candidates

assuming that genes in close overall proximity to known disease

genes are more likely to be involved in the disease themselves [14].

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e60618



Finally, Vanunu et al developed network propagation, a flow-based

method similar to random walks that prioritizes genes by their

proximity to all known disease genes [15]. Global methods

generally perform better than local and module-based methods.

However, a recent study by Navlakha and Kingsford highlighted

that the integration of predictions from global and local methods

outperforms the results from each method since each method

captures specific network features and thus uniquely prioritizes

certain disease genes [16].

In this study, we developed an integrated network-based

approach that enables both the prediction of novel drug targets

and the repositioning of known drug targets for a given disease

(Figure 1). Our method takes as input a gene expression signature

for a disease of interest as a source of disease-specific information.

Gene expression patterns systematically change in response to the

disease, which is evident from thousands of studies and datasets

deposited in the GEO repository [17]. Thanks to well-established

microarray technology, global expression profiles are probably the

most readily available and the richest source of disease expression

data, applicable for different purposes. Connectivity Map, for

instance, pioneered drug repositioning by comparing drug

response expression with disease expression signatures [18,19].

Expression profiling can also be integrated with knowledge-based

information such as molecular interaction networks, enhancing the

latter with disease and tissue context [20]. Network-based methods

imply that drug targets are highly influential in establishing a

disease-specific expression response and likely correspond to

expression regulators [21,22]. Therefore, it is logical to use

differential gene expression profiles as input for the prioritization

of potential drug targets. We hypothesize that drug targets, while

not necessarily dys-regulated themselves, are located in close

overall proximity to the differentially expressed genes, which can

be assessed using established network-based methods. In our

approach, the differentially expressed genes are overlaid onto a

high-quality molecular interaction network. The drug target

prediction for a disease is performed by applying a number of

local and global network-based prioritization methods using

expression signature genes as an input. The predictions from

these methods are combined using a logistic regression model

resulting in a set of prioritized drug targets for the disease. The

prioritized drug targets can serve as candidates in the development

of novel drugs for a disease. Furthermore, if the drug target is

already used for a different indication, it can be readily evaluated

as a candidate for the disease of interest.

We demonstrate that our approach is able to reliably predict

known drug targets. The performance evaluation was done for 30

different diseases based on information about known drug targets

for the diseases. Here, we provide prioritized lists of predicted drug

targets for all of these 30 indications as a source of data for further

discovery of novel drug targets and drug target repositioning. In

addition, top candidate targets for several indications were

analyzed in more detail and underlying potential mechanisms of

action were suggested. We first studied a novel drug target

candidate for scleroderma in detail and unraveled the underlying

biological processes involved in the disease. Furthermore, we

identified a common core of cancer drug targets that are

associated with a multitude of cancer types and that may inhibit

core functionalities of cancer cells. We additionally analyzed

highly ranked drug targets that are specific to a certain type of

cancer only and that may thus lead to selective treatment options.

Finally, we demonstrate the ability of our method to identify

promising candidates for drug target repositioning using diabetes

type 1 as case study. Since our method does not rely on disease

similarities for prioritizing repositioning candidates, connections

between seemingly unrelated diseases can be identified leading to

the emergence of non-suspected drug target candidates.

Materials and Methods

Disease Gene Expression Signatures
We obtained microarray gene expression data for 30 diseases

from the Gene Expression Omnibus (GEO) repository [23]. The

experiments were required to contain samples from healthy and

diseased patients (see Table 1 for the complete list of diseases). The

expression data were normalized with the GC-RMA package

implemented in R. Gene level estimates were obtained using

custom CDF files downloaded from the brainarray database [24].

For each gene expression dataset, disease samples were compared

to samples from healthy donors. Significance p-values for all gene

expression changes between the samples were calculated using a

moderated t-test with FDR correction contained in the R limma

package [25]. A gene was defined as differentially expressed

between diseased and healthy subgroups if its fold change was

greater than 1.5 and if the FDR corrected p-value was less than

0.05.

Integrity Drug Targets
Integrity (http://integrity.thomson-pharma.com) is a knowl-

edgebase designed for drug discovery. The database contains a

large collection of drugs which are annotated with information on

their respective drug targets, the diseases they are associated with,

and the clinical phases of the drugs.

Drug targets are assigned a status in Integrity, which can be

‘Validated’, ‘Candidate’, ‘Exploratory’, or none. Validated drug

targets are associated with drugs under active development in

clinical phases or with launched drugs for the disease of interest.

Candidate drug targets are associated with drugs that are no

longer under active development for the respective disease.

Exploratory drug targets are associated with drugs that are

currently under biological investigation for the disease. Finally,

some drug targets are not assigned any status and were not

considered in this study. For each disease used in our analysis, we

downloaded its associated drug targets. In Integrity, drugs are not

directly linked to genes. Instead, drugs are linked to internal target

IDs and these targets are then linked to Entrez Gene identifiers.

Here, the Entrez Gene – drug target associations were considered

as true positives for each disease and were used to evaluate the

drug target predictions.

Selection of Diseases
We selected 30 diseases based on several criteria: 1. We aimed

at selecting a variety of diseases to demonstrate the broad

applicability of our method. The diseases range from cancers to

metabolic diseases to viral infections. 2. To calculate disease gene

expression signatures, availability of healthy and diseased samples

was required for this study. 3. We only considered significant

differentially expressed genes, i.e. genes that passed an FDR-

corrected p-value threshold of 0.05. At least one differentially

expressed gene is necessary as input for the network-based

methods. 4. For the logistic regression model to work, at least

two drug targets are required as true positives. Therefore, diseases

were required to be associated with at least two drug targets in

Integrity.

Molecular Interaction Network
We employed the MetaBase resource to build the network used

in this study [26]. In MetaBase, all molecules are stored as network

objects. Network objects describe the type of molecule, e.g. kinases,

Drug Target Prediction and Repositioning
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transcription factors, and receptors. Network objects may also

correspond to more than one biological molecule such as a protein

complex or a protein family. Furthermore, network objects can

represent small molecules including non-coding RNAs and human

metabolites.

The interactions contained in MetaBase represent physical

interactions between pairs of network objects and have all been

manually curated from publications of small-scale experimental

studies. These interactions include mostly protein interactions and

regulatory interactions between transcription factors and their

targets, but also a limited number of interactions involving non-

coding RNAs and metabolites. The interactions are annotated

with additional information including directionality and mecha-

nism of action, i.e. activation, inhibition, and unknown effects.

Furthermore, MetaBase stores information on linear pathways,

describing the cellular response to a particular stimulus. Linear

pathways are defined based on manual curation and depict the

signaling cascade from receptor activation through the cell to the

final response.

To build the interaction network, we integrated all interactions

with known mechanism of action with the interactions contained

in the linear pathways, resulting in 115,781 non-redundant high-

confidence interactions between a total of 19,130 network objects.

Network-Based Methods
Network-based methods can generally be grouped into local

and global methods. Local methods make use of the neighborhood

of disease-associated genes to prioritize novel candidates. Global

methods take the whole network and its topology into account to

identify new disease-associated candidates. In this study, we apply

two local and two global methods for the prediction of drug

targets, namely Neighborhood Scoring, Interconnectivity, Net-

work Propagation, and Random Walks. The input to all four

methods is the list of differentially expressed genes for the diseases

of interest.

Neighborhood Scoring. Neighborhood Scoring is a local

method for prioritizing candidates based on the distribution of

differentially expressed genes in the network [27]. We adapted the

Figure 1. Overview of the workflow. The analysis starts with a set of microarray samples from diseased and healthy donors, which is statistically
processed to identify differentially expressed genes (DEGs). Furthermore, a high-quality interaction network serves as input to the analysis. The DEGs
are overlaid onto the network and serve as input to the four network analysis methods, namely Neighborhood Scoring, Interconnectivity, Network
Propagation, and Random Walk. The output of the methods is aggregated using a logistic regression model, which is trained on a set of drug targets
from Integrity, resulting in the final ranked list of prioritized gene products.
doi:10.1371/journal.pone.0060618.g001
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method such that every network object is assigned a score, which is

based partly on its expression fold change and partly on the

expression fold changes of its neighbors. First, the differential

expression levels of the genes are mapped to the corresponding

network objects. Next, an adjusted differential expression level, the

score, is calculated for each network object as follows:

Score(i)~
1

2
:FC(i)z

1

2
:

P

n[N(i) FC(n)

DN(i)D

The score of network object i equally depends on its fold change

(FC) and on the fold changes of its neighbors n, where N(i) includes

all neighboring network objects of i. Network objects that are not

differentially expressed and that do not have any differentially

expressed genes in their direct neighborhood are assigned a score

of 0.

Interconnectivity. Interconnectivity is a local method that

prioritizes candidates based on their overall connectivity to the

differentially expressed genes [28]. First, an interconnectivity score

is calculated for each pair of interacting network objects. The

interconnectivity score is based on both the direct interaction

between a pair and the indirect interactions with a path length of

two, which we define as the shared neighborhood of two network

objects. We adapted the method to score interactors of differen-

tially expressed genes based on their direct interaction and on their

shared neighborhood as follows:

ICN(i,j)~e(i,j):
2zDN(i)\N(j)D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

deg (i): deg (j)
p

 !

e(i,j) describes an edge between the two network objects i and j. It is

set to 1 if the edge exists and 0 else. Besides the direct interaction

between i and j, the size of their shared neighborhood N is taken

into account and normalized by the overall degrees of the two

network objects.

Table 1. Overview of diseases in the study.

Disease Name GEO Accession Number of DEGs Number of Drug Targets

Malaria GSE5418 1658 220

Acute myeloid leukemia GSE30029 5325 159

AIDS GSE16363 1839 40

Idiopathic pulmonary fibrosis GSE24206 14 31

Thyroid carcinoma GSE29265 3979 37

Colorectal cancer GSE35602 2952 304

Crohn’s disease GSE10714 12 75

Diabetes type 1 GSE11907 471 68

Hepatitis C GSE11907 2626 229

Hepatocellular carcinoma GSE36411 2425 210

HIV GSE18233 463 159

Hyperplastic polyposis syndrome GSE19963 897 3

Ischemic cardiomyopathy GSE5406 146 5

Ischemic stroke GSE16561 290 322

Liver cirrhosis GSE36411 121 10

Melanoma GSE15605 4038 175

Melanoma with metastasis GSE15605 5469 73

Multiple sclerosis GSE32988 428 379

Obesity GSE12050 1631 245

Ovarian cancer GSE38666 3862 15

Parkinson’s disease GSE22491 1142 347

Periodontitis GSE10334 1416 28

Psoriasis GSE26866 310 351

Sarcoidosis GSE34608 5803 13

Scleroderma GSE33463 232 11

Septic shock GSE26440 3455 131

Sickle-cell disease GSE16728 559 4

Sjogren’s syndrome GSE23117 271 8

Systemic Lupus Erythematosus GSE11907 476 62

Ulcerative colitis GSE10714 871 57

For each disease, the table lists the GEO accession for the gene expression data sets, the number of differentially expressed genes (DEGs), and the number of drug
targets associated to the disease in Integrity. The number of DEGs and drug targets are based on Entrez Gene identifiers.
doi:10.1371/journal.pone.0060618.t001
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Next, each network object receives its final score based on the

interconnectivity to all differentially expressed genes:

Score(i)~
1

DDEGD
:

X

d[DEG

ICN(i,d)

where d represents a differentially expressed gene and DEG the set

of all.

Random Walk. A random walk describes the transition of a

random walker through a network [14]. It is regarded a global

method because the complete network structure is exploited in

these walks. In a random walk, a set of starting points in the

network is defined, corresponding to the differentially expressed

genes here. In each iteration, the random paths are extended by

transitioning to an adjacent network object with equal probability.

Additionally, a random walk has a certain probability of

terminating and restarting from the starting points. In each step,

the network objects are assigned probabilities describing the

chance of a random walk traversing this object. Upon convergence

of the probabilities, the network objects are ranked by their

visitation probabilities. Network objects with high probability

scores are most proximal to all starting points and are considered

candidates:

Pt
~(1{a):A

0
:Pt{1

za
:P0

Pt is a vector containing the visitation probabilities for all network

objects at time point t. A’ describes the normalized adjacency

matrix of the network, which has been transformed into a

stochastic matrix. P0 represents the vector of starting points for the

random walk, where each network object corresponding to a

differentially expressed gene is assigned the same starting

probability. Finally, a is a weighting factor, assigning a certain

probability for the random walk to continue and for a restart from

the starting points.

Network Propagation. Network Propagation is a global

method that takes the complete network topology into account for

prioritizing candidates [15]. Network Propagation is similar to

Random Walks in thought. First, the differentially expressed genes

are mapped to the corresponding network objects. Each of these

objects is assigned a score of 1, while the remaining network

objects are assigned a score of 0. These scores represent the prior

knowledge of the disease and are smoothed over the network to

prioritize candidates that are in close proximity to all differentially

expressed genes.

The scoring of the network objects can be regarded as

propagating flow through the network. The starting points of the

flow are the differentially expressed genes and in each iteration,

the flow is further pumped through the network until a steady state

is reached. The final flow that each network object received

corresponds to its final score and defines the rank of the object in

the list of candidates. In each iteration, the flow for the network

objects is updated as follows:

F t
~a

:A
0
:F t{1

z(1{a):F0

Ft is a vector containing the flow for each network object at time

point t. A9 corresponds to the adjacency matrix of the graph,

where each entry is normalized by the degrees of the source and

target nodes. The normalization by node degrees compensates for

the fact that nodes with many interactors have a higher chance of

picking up flow by chance and are thus more likely to be ranked

higher in the prioritization. F0 represents the prior knowledge

vector containing the scores for differentially expressed genes. The

algorithm terminates when the L1 norm of the difference between

F t and F t-1 drops below 1026.

Consensus Method and Performance Evaluation
Each of the network-based methods results in a ranked list of all

network objects producing four lists per disease. As shown

previously, combining predictions from multiple methods im-

proves the overall predictive power [16]. Therefore, we built a

consensus method using a logistic regression model that was

trained on the true positive drug targets from Integrity. The model

integrates the predictions from the four methods and results in a

final list of prioritized network objects for each disease. Analyses

were implemented in the R caret package [29].

In more detail, for each disease D, we built a matrix containing

the scores for each network object assigned by the four methods,

i.e. each row corresponds to a network object, and each column

corresponds to one method. Then, we added an additional column

to the matrix representing the output vector, which indicates

whether the network object is a known drug target for disease D or

not. If it is a known target, the column entry is 1 ( = positive) and 0

( = negative) otherwise. This matrix served as input for training a

logistic regression model for disease D.

Using a combined approach of model selection and perfor-

mance evaluation we obtained disease-specific regression models.

Precisely, we used 5-fold cross-validation as follows: we split the

input matrix and took 80% of the network objects as training set

and the remaining 20% as test set. We repeated this partitioning

step five times, i.e. always taking a different 80% and 20% such

that every network object occurs in a test set exactly once. For

each training set, a regression model was built and used to make

predictions for the left out test set. The model for each training set

was optimized using a bootstrapping procedure for parameter

tuning. Finally, the predictions made for all test sets were

aggregated, resulting in our final prediction list for disease D.

Since the datasets are very imbalanced in terms of positives and

negatives, random partitioning into training and test sets in the 5-

fold cross-validation would not be able to retain the original

balance between the positive and negative samples as found in the

complete dataset. Therefore, our modeling procedure includes a

constraint in the partitioning step, i.e. the step where we define the

training and test sets, known as stratified cross-validation. Here,

the class proportions for each fold are as close as possible to the

class proportions of the entire data set, thus maintaining the

original balance.

For each disease, the overall performance of the predictions was

assessed with a Receiver Operating Characteristics (ROC) curve,

using the Integrity drug targets for disease D as true positives and

the remainder treated as negatives.

Permutation Test to Assess Baseline Performance
We used a permutation test to assess the baseline performance

for each disease. If the input disease gene signature is independent of

the known drug targets, the performance of a random regression

model will be similar to the real disease model, because random

input genes will return comparably good results. On the other

hand, if the input disease gene signature and the known drug

targets are dependent, the regression model output will be better for

the real data than for the permuted.

For the permutation test, we kept the input matrix for disease D,

i.e. the rows correspond to the network objects and the columns to

the features. Now, we randomly permuted the assignment of

positives and negatives, i.e. the assignment of known drug targets

for the disease, and re-ran the complete modeling procedure. Each

Drug Target Prediction and Repositioning
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permutation test resulted in an AUC value, which may be greater

than 50% in an unbalanced setting. For each disease, we

performed the permutation test 100 times and calculated the

median of the resulting AUCs to obtain the baseline estimate for

each disease.

Clustering of Diseases
Disease similarity was analyzed at two levels: at the level of gene

expression signatures and at the level of predicted drug targets. At

the level of gene expression signatures, we calculated the distance

matrix for the disease pairs based on the overlap between sets of

differentially expressed genes using the Jaccard coefficient as a

measure of the overlap. The same approach was used for

calculating the distance matrix at the level of predicted dug

targets, where the top 100 predicted drug targets for each disease

were used for the calculation.

Next, the diseases were clustered using hierarchical clustering

with complete linkage. We used the Mantel test to assess the

similarity between the gene signature-based distance matrices and

the predicted drug target-based distance matrices [30]. The

Mantel test calculates the correlation between two matrices, where

the p-value is a departure from zero correlation over 1000

permutations of the rows and columns.

Results and Discussion

Drug Target Prediction and Repositioning Workflow
Here, we suggest an analysis workflow for drug target prediction

and repositioning for a disease of interest based on network

analysis of a disease-specific gene expression signature (Figure 1).

The majority of known drug targets are not differentially expressed

themselves in a disease and thus cannot be identified from the

disease gene expression signature directly. Analyzing the 30

indications used throughout this study revealed that the fraction of

targets that are differentially expressed in a disease varied between

0% and 42% (data not shown). However, drug targets should be

influential on the disease gene expression and thus in close

network proximity to differentially expressed genes.

We applied the workflow to 30 different diseases, ranging from

cancers to viral infections and metabolic diseases. Unlike other

diseases, viral infections are currently treated by targeting viral

proteins. However, the ability of viruses to quickly acquire

resistance mutations demands for exploring novel treatment

strategies. Therefore, large-scale RNA interference screens have

been performed to identify human host factors. Host factors are

essential for virus replication but are not lethal to human cells

when knocked down and can thus serve as potential new drug

targets [31–34]. We collected gene expression data for the diseases

from GEO and obtained a gene expression signature for each

disease as a set of genes that are differentially expressed in diseased

patients (Table 1). Each signature was overlaid onto a high-quality

molecular interaction network as an input to the candidate

prioritization methods, namely Neighborhood Scoring, Intercon-

nectivity, Random Walk and Network Propagation. Each of these

network-based prioritization methods resulted in a unique

prioritized list of candidate network objects. To aggregate these

lists, we built a consensus method using a logistic regression model,

trained on a set of manually annotated known drug targets from

the Integrity database, which led to an integrated list of prioritized

network objects (Table 1). These known drug targets are not

necessarily targeted by approved drugs, but by drugs at any

developmental stage. Although chances are high that early stage

drug targets eventually fail in clinical trials, such failures are

usually due to unwanted side effects and not due to biological

relatedness to the disease. Therefore, even early stage targets can

be invaluable for better understanding the biological mechanisms

of a disease.

According to our hypothesis, the prioritization of network

objects is directly related to their likelihood of being a drug target.

Correspondingly, we considered the higher scored network objects

as potential drug targets for a given disease. The top drug target

prediction for each disease is shown in Table 2, and the complete

list of predictions can be found in Table S1.

Investigating the importance of each of the four network

methods for building the logistic regression model, we observed

that for the majority of diseases, the global and local methods

equally contribute to the predictions. For some diseases the global

methods dominate the predictions, while the predictions for few

other diseases mainly rely on the local network methods. Table 3

summarizes the importance of each method for the predictions in

each disease. Overall, Network Propagation contributes the most

information for the majority of diseases, followed by Interconnec-

tivity. Random Walk and Neighborhood Scoring only rank first in

few diseases but as can be seen from the table, they do contribute

some information to the model. These findings highlight the

necessity of integrating diverse methods into the prioritization

process as they all add valuable information to the predictions.

Performance Evaluation of Drug Target Predictions
The drug target predictions made for each disease were assessed

using Receiver Operating Characteristics (ROC) plots. Here, the

true positive rate is plotted against the false positive rate at varying

thresholds. The performance of the predictor is measured by the

Area Under the Curve (AUC).

In order to evaluate the predictions, a set of true positives needs

to be defined. Here, we treated the Integrity drug targets as true

positives and all other network objects as negatives, although some

of these negatives might in fact be currently unknown drug targets

for the disease. As shown in Figure 2, the highest AUC was

achieved for the disease hyperplastic polyposis syndrome with a

median AUC of 93.19% closely followed by periodontitis with a

median AUC of 90.98% (the ROC plots with confidence intervals

for all 30 diseases are shown in File S1). The lowest performance

was obtained for ischemic stroke with a median AUC of 63.27%,

which is still well above a random prediction. For 14 diseases the

AUC was above 80%; 13 other diseases had a demonstrated AUC

higher than 70% and only 3 diseases had an AUC below 70%.

The top-performing disease, hyperplastic polyposis syndrome, is

associated with the fewest drug targets, which might lead to the

impression that fewer targets automatically result in better AUC

performance. However, liver cirrhosis, for example, has only 10

drug targets assigned but exhibits prediction performance below

70% (Table 2). Correlating the number of drug targets with the

resulting AUCs resulted in a Pearson correlation of around 20.4,

demonstrating that the performance is not dependent on the

number of drug targets assigned.

However, since our datasets are highly imbalanced, i.e. the

number of positives is much smaller than the number of negatives,

the baseline AUCs may be above 50%. Therefore, we used a

permutation test to compare the AUCs of the real prediction

performance to the corresponding baseline performance obtained

from the permutation test. As shown in Table 2, our method

results in much higher prediction performance than expected by

random chance. For most diseases, the baseline predictions result

in AUCs slightly above 50%. However, the best-performing

disease, hyperplastic polyposis syndrome, exhibits a baseline AUC

close to 70%, likely a result of the particularly low number of

known drug targets associated with the disease. This demonstrates

Drug Target Prediction and Repositioning
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that the baseline performance needs to be taken into account when

working with imbalanced datasets. Here, the baseline provides

additional confidence that the regression model performance is

improved by using meaningful disease-specific gene signatures and

not negatively affected by the imbalanced data.

As demonstrated, the performance of the drug target predictions

varies between the diseases, though all of them are well above the

baseline performance. The observed variability is likely due to a

number of factors. For instance, the number of genes in the disease

gene signatures varies, with acute myeloid leukemia and metastatic

melanoma containing more than 5,000 genes and Crohn’s disease

and idiopathic pulmonary fibrosis containing less than 15 genes.

Theoretically, a single gene in the disease gene signature is

sufficient for the network-based methods to work. However,

whether this number has an influence on the performance has

never been assessed. Furthermore, the number of known drug

targets differs for the diseases, ranging from more than 300 to less

than 5, with a minimum of two drug targets required per disease.

Additional factors such as the network topology, the location of the

differentially expressed genes in the network, and their degree

distribution may all contribute to the performance variability.

Finally, the incompleteness of biological networks in general can

have an influence on the performance of network-based methods

[35]. Global methods are likely more robust to missing edges than

local methods (as long as the network remains a large connected

component) as they exploit all paths available in the network.

However, the influence on performance may also vary between

diseases, since some diseases tend to be more local than others.

Table 3 shows that for some diseases the local methods outperform

the global methods and thus the robustness may depend on the

disease characteristics.

Analysis of Drug Target Predictions
Among the drug targets predicted for a certain disease there are

both completely novel drug targets, which have not been used to

treat any disease to date, and drug targets that may already be

used in the treatment of another disease. The first category of

predicted drug targets can be used for the development of

Table 2. Top drug target predictions for the 30 diseases.

Disease Name Top Drug Target Prediction AUC Baseline AUC

Hyperplastic polyposis syndrome SP1 93.19 69.83

Periodontitis Atp6v1c2 90.98 54.27

Scleroderma STAT1 90.39 55.48

Idiopathic pulmonary fibrosis PTPR-beta 88.26 53.34

Thyroid carcinoma c-Myc 85.67 54.03

AIDS LSm complex 84.94 53.29

Ischemic cardiomyopathy eIF1AY 84.92 58.14

Ovarian cancer Intelectin-1 83.83 57.33

Sickle-cell disease Dynactin complex 82.07 64.72

Acute myeloid leukemia SP1 81.95 51.62

Melanoma c-Myc 81.63 51.75

Sjogren’s syndrome P53 81.44 57.71

Colorectal cancer c-Myc 81.13 51.08

Hepatocellular carcinoma P53 80.19 51.88

Psoriasis 5T4 79.25 50.94

Melanoma with metastasis c-Myc 78.79 52.55

Septic shock c-Jun 78.68 52.32

HIV STAT1 77.64 51.33

Obesity SP1 76.65 51.48

Malaria c-Myc 75.79 51.33

Systemic lupus erythematosus STAT1 75.28 53.03

Parkinson’s disease Olfactory receptor 75.16 51.35

Sarcoidosis c-Myc 74.06 56.15

Diabetes type 1 EGR2 (Krox20) 72.89 52.58

Hepatitis C c-Myc 72.15 51.46

Ulcerative colitis c-Jun 71.74 52.14

Multiple sclerosis P53 71.51 50.94

Crohns disease VPS52 68.44 52.19

Liver cirrhosis STAT1 67.47 54.85

Ischemic stroke CLEC2D 63.27 51.18

For each disease, the name of the predicted drug target obtained from MetaBase and the AUC performance together with the respective baseline AUC performance
(based on permutation testing) is shown.
doi:10.1371/journal.pone.0060618.t002
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innovative therapeutic approaches, whereas the second class of

drug targets allows repositioning the corresponding drugs to the

disease of interest. Having proven that our network analysis

method is able to predict drug targets known for the disease of

interest with high accuracy for a wide range of diseases, we suggest

that this methodology can be applied for both the prediction of

novel drug targets and repositioning.

Figure 3 shows the distribution of the different types of drug

targets in the top 100 drug target predictions for each of the 30

diseases. Based on the annotations from the Integrity knowledge-

base, we categorized drug targets as either approved, in late

clinical stages, in early clinical stages, or in biological testing.

Interestingly, for most diseases, approximately half of the top drug

target predictions are unexploited, leading to potentially new

treatment strategies. The other half, however, contains both

known drug targets and a number of drug targets currently used to

treat other indications. Most importantly, for all diseases, we

predicted several drug targets that are already approved for a

different disease as well as some drug targets that are in late clinical

stages. Such drug targets can be readily repositioned for the

treatment of a disease of interest. The classification of the top 100

predicted drug targets for all diseases is provided in Table S2.

Predicted Drug Targets are Disease-Specific
The fact that the network analysis methods are able to predict

known drug targets for a particular disease with high performance

suggests that this analysis approach provides as an output

unknown disease-specific drug target candidates. To further

investigate the disease specificity of the predicted drug targets we

clustered the 14 analyzed diseases with an AUC above 80% based

on their overlap of differentially expressed genes as well as based

on the overlap between their top drug target predictions. Selecting

only those diseases with high predictive power assured that the

clustering results were not affected by noise but reflected biological

results. Diseases that share a high number of differentially

expressed genes have similar underlying pathology and pathways

involved. Therefore, if the network analysis methods predictions

are disease-specific, these diseases are generally expected to exhibit

Table 3. Overview of network analysis method importance.

Disease Name Network Propagation Random Walk Interconn-ectivity Neighborhood Scoring

Periodontitis 100 45.7 15 3.7

Thyroid carcinoma 88.8 47.2 83.2 0

Scleroderma 60.5 0 100 32

Idiopathic pulmonary fibrosis 0 0 100 1.9

AIDS 58.4 100 38.4 0

Ischemic cardiomyopathy 0 20.8 14.4 100

Liver cirrhosis 34.9 0 100 0

Melanoma with metastasis 100 26.2 80 0

Ovarian cancer 82.1 35.4 87.2 0

Sjogren’s syndrome 84.8 47.6 69.6 0

Sickle-cell disease 100 0 30 1

Hyperplastic polyposis syndrome 96.8 0 63.2 0

Colorectal cancer 88.6 19.1 100 0

Acute myeloid leukemia 89 34.1 100 0

HIV 64.2 21.9 100 0

Hepatocellular carcinoma 99.5 41.2 88.3 0

Sarcoidosis 80 74.1 0 61.4

Psoriasis 100 31.7 51.1 0

Melanoma 96.6 14.7 96 0

Obesity 100 36.6 69.7 0

Septic shock 88.1 22.1 70.6 0

Malaria 76.5 21 100 0

Diabetes type 1 92 61.3 75.9 0

Multiple sclerosis 100 0 58.1 0.1

Systemic Lupus Erythematosus 66.6 27.4 100 0

Parkinson’s disease 100 39.6 46 0

Ulcerative colitis 92.1 20 53.1 0.1

Hepatitis C 94.9 58.4 20 17.6

Crohns disease 0 0 100 1.9

Ischemic stroke 100 52.1 48.1 0

For each disease, the importance of the four network analysis methods for the consensus method is shown. The importance for each method ranges from very
important (100) to not important (0). The most informative feature for each disease is highlighted.
doi:10.1371/journal.pone.0060618.t003
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similar patterns of drug target predictions. Computing the

correlation between the distance matrices obtained from gene

expression signatures and drug target predictions, we found a

significant correlation between differential expression and target

based clustering (p-value 0.008), indicating that similar disease

gene signatures lead to similar drug target predictions. We also

performed this analysis for the complete list of diseases and found a

significant similarity between the distance matrices obtained from

gene expression signatures and drug target predictions as well.

As shown in Figure 4, diseases with higher overlap of

differentially expressed genes tend to result in more similar drug

target predictions. Cancer-related diseases, for instance, can be

grouped both at the level of differentially expressed genes and their

predicted drug targets. Interestingly, clustering at the level of

differentially expressed genes placed the melanoma samples more

distantly from the other types of cancer, and put AIDS into the

group of cancer-related diseases. On the level of drug targets,

however, all cancer-related diseases cluster closely together, while

AIDS is removed from this group of diseases. Therefore, although

diseases may appear to be similar at the level of differentially

expressed genes, their regulators and the biological processes

involved in the disease may be distinct. Using the results of the

drug target based clustering, we are thus able to identify diseases

with unique or common underlying biological processes. Further-

more, the results of the analysis provide additional evidence of the

disease-specificity of drug target candidates predicted based on our

network analysis.

STAT1 as a Novel Drug Target for Scleroderma
Scleroderma is a systemic autoimmune disease, which manifests

in the remodeling of connective tissue and fibrosis [36,37].

Current therapeutic approaches aim at decreasing both inflam-

matory processes and fibrosis [38]. According to the Integrity

knowledgebase, 83 drugs are currently under development for the

treatment of scleroderma and its symptoms, 35 of which have

already been approved or are in clinical trials. Depending on their

biological targets, the drugs are classified as stem cell therapy,

apoptosis inducers, angiogenesis modulators, and immunosup-

pressants. The small number of approved drugs and the limited

success of current treatment options, however, clearly demonstrate

the need for developing new treatment strategies.

As described previously, we obtained the disease-specific gene

expression signature for scleroderma from diseased and healthy

peripheral blood mononuclear cells (PBMCs) (GEO accession

GSE33463). PBMCs mainly include monocytes and lymphocytes,

which are important components of the immune system. It has

been demonstrated previously that monocytes from scleroderma

patients can stimulate proliferation of fibroblasts and thus exhibit

direct involvement in scleroderma-related fibrosis [39].

We first applied a pathway enrichment analysis to the dys-

regulated genes in order to identify physiological processes related

to the disease. Using the GeneGo Pathway Maps ontology we

found a significant enrichment of signaling pathways related to

immune responses [26]. In particular, the pathway ‘‘antiviral

actions of interferons’’ was the most enriched pathway and ‘‘IFN

Figure 2. Consensus method performance. (A) The plot shows the median AUC for each disease model. The highest AUC of 93.19% is achieved
for hyperplastic polyposis syndrome and the lowest for ischemic stroke with 63.27%. (B) and (C) show the ROC curves for hyperplastic polyposis
syndrome and periodontitis, which achieved the highest performance. The blue areas around the AUC curves represent the 95% confidence intervals.
doi:10.1371/journal.pone.0060618.g002
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alpha/beta signaling pathway’’ was found within the top ten. The

importance of interferon signaling for the development of

scleroderma has been suggested previously as interferon signaling

may contribute to the progression of different autoimmune

diseases [40–42].

Our drug target prediction identified the transcription factor

STAT1 as the most promising drug target for scleroderma.

According to the Integrity knowledgebase, STAT1 is not used as a

drug target to date and may thus be exploited for developing novel

treatment strategies. Interestingly, according to the gene expres-

sion signature, STAT1 is up-regulated in scleroderma. Further-

more, STAT1 is a key participant in interferon signaling [43,44],

which we identified as affected pathway in the enrichment analysis

of differentially expressed genes.

To demonstrate the signaling mechanism, which relates STAT1

to scleroderma-specific differentially expressed genes and sclero-

derma pathogenesis, we reconstructed a molecular network

around STAT1 (Figure 5). The network is composed of canonical

signaling pathways that are enriched with predicted drug targets

for scleroderma and scleroderma-specific differentially expressed

genes. Firstly, STAT1 is a transcription regulator of the majority of

these differentially expressed genes. Also, as shown in the network,

STAT1 activates TLR signaling, which results in the activation of

IFN signaling. STAT1 in turn is activated by the IFN-alpha/beta

receptor, which is triggered by IFN-alpha and IFN-beta.

According to the Integrity knowledgebase, the IFN-alpha/beta

receptor is a known drug target for scleroderma, and in our drug

target predictions, the receptor was identified as potential drug

target within the top 50 predictions. TNF-alpha signaling, which is

functionally related to and cross-talking with the IFN pathway,

was also included in the network. Strikingly, besides the top drug

target prediction STAT1, 14 of the network objects in this

reconstructed network were predicted within the top 100 in our

analysis, with eight of them within the top 20 predictions. Seven of

the predicted drug targets, namely TLR8, TNF-R1, MyD88,

RelA, CREB1, p300, and p53, are already known drug targets for

other diseases and can thus be readily repositioned to the

treatment of scleroderma. The remaining top drug target

predictions, DEC1, ATF-3, ISGF3, IFI44, and GBP1, have not

been associated with any disease yet and may be exploited for drug

development for scleroderma in the future.

A Common Core of Drug Targets for Cancers
As discussed previously, the close clustering of different cancer

types implies similarity of the underlying pathological processes,

which may allow for the repositioning of drug targets between

Figure 3. Analysis of top 100 drug target predictions. Blue represents the number of known drug targets for the disease. Drug targets that are
currently not used to treat any disease are shown in red. The remainder represents drug targets that are used to treat other indications (highlighted
by a black box). These drug targets are grouped into approved drugs, late stage clinical phases, early clinical phases, and biological testing.
doi:10.1371/journal.pone.0060618.g003
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different cancer types. The prediction of similar drug targets for

different types of cancers further led to the identification of a

common core of drug targets shared by a multitude of cancers.

Figure 6 shows a network of 48 predicted drug targets that have

been predicted within the top 100 for thyroid cancer, colon

cancer, ovarian cancer, melanoma, acute myeloid leukemia, and

hepatocellular carcinoma. A disease biomarker enrichment

analysis revealed that the predicted drug targets are mostly

enriched in neoplasms and related diseases. Furthermore, the drug

targets are found to be highly enriched in cancer-specific and

cancer-related signaling pathways obtained from the KEGG

database [45]. According to the Metabase resource, most of these

predicted drug targets, 42 out of the 48 genes, are known

biomarkers for the disease category of neoplasms and 17 of them

correspond to known drug targets for at least one of the six cancer

types mentioned previously (Table S3). Drug targets that have

already been associated with some type of cancer can readily be

repositioned to the treatment of other cancers, while novel drug

target predictions may be exploited for new treatment options in a

multitude of cancers.

c-Myc was predicted as the number one drug target for

colorectal cancer, thyroid cancer, and melanoma (Table 2).

According to the Integrity knowledgebase, c-Myc is not used as

a drug target and may thus lead to novel treatment options for

multiple cancers. The reconstructed c-Myc centered network

reveals that c-Myc serves as a common endpoint of cancer

regulatory cascades leading to the regulation of cell proliferation,

which is the basic pathological process in cancer (Figure 7).

Downstream targets of c-Myc likewise regulate proliferation and in

addition metabolic processes, which are also considered prominent

in cancer pathogenesis. The downstream targets are up-regulated

in all three cancer types and therefore, targeting c-Myc may lead

to therapeutic approaches that can be applied to a variety of

cancers.

Considering that c-Myc is the topmost drug target prediction

and that its downstream targets are consistently dys-regulated, c-

Myc seems to be a promising target for therapy of the three cancer

types. Indeed, c-Myc plays a well-known role in cancer pathology

and it has been discussed as a potential target for anticancer

therapy for more than a decade [46–48]. Promising applications of

anti-c-Myc treatment resulted in tumor regression in vitro and in

animal models [49–51]. However, when selecting c-Myc as a

target for anti-cancer therapy, two important points should be

considered. First, c-Myc induces numerous signaling pathways,

including but not limited to tumor suppressing pathways [46,52].

Therefore, the activity of all c-Myc induced pathways and cross-

talking pathways need to be taken into account in their complexity

to ensure responsiveness to the treatment. Second, c-Myc

inhibition can have toxic side effects since it is ubiquitously

expressed and exhibits activity in both normal and cancer tissues.

Toxicity in particular is a serious issue for the majority of existing

anti-cancer therapies and not specific to c-Myc treatment. A

possible strategy to reduce the toxic side effects of c-Myc inhibition

is the limited exposure to c-Myc inhibitors, which could be still

beneficial for highly responsive patients identified based on patient

stratification. Although such strategies have not yet been

developed, promising results have been demonstrated in animal

models of c-Myc-induced tumor genesis, which show tumor

regression even after brief exposure to c-Myc inactivation [51].

Besides the common target, c-Myc, each cancer also involves

unique regulatory mechanisms of cell proliferation. Targeting of

these genes might thus lead to more specific treatment options for

a particular cancer type. We selected these unique drug targets for

each cancer type based on several criteria: the targets should be

up-regulated in the respective cancer type, they should be positive

regulators of cell proliferation, and they should be contained

within the top 100 drug target predictions. For each of the three

cancer types, we identified a number of genes that are already

known drug targets for other diseases, such as TGF-beta 1 for

thyroid cancer, p27KIP1 for colon cancer, and STAT5A for

melanoma. Since drugs are already known for these genes, they

may be readily repositioned for treatment of the respective cancer

Figure 4. Clustering of 14 diseases. The clustering based on the gene expression signatures is shown on the left and the clustering based on the
top 100 drug target predictions to the right. Cancer-related clusters are highlighted in blue and the placement of AIDS in the two clusterings is
highlighted in red.
doi:10.1371/journal.pone.0060618.g004
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types. Furthermore, several of these genes correspond to currently

unexploited drug targets, namely H-Ras, SOX9, Shc, ETS1, and

STAT1, potentially leading to novel treatment strategies.

COX-2 as a Repositioning Candidate for Treatment of
Diabetes Type 1
COX-2 is an inducible enzyme participating in the production

of prostaglandins, which in turn function as regulators of various

immunological processes. Prominent COX-2 inhibitors include

ibuprofen and aspirin and are commonly used for the treatment of

arthritis and pain, but have also been explored for cancer

treatment. Interestingly, our method predicts COX-2 with high

confidence as drug target candidate for diabetes type 1. It ranks at

position 6 in the prioritized list of network objects and represents

the topmost candidate for drug target repositioning (Table S2).

However, COX-2 has not been suggested as potential drug target

for diabetes type 1 to date and it does not represent an obvious

repositioning candidate as the current indications appear unrelat-

ed to diabetes type 1.

Diabetes type 1 is characterized by progressive failure of insulin

producing beta-cells caused by the development of autoimmune

responses directed to beta-cells. The modulation of immune

processes and inflammation is considered a potential target for

treatment and prevention of insulin dependent diabetes [53,54]. It

has been demonstrated previously that COX-2 is over-expressed

in monocytes of patients with diabetes type 1, which we also

observe as shown in Figure 8. COX-2 over-expression suppresses

the expression of interleukin-2 (IL-2) and its receptor in T-cells,

which is expected to disrupt normal regulation of T-cells in

immune responses [55]. As depicted in Figure 8, the mechanism

can be mediated through the production of prostaglandin E2, for

instance, which suppresses the production of IL-2 and the

expression of the IL-2 receptor, resulting in the suppression of

IL-2 signaling [56-58]. Disruption of the IL-2 pathway plays a

significant role in the development of autoimmunity and insulin-

dependent diabetes [59]. Moreover, COX-2 inhibitors demon-

strated good results in the prevention of insulin-dependent

diabetes development in preliminary experimental studies in

laboratory animals [60]. Therefore, we believe that COX-2 may

be a promising repositioning candidate for diabetes type 1 therapy

with a number of approved drugs readily available.

Figure 5. Network reconstruction for STAT1 signaling in scleroderma. TLR signaling is activated by STAT1, which in turn activates IFN
signaling, resulting in increased STAT1 activity. Predicted drug targets (within the top 100) for scleroderma are highlighted with colored stars, where
the numbers correspond to the rank in the drug target predictions. Cyan stars represent known drug targets for scleroderma. Purple stars correspond
to drug targets that have been associated with other diseases and can be readily repositioned to the treatment of scleroderma, while yellow stars
indicate unexploited drug targets that can be used for the development of novel treatment strategies. Red thermometers show significantly up-
regulated genes in scleroderma, blue thermometers show down-regulated genes. Green arrows correspond to activation edges, red arrows represent
inhibition edges.
doi:10.1371/journal.pone.0060618.g005
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Conclusions

We developed a novel computational approach for drug target

prediction and repositioning starting from sets of disease-specific

differentially expressed genes as the molecular manifestation of

pathology. The majority of known drug targets are not differen-

tially expressed in the disease themselves and selecting candidates

from the disease gene expression signature is thus a limiting factor.

Our method, however, is capable of identifying candidate targets

independent of their direct dys-regulation in the disease. We

suggest calculating putative targets as regulators of the disease

expression patterns and ranking them based on network proximity

to disease DEGs. The proximity was computed by a set of local

and global network analysis algorithms. The predictions made by

individual algorithms were combined using a logistic regression

model trained on the true positive drug targets from Integrity. The

approach was evaluated using a comprehensive set of manually

curated drug targets for 30 diseases and demonstrated high

performance with AUCs ranging between 63.27% and 93.19% for

different diseases.

Figure 6. Core network of predicted drug targets in cancers. (A) shows the commonly predicted drug targets (within the top 100 predictions)
for colorectal cancer, thyroid cancer, ovarian cancer, melanoma, acute myeloid leukemia, and hepatocellular carcinoma. Yellow stars represent known
disease biomarkers for neoplasms obtained from the Metabase resource. Cyan stars highlight genes that are known drug targets for at least one of
the six types of cancer. (B) shows diseases that are significantly associated with the predicted drug targets. The diseases are ordered by the
percentage of genes they cover. Neoplasms are found to cover all of the predicted drug targets. (C) shows the most enriched KEGG pathways for the
predicted drug targets [45]. Cancer-related pathways are most enriched followed by pathways for specific cancers as well as cancer-related signaling
pathways.
doi:10.1371/journal.pone.0060618.g006
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Grouping of predicted drug targets reflects mechanistic

anchoring for disease pathology. In one case study, several high-

scoring predicted targets for scleroderma formed a subnetwork

consisting of IFN and TLR signaling pathways and centered

around the transcription factor STAT1. The network was highly

enriched with known targets for scleroderma, which validates

testing of other components of this mechanism, i.e. the predicted

targets, as novel targets and candidates for repositioning. In a

second case study, we compared sets of predicted targets for

melanoma, thyroid and colon cancers. The targets formed a

common core around c-Myc signaling with additional unique

modules in each cancer. Both common and unique signaling

contributed to regulation of proliferation. Finally, we were able to

show the potential of our method for repositioning drug targets

using diabetes type 1 as an example. While the repositioning

candidate, COX-2, is a well-known target for pain and

inflammation treatment, these diseases are not related to diabetes

type 1 and the repositioning of COX-2 is thus unsuspected. Since

our method prioritizes candidates based on the disease gene

expression signature only and does not take potential disease

similarities into account, truly novel target – disease associations

can emerge.

Additional refinements may improve our target prediction

method. For instance, drug targets may be filtered for unspecific

candidates. The transcription factor SP1, for example, is highly

ranked in a variety of diseases. SP1 regulates a large number of

genes and is known to be involved in many cellular processes,

including cell differentiation, cell growth, apoptosis, immune

responses, response to DNA damage, and chromatin remodeling.

Naturally, this makes SP1 a good candidate for diseases in general,

but is not specific to a particular disease. Based on such biological

knowledge, drug target predictions can be further limited to the

most disease-specific candidates only. Besides filtering the final

candidate lists, the construction of context-specific networks will

allow for prioritizing those network objects that are actually

present and interacting in a diseased cell. Our method is also

readily extendible for both novel proximity algorithms and other

types of experimental data, for instance whole genome sequencing.

Figure 7. Network reconstruction for c-Myc as a common drug target in different cancers. The blue, green and magenta boxes show
uniquely up-regulated genes that were predicted as drug targets (within the top 100 predictions) for the indicated cancer type and that contribute to
the regulation of cell proliferation. c-Myc (in the middle) is the top drug target prediction for all three cancer types and is involved in the regulation of
cell proliferation as well. Downstream targets of c-Myc are shown in the gray box below c-Myc and are uniformly up-regulated in all three cancer
types. Cyan stars represent known drug targets for the respective cancer type. Purple stars correspond to drug targets that have been associated with
other diseases and can be readily repositioned to the treatment of this type of cancer, while yellow stars indicate unexploited drug targets that can
be used for the development of novel treatment strategies. Red thermometers show significantly up-regulated genes in (1) Thyroid Cancer, (2) Colon
Cancer, and (3) Melanoma.
doi:10.1371/journal.pone.0060618.g007
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The fact that drug targets are not necessarily differentially

expressed in the corresponding diseases raises questions about the

applicability of expression profiling alone in drug discovery. Our

approach helps to overcome this drawback and is well applicable

for both patient stratification in clinical trials and personalized

treatment. In the former case, the patient cohorts can be defined

based on similarity of sets of predicted targets, rather than on

global expression profiles similarity. In personalized care, expres-

sion, genetic and other OMICs profiles from individual biopsies

can be used as inputs for optimal target identification. Certainly,

both hypotheses have to be thoroughly tested in clinical trials.

Supporting Information

File S1 Prediction performance for 30 diseases. The file

contains the ROC plots for all 30 diseases. The blue area around

each curve represents the 95% confidence interval.

(DOC)

Table S1 List of predicted drug targets for 30 diseases.

The table contains the prioritized list of network objects for each

disease. Each network object is listed with the name as contained

in the Metabase resource and its prediction score. Furthermore,

each network object is annotated with drug target information

from Integrity, where known drug targets for a given disease are

marked with an x.

(ZIP)

Table S2 Top 100 drug targets for 30 diseases. The table

contains annotations for the top 100 drug target predictions for all

30 diseases. Each network object corresponds to either a known

drug targets for the given disease, a known drug target for other

diseases, or no current drug target. Furthermore, network objects

with increased expression levels are highlighted as they may be

inhibited for treatment.

(XLS)

Table S3 Commonly predicted cancer drug targets. The

table lists all network objects that were commonly predicted as

cancer drug targets within the top 100 for six different cancer

types. For each network object, the table highlights the types of

cancer for which the network object is a known drug target.

Figure 8. Network reconstruction for COX-2 as repositioning candidate for diabetes type 1 therapy. Over-expression of COX-2 in
monocytes leads to an increased production of prostaglandin E2. Prostaglandin E2 activates T-cell signaling through the PGE2 receptor resulting in
increased cAMP levels and activation of the transcription factors CREB1 and CREM. cAMP inactivates the IL-2 receptor of T-cells, while CREM acts as
repressor for IL-2. The inhibition of IL-2 and the IL-2 receptor result in immune regulation dysfunction leading to autoimmunity and ultimately the
death of beta-cells, which is the cause of diabetes type 1. Predicted drug targets (within the top 100) for diabetes are highlighted with colored stars,
where the numbers correspond to the rank in the drug target predictions. Purple stars correspond to drug targets that have been associated with
other diseases and can be readily repositioned to the treatment of diabetes type 1. Red thermometers show significantly up-regulated genes in
diabetes type 1. Green arrows correspond to activation edges, red arrows represent inhibition edges.
doi:10.1371/journal.pone.0060618.g008
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Furthermore, network objects corresponding to known cancer

biomarkers are emphasized.

(XLS)
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