
DrugEx v2: De Novo Design of Drug Molecule by Pareto-1 

based Multi-Objective Reinforcement Learning in 2 

Polypharmacology 3 

Xuhan Liu1, Kai Ye2, Herman W. T. van Vlijmen1,3, Michael T. M. Emmerich4, Adriaan 4 

P. IJzerman1, Gerard J. P. van Westen1, * 5 

 6 

1Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 7 

55, Leiden, The Netherlands 8 

2School of electronics and information engineering, Xi’an Jiaotong University, 28 9 

Xianning W Rd, Xi’an, China 10 

3Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340, Beerse, Belgium 11 

4Leiden Institute of Advanced Computer Science, Einsteinweg55, Leiden, The 12 

Netherlands 13 

 14 

*To whom correspondence should be addressed: Gerard J. P. van Westen, Drug 15 

Discovery and Safety, Leiden Academic Centre for Drug Research, Einsteinweg 55, 16 

Leiden, The Netherlands. Tel: +31-71-527-3511. Email: gerard@lacdr.leidenuniv.nl. 17 

 18 

Email Address of other authors: (1) Xuhan Liu: x.liu@lacdr.leidenuniv.nl; (2) Kai Ye: 19 

kaiye@xjtu.edu.cn; (3) Herman W. T. van Vlijmen: hvvlijme@its.jnj.com; (4) Michael 20 

T. M. Emmerich: m.t.m.emmerich@liacs.leidenuniv.nl; (5) Adriaan P. IJzerman: 21 

ijzerman@lacdr.leidenuniv.nl.22 

 23 

mailto:gerard@lacdr.leidenuniv.nl
mailto:x.liu@lacdr.leidenuniv.nl
mailto:kaiye@xjtu.edu.cn
mailto:hvvlijme@its.jnj.com
mailto:ijzerman@lacdr.leidenuniv.nl


Abbreviations 24 

ARs Adenosine Receptors 
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Abstract 27 

In polypharmacology, ideal drugs are required to bind to multiple specific targets to 28 

enhance efficacy or to reduce resistance formation. Although deep learning has 29 

achieved breakthrough in drug discovery, most of its applications only focus on a single 30 

drug target to generate drug-like active molecules in spite of the reality that drug 31 

molecules often interact with more than one target which can have desired 32 

(polypharmacology) or undesired (toxicity) effects. In a previous study we proposed a 33 

new method named DrugEx that integrates an exploration strategy into RNN-based 34 

reinforcement learning to improve the diversity of the generated molecules. Here, we 35 

extended our DrugEx algorithm with multi-objective optimization to generate drug 36 

molecules towards more than one specific target (two adenosine receptors, A1AR and 37 

A2AAR, and the potassium ion channel hERG in this study). In our model, we applied 38 

an RNN as the agent and machine learning predictors as the environment, both of which 39 

were pre-trained in advance and then interplayed under the reinforcement learning 40 

framework. The concept of evolutionary algorithms was merged into our method such 41 

that crossover and mutation operations were implemented by the same deep learning 42 

model as the agent. During the training loop, the agent generates a batch of SMILES-43 

based molecules. Subsequently scores for all objectives provided by the environment 44 

are used for constructing Pareto ranks of the generated molecules with non-dominated 45 

sorting and Tanimoto-based crowding distance algorithms. Here, we adopted GPU 46 

acceleration to speed up the process of Pareto optimization. The final reward of each 47 

molecule is calculated based on the Pareto ranking with the ranking selection algorithm. 48 

The agent is trained under the guidance of the reward to make sure it can generate more 49 

desired molecules after convergence of the training process. All in all we demonstrate 50 

generation of compounds with a diverse predicted selectivity profile toward multiple 51 

targets, offering the potential of high efficacy and lower toxicity. 52 

 53 
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Introduction 57 

The ‘one drug, one target, one disease’ paradigm, which has dominated the field of drug 58 

discovery for many years, has made great contributions to drug development and the 59 

understanding of their molecular mechanisms of action [1]. However, this strategy is 60 

encountering problems due to the intrinsic promiscuity of drug molecules, i.e. recent 61 

studies showed that one drug molecule could interact with six protein targets on average 62 

[2]. Side effects of drugs caused by binding to unexpected off-targets are one of the 63 

main reasons of clinical failure of drug candidates and even withdrawal of FDA-64 

approved novel drugs [3,4]. Up to now, more than 500 drugs have been withdrawn from 65 

the market due to fatal toxicity [5]. Yet, disease often results from the perturbation of 66 

biological systems by multiple genetic and/or environmental factors, thus complex 67 

diseases are more likely to require treatment through modulating multiple targets 68 

simultaneously. Therefore, it is crucial to shift the drug discovery paradigm to 69 

“polypharmacology” for many complex diseases [6,7]. 70 

 71 

In polypharmacology, ideal drugs are required to bind to multiple specific targets to 72 

enhance efficacy or to reduce resistance formation (in which case multiple targets can 73 

be multiple mutants of a single target) [8]. It has been shown that partial inhibition of a 74 

small number of targets can be more efficient than the complete inhibition of a single 75 

target, especially for complex and multifactorial diseases [6,9]. In parallel, common 76 

structural and functional similarity of proteins results in drugs binding to off-targets; 77 

therefore we also demand drugs to have a high target selectivity to avoid binding to 78 

unwanted target proteins. For example, the adenosine receptors (ARs) are a class of 79 

rhodopsin-like G protein-coupled receptors (GPCRs) having adenosine as the 80 

endogenous ligand. Adenosine and ARs are ubiquitously distributed throughout the 81 

human tissues, and their interactions trigger a wide spectrum of physiological and 82 

pathological functions. There are four subtypes of ARs, including A1, A2A, A2B and A3, 83 

each of which has a unique pharmacological profile, tissue distribution, and effector 84 

coupling [10,11]. The complexity of adenosine signaling and the widespread 85 



distribution of ARs have always given rise to challenges in developing target-specific 86 

drugs [12]. In addition to the similarity of the pharmacophores of some generic proteins 87 

(e.g. human Ether-à-go-go-Related Gene, hERG) should also be taken into 88 

consideration as they can be sensitive to binding exogenous ligands and cause side 89 

effects. hERG is the alpha subunit of a potassium ion channel [13] and has an inclination 90 

to interact with drug molecules because of its larger inner vestibule as the ligand binding 91 

pocket [14]. When hERG is inhibited this may cause long QT syndrome [15]. 92 

 93 

In addition to visual recognition, natural language processing and gaming, deep 94 

learning has been increasingly applied in drug discovery [16]. It does not only perform 95 

well in prediction models for virtual screening, but is also used to construct generative 96 

models for drug de novo design and/or drug optimization [17] . For example, our group 97 

implemented a fully-connected deep neural network (DNN) to construct a 98 

proteochemometric model (PCM) with all high quality ChEMBL data [18] for 99 

prediction of ligand bioactivity [19]. Its performance was shown to be better than other 100 

shallow machine learning methods. Moreover, we also developed a generative model 101 

with recurrent neural networks (RNNs), named DrugEx for SMILES-based de novo 102 

drug design [20]. It was shown that the generated molecules had large diversity and 103 

were similar to known ligands to some extent to make sure that reliable and diverse 104 

drug candidates can be designed.  105 

 106 

Since the first version of DrugEx (v1) demonstrated effectiveness for designing novel 107 

A2AAR ligands, we began to extend this method for drug design toward multiple targets. 108 

In this study, we updated DrugEx to the second version (v2) through merging crossover 109 

and mutation operations, which were derived from evolutionary algorithms, into the 110 

reinforcement learning (RL) framework. In order to evaluate the performance of our 111 

additions we tested our method into both multi-target and target-specific cases. For the 112 

multi-target case, desired molecules should have a high affinity towards both A1AR and 113 

A2AAR. In the target-specific case, on the other hand, we required molecules to have 114 

only high affinity towards the A2AAR but a low affinity to the A1AR for. In order to 115 



decrease toxicity and adverse events, molecules were additionally obliged to have a low 116 

affinity for hERG in both cases. It is worth noting that generated molecules should also 117 

be chemically diverse and have similar physico-chemical properties to known ligands. 118 

All python code for this study is freely available at 119 

http://github.com/XuhanLiu/DrugEx. 120 

 121 

Materials and Methods 122 

Data Source 123 

Drug like molecules represented as SMILES format were downloaded from the 124 

ChEMBL database (version 26). After data preprocessing, including recombining 125 

charges, removing metals and small fragments, we collected 1.7 million molecules and 126 

named it the ChEMBL set, used for SMILES syntax learning. This data preprocessing 127 

step was implemented in RDKit [21]. Furthermore, 25,731 ligands were extracted from 128 

the ChEMBL database to construct the LIGAND set, which had bioactivity 129 

measurements towards the human A1AR, A2AAR, and hERG. The LIGAND set was 130 

used for constructing prediction models for each target and fine-tuning the generative 131 

models. The number of ligands and bioactivities for these three targets in the LIGAND 132 

set is represented in Table 1. Duplicate items were removed and if multiple 133 

measurements for the same ligands existed, the average pChEMBL value (pX, 134 

including pKi, pKd, pIC50, or pEC50) was calculated. To judge if a molecule is active 135 

or not, we defined the threshold of bioactivity as pX = 6.5. If the pX < 6.5, the 136 

compound was predicted as undesired (low affinity to the given target); otherwise, it 137 

was regarded as desired (having high affinity) [19]. 138 

 139 

Prediction Model 140 

In order to predict the pX for each generated molecule for a given target, regression 141 

QSAR models were constructed with different machine learning algorithms. To 142 

increase the chemical diversity available for the QSAR model we included lower 143 

quality data without pChEMBL value, i.e. molecules that were labeled as “Not Active” 144 



or without a defined pX value. For these data points we defined a pX value of 3.99 145 

(slightly smaller than 4.0) to eliminate the imbalance of the dataset and guarantee the 146 

model being able to predict the negative samples. During the training process, sample 147 

weights for low quality data were set as 0.1, while the data with exact pX were set as 148 

1.0. This allowed us to particularly incorporate the chemical diversity, while avoiding 149 

degradation of model quality. Descriptors used as input were ECFP6 fingerprints [22] 150 

with 2048 bits (2048 dimensions, or 2048D) calculated by the RDKit Morgan 151 

Fingerprint algorithm (using a three-bond radius). Moreover, the following 19D 152 

physico-chemical descriptors were used: molecular weight, logP, number of H bond 153 

acceptors and donors, number of rotatable bonds, number of amide bonds, number of 154 

bridge head atoms, number of hetero atoms, number of spiro atoms, number of heavy 155 

atoms, the fraction of SP3 hybridized carbon atoms, number of aliphatic rings, number 156 

of saturated rings, number of total rings, number of aromatic rings, number of 157 

heterocycles, number of valence electrons, polar surface area and Wildman-Crippen 158 

MR value. Hence, each molecule in the dataset was transformed into a 2067D vector. 159 

Before being input into the model, the value of input vectors were normalized to the 160 

range of [0, 1] by the MinMax method. Model output value is the probability whether 161 

a given chemical compound was active based on this vector. 162 

 163 

Table 1: The number of ligands and bioactivities for each of the human protein targets A1AR, 164 

A2AAR and hERG in the LIGAND set. 165 

 A1AR A2AAR hERG 

Total Ligands 7700 8406 16733 

Bioactivities 13100 12129 22156 

Active Ligands 

(pX >= 6.5) 
1990 2511 924 

Inactive Ligands 

(pX < 6.5) 
1859 1709 6438 

Inactive Ligands 

(No pX) 
1764 1993 1275 

Other Ligands 2087 4704 8906 



 166 

Four algorithms were benchmarked for QSAR model construction, Random Forest 167 

(RF), Support Vector Machine (SVM), Partial Least Squares regression (PLS), and 168 

Multi-task Deep Neural Network (MT-DNN). RF, SVM and PLS models were 169 

implemented through Scikit-Learn [23], and the MT-DNN model through PyTorch [24]. 170 

In the RF, the number of trees was set as 1000 and split criterion was “gini”. In the 171 

SVM, a radial basis function (RBF) kernel was used and the parameter space of C and 172 

γ were set as [2-5, 215] and [2-15, 25], respectively. In the MT-DNN, the architecture 173 

contained three hidden layers activated by a rectified linear unit (ReLU) between input 174 

and output layers, and the number of neurons were 2048, 4000, 2000, 1000 and 3 in 175 

these subsequent layers. The training process consisted of 100 epochs with 20% of 176 

hidden neurons randomly dropped out between each layer. The mean squared error was 177 

used to construct the loss function and was optimized by the Adam algorithm [25] with 178 

a learning rate of 10-3. 179 

 180 

Generative Model 181 

As in DrugEx v1, we organized the vocabulary for the SMILES construction. Each 182 

SMILES-format molecule in the ChEMBL and LIGAND sets was split into a series of 183 

tokens. Then all tokens existing in this dataset were collected to construct the SMILES 184 

vocabulary. The final vocabulary contained 85 tokens (Table S1) which were selected 185 

and arranged sequentially into valid SMILES sequences through correct grammar.  186 

 187 

The RNN model constructed for sequence generation contained six layers: one input 188 

layer, one embedding layer, three recurrent layers and one output layer. After being 189 

represented by a sequence of tokens, molecules can be received as categorical features 190 

by the input layer. In the embedding layer, vocabulary size, and embedding dimension 191 

were set to 85 and 128, meaning each token could be transformed into a 128 192 

dimensional vector. For a recurrent layer, the long-short term memory (LSTM) was 193 

used as recurrent cell with 512 hidden neurons instead of the gated recurrent unit (GRU) 194 

[26] which was employed only in DrugEx v1. The output at each position was the 195 



probability that determined which token in the vocabulary would be chosen to grow the 196 

SMILES string. 197 

 198 

During the training process we put a start token (GO) at the beginning of a batch of data 199 

as input and an end token (END) at the end of the same batch of data as output. This 200 

ensures that our generative network could choose correct tokens each time based on the 201 

sequence it had generated previously. A negative log likelihood function was used to 202 

construct the loss function to guarantee that the token in the output sequence had the 203 

largest probability to be chosen after being trained. In order to optimize the parameters 204 

of the model, the Adam algorithm [25] was used for the optimization of the loss 205 

function. Here, the learning rate was set at 10-3, the batch size was 512, and training 206 

steps were set to 1000 epochs. 207 

 208 

Reinforcement Learning 209 

SMILES sequence construction under the RL framework can be viewed as a series of 210 

decision-making steps (Fig. 1). The generator (G) and the predictors (Q) are regarded 211 

as the policy and reward function, respectively. In this study we use multi-objective 212 

optimization (MOO), and each objective is a requirement to be achieved maximally for 213 

each scenario, albeit with differences in desirability. Our aim was defined by the 214 

following problem statement: 215 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅1, 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅2, … , 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑅𝑛 216 

Here, n equals the number of objectives (n = 3 in this study), and Ri, the score for each 217 

objective i, was calculated as follows: 218 

𝑅𝑖 = { 

𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝑖), 𝑖𝑓 ℎ𝑖𝑔ℎ 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
 1 −𝑚𝑖𝑛𝑚𝑎𝑥(𝑝𝑋𝑖), 𝑖𝑓 𝑙𝑜𝑤 𝑎𝑓𝑓𝑖𝑛𝑖𝑡𝑦 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 0, 𝑖𝑓 𝑆𝑀𝐼𝐿𝐸𝑆 𝑖𝑛𝑣𝑎𝑙𝑖𝑑  219 

 220 



 221 

Fig. 1: The workflow of the training process of our deep learning-based molecule generator DrugEx2 utilizing reinforcement learning. After the generator has 222 

been pre-trained/fine-tuned, (1) a batch of SMILES are generated by sampling tokens step by step based on the probability calculated by the generator; (2) These valid 223 

SMILES are parsed to be molecules and encoded into descriptors to get the predicted pXs with well-trained predictors; (3) The predicted pXs are transformed into a 224 

single value as the reward for each molecule based on Pareto optimization; (4) These SMILES sequences and their rewards are sent back to the generator for training 225 

with policy gradient methods. These four steps constitute the training loop of reinforcement learning. 226 



here the pXi (the range from 3.0 to 10.0) was the prediction score given by each 227 

predictor for the ith target, which was normalized to the interval [0, 1] as the reward 228 

score. If having no or low affinity for a target was required (off-target) this score would 229 

be subtracted from 1 (inverting it).  230 

 231 

In order to evaluate the performance of the generators, three coefficients are calculated 232 

with the generated molecules, including validity, desirability, and uniqueness which are 233 

defined as: 234 Validity = 𝑁𝑣𝑎𝑙𝑖𝑑𝑁𝑡𝑜𝑡𝑎𝑙  235 Desirability = 𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑁𝑡𝑜𝑡𝑎𝑙  236 Uniqueness = 𝑁𝑢𝑛𝑖𝑞𝑢𝑒𝑁𝑡𝑜𝑡𝑎𝑙  237 

where Ntotal is the total number of molecules, Nvalid is the number of the molecules parsed 238 

by the valid SMILES sequences, Nunique is the number of molecules which are different 239 

from others in the dataset, and Ndesired is the number of desired molecules. Here, we 240 

determine if generated molecules are desired based on the reward Ri if all of them are 241 

larger than the threshold (0.5 by default when pX = 6.5). In addition, we calculated SA 242 

score (from 1 to 10) for each molecule to measure the synthesizability of which larger 243 

value means more difficult to be synthesized. And we also computed QED (from 0 to 244 

1) score to evaluate the drug-likeness of which larger value means more drug-like for 245 

each molecule. The calculation of both SA and QED scores were implemented by 246 

RDKit. 247 

 248 

To orchestrate and combine these different objectives, we compared two different 249 

reward schemes: the Pareto front (PF) scheme and the weighted sum (WS) scheme. 250 

These were defined as follows: 251 

(a) Weighted sum (WS) scheme: the weight for each function is not fixed but 252 

dynamic, and depends on the desired ratio for each objective, which is defined as: 253 

r𝑖 = 𝑁𝑖𝑠𝑁𝑖𝑙  254 



here for objective i the Ns 
i  and Nl 

i  are the number of generated molecules which have 255 

a score smaller or larger than the threshold. Moreover, the weight is normalized ratio 256 

defined as: 257 𝑤𝑖 = 𝑟𝑖∑ 𝑟𝑘𝑀𝑘=1  258 

and the final reward R* was calculated by 259 

𝑅∗ =∑𝑤𝑖𝑅𝑖𝑛
𝑖=1  ,  260 

(b) Pareto front (PF) scheme: operates on the desirability score, which is defined as 261 

D𝑖 = {  1, 𝑖𝑓 𝑅𝑖 > 𝑡𝑖 𝑅𝑖 𝑡𝑖⁄ , 𝑖𝑓 𝑅𝑖 ≤ 𝑡𝑖 262 

where ti is the threshold of the ith objective, and we set all of objectives had the same 263 

threshold as 0.5 as stated in the methods. Given two solutions m1 and m2 with their 264 

scores (x1, x2, ..., xn) and (y1, y2, …, yn), then m1 is said to Pareto dominate m2 if and only 265 

if:   266 ∀ j ∈ {1,… , n}: 𝑥𝑗  ≥ 𝑦𝑗  𝑎𝑛𝑑 ∃ j ∈ {1, … , n}: 𝑥𝑗 > 𝑦𝑗 267 

otherwise, m1 and m2 are non-dominated with each other. After the dominance between 268 

all pair of solutions being determined, the non-dominated scoring algorithm [27] is 269 

exploited to obtain a rank of Pareto frontiers which consist of a set of solutions. The 270 

solutions in the top frontier are dominated by the other solutions in the bottom frontier, 271 

but the solutions in the same frontier are non-dominated with each other [28]. In order 272 

to speed up the non-dominated sorting algorithm, we employed PyTorch to implement 273 

this procedure with GPU acceleration. After obtaining the frontiers ranking from 274 

dominated solutions to dominant solutions, the molecules were ranked based on the 275 

average of Tanimoto-distance instead of crowding distance with other molecules in the 276 

same frontier, and molecules with smaller distances were ranked on the top. The final 277 

reward R* is defined as: 278 

R𝑖∗ = { 
  0.5 + 𝑘 − 𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑2𝑁𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝑖𝑓 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑘2𝑁𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑 , 𝑖𝑓 𝑢𝑛𝑑𝑒𝑠𝑖𝑟𝑒𝑑  279 

here the parameter k is the index of the solution in the Pareto rank, and rewards of 280 



undesired and desired solutions will be evenly distributed in (0, 0.5] and (0.5, 0.1], 281 

respectively.  282 

 283 

During the generation process, for each step, G determines the probability of each token 284 

from the vocabulary to be chosen based on the generated sequence in previous steps. 285 

Its parameters are updated by employing a policy gradient based on the expected end 286 

reward received from the predictor. The objective function is designated as follows: 287 

𝐽(𝜃) = 𝔼[𝑅∗(𝑦1:𝑇)|𝜃] =∑𝑙𝑜𝑔𝐺(𝑦𝑡|𝑦1:𝑡−1) ∙ 𝑅∗(𝑦1:𝑇)𝑇
𝑡=1  288 

By maximizing this function, the parameters 𝜃 in G can be optimized to ensure that G 289 

can construct desired SMILES sequences which can obtain the highest reward scores 290 

judged by all the Qs. 291 

 292 

Algorithm extrapolation 293 

Evolutionary algorithms (EAs) are common methods used in drug discovery [29]. For 294 

example, Molecule Evoluator is one of EAs, with mutation and crossover operations 295 

based on SMILES representation [30] for drug de novo design. In addition, some groups 296 

also proposed other variations of EAs [31], e.g., estimation of distribution algorithm 297 

(EDA) which is a model-based method and replaces the mutation and crossover 298 

operations with probability distribution estimation and sampling of new individuals 299 

(Fig. 2) [32]. Similar to EDA, DrugEx is a model-based method too, in which the deep 300 

learning model was employed to estimate the probability distribution of sequential 301 

decision making. However, we use a DL method to define model-based mutation and 302 

crossover operations. Moreover, we employed an RL method to replace the sample 303 

selection step for the update of model or population in EDA or EA, respectively. 304 

 305 



 306 

Fig. 2: Flowchart comparison of evolutionary algorithm (A), estimation of distribution 307 

algorithm (B) and our proposed method (C).  308 

 309 

Exploration Strategy 310 

In our previous study, we had implemented the exploration strategy through importing 311 

a fixed exploration net to enlarge the diversity of the generated molecules during the 312 

training loops. In this study, we continued to extend the methods of this exploration 313 

strategy, which resemble the crossover and mutation operations from evolutionary 314 

algorithms (EAs). Here, besides the agent net (GA), we also defined exploration strategy 315 

with two other DL models: crossover net (GC) and mutation net (GM), which have the 316 

same RNN architecture (Fig. 3). Before the training process, they were initialized by a 317 

pre-trained or fine-tuned model. The GM was the basic strategy employed in the 318 

previous version and its parameters were fixed and not updated during the whole 319 

training process. The GC implemented in this work was an extended strategy whose 320 

parameters were updated iteratively based on the GA. During the training process, each 321 

SMILES sequence was generated through combining these three RNNs: for each step, 322 

a random number from 0 to 1 is generated. If it is larger than the mutation rate (ε), the 323 

probability for token sampling is controlled by the combination of GA and GC, otherwise, 324 

it is determined by GM. For each training loop, only the parameters in GA were updated 325 

instantly based on the gradient of the RL objective function. An iteration was defined 326 

as the period of epochs after the desirability score of molecules generated by GA did not 327 

increase. Subsequently the parameters of GC were updated with GA directly and the 328 



training process continued for the next iteration. The training process would continue 329 

till the percentage of desired molecules in the current iteration was not better than in 330 

the previous iterations. 331 

 332 

 333 

Fig. 3: The mechanism of updated exploration strategy, including agent net GA, mutation net 334 

GM (red) and crossover net GC (blue). In the training loop, GM is fixed, Gc is updated iteratively 335 

and GA is trained at each epoch. For each position, a random number from 0 to 1 is generated. If it 336 

is larger than the mutation rate (ε), the probability for token sampling is controlled by the 337 

combination of GA and GC, otherwise, it is determined by GM.  338 

 339 

Molecular Diversity 340 

To measure molecular diversity, we adopted the metric proposed by Solow and Polasky 341 

in 1994 to estimate the diversity of a biological population in an eco-system [33]. It has 342 

been shown to be an effective method to measure the diversity of drug molecules [34]. 343 

The formula to calculate diversity was redefined to normalize the range of values from 344 

[1, m] to (0, m] as follows: 345 𝐼(𝐴) = 1|𝐴| 𝒆⊺𝐹(𝒔)−1𝒆 346 



where A is a set of drug molecules with a size of |A| equal to m, e is an m-vector of 1’s 347 

and F(s) = [f(dij))] is a non-singular m × m distance matrix, in which f(dij) stands for 348 

the distance function of each pair of molecule provided as follows: 349 𝑓(𝑑) = 𝑒−𝜃𝑑𝑖𝑗  352 

here we defined the distance dij of molecules si and sj by using the Tanimoto-distance 350 

with ECFP6 fingerprints as follows: 351 

𝑑𝑖𝑗 = 𝑑(𝑠𝑖, 𝑠𝑗) = 1 − |𝑠𝑖 ∩ 𝑠𝑗||𝑠𝑖 ∪ 𝑠𝑗| ,  353 

where | si ∩ sj | represents the number of common fingerprint bits, and | si ∪ sj | is the 354 

number of union fingerprint bits.  355 

 356 

Results and Discussion 357 

Performance of Predictors 358 

All molecules in the LIGAND set were used to train the QSAR models, after being 359 

transformed into predefined descriptors, including 2048D ECFP6 fingerprints and 19D 360 

physicochemical properties. We then tested the performance of these different 361 

algorithms with five-fold cross validation and an independent test of which the 362 

performances are shown in Fig. 4AB. Here, the dataset was randomly split into five 363 

folds in the cross validation, while a temporal split with a cut-off at the year of 2015 364 

was used for the independent test. In the cross validation test, the MT-DNN model 365 

achieved the highest value for R2 and the lowest RMSE value for A1AR and A2AAR, 366 

but the RF model had the best performance for hERG based on R2 and RMSE. However, 367 

for the independent test the RF model reached the highest R2 and lowest RMSE across 368 

the board, although it was worse than the performance in the cross-validation test. A 369 

detailed performance overview of the RF model is shown in Fig. 4C-E. Because the 370 

generative model might create a large number of novel molecules, which would not be 371 

similar to the molecules in the training set, we took the robustness of the predictor into 372 

consideration. In this situation the temporal split has been shown to be more robust 373 

[19,35]. Hence the RF algorithm was chosen for constructing our environment which 374 



provides the final reward to guide the training of the generator in RL. 375 

 376 

 377 

 378 

Fig. 4: Performance comparison of different machine learning regression models. In these two 379 

histograms (A-B), the results were obtained based on five-fold cross validation (A) and independent 380 

test (B) for the three targets. The R2 and RMSE scores were used to evaluate the performance of 381 

different machine learning models including DNN, KNN, PLS, SVM RF and MT-DNN. In the 382 

scatter plots (C-E), each point stands for one molecule with its real pX (x-axis) and the predicted 383 

pX (y-axis) by the RF model which was chosen as the final predictors for A1AR (C), A2AAR (D) 384 

and hERG (E) based on five-fold cross validation (blue) and independent test (orange).  385 

 386 



Model optimization 387 

As in our previous work in DrugEx v1, we firstly pre-trained and fine-tuned the 388 

generator with the ChEMBL and LIGAND set, respectively. When testing the different 389 

types of RNNs, we analyzed the performance of the pre-trained model with 10,000 390 

SMILES generated, and found that LSTM generated more valid SMILES (97.5%) than 391 

GRU (93.1%) which had been adopted in our previous work. Moreover, for the fine-392 

tuning process, we split the LIGAND set into two subsets: training set and validation 393 

set; the validation set was not involved in parameters updating but it was essential to 394 

avoid model overfitting and to improve uniqueness of generated molecules. 395 

Subsequently 10,000 SMILES were sampled for performance evaluation. We found 396 

that the percentage valid SMILES was 97.9% for LSTM, larger than GRU with 95.7% 397 

valid SMILES, a slight improvement compared to the pre-trained model. In the end, we 398 

employed the LSTM-based pre-trained/fine-tuned models for the following 399 

investigation.  400 

 401 

We employed the models for two cases (multi-target and target-specific) of multi-402 

objective drug design towards three protein targets. During the training loop of DrugEx 403 

v2, the parameter of ε was set to different values: 10-2, 10-3, 10-4 and we also tested it 404 

without mutation net, i.e. the value of ε was set to 0. Generators were trained by using 405 

a policy gradient with two different rewarding schemes. After the training process 406 

converged, 10,000 SMILES were generated for each model for performance evaluation. 407 

The percentage of valid, desired, unique desired SMILES and the diversity were 408 

calculated (Table 2). Furthermore, we also compared the chemical space of these 409 

generated molecules with known ligands in the LIGAND set. Here, we employed first 410 

two components of t-SNE on the ECFP6 descriptors of these molecules to represent the 411 

chemical space.  412 

 413 

Performance comparisons 414 

We compared the performance of DrugEx v2 with DrugEx v1 and two other DL-based 415 

de novo drug design methods: REINVENT [36] and ORGANIC [37]. In order to make 416 



a fair benchmark, we trained these four methods with the same environments to provide 417 

the unified predicted bioactivity scores for each of the generated molecules. It should 418 

be mentioned that these methods are all SMILES-based RNNs generators but trained 419 

under different RL frameworks. Therefore, these generators were constructed with the 420 

same RNN structures of and initialized with the same pre-trained/fine-tuned models. 421 

 422 

In the WS scheme we did not choose fixed weights for objectives but dynamic values 423 

which can be adjusted automatically during the training process. The reason for this is 424 

that if the fixed weights should be optimized as the hyperparameters, which would be 425 

more time consuming. Moreover, the distribution of scores for each objective was not 426 

comparable. If the affinity score was required to be higher, few of the molecules 427 

generated by the model with initial state were satisfactory, but if a lower affinity score 428 

was required, most of the generated molecules by the pre-trained/fine-tuned model met 429 

this need without further training of RL. Therefore, weights were set as dynamic 430 

parameters and determined by the ratio between desired and undesired molecules 431 

generated by the model at the current training step. This approach ensures that the 432 

objectives with lower scores would get more importance than others during the training 433 

loop to balance the different objectives and generate more desired molecules.  434 

 435 

The performance of the model with different ε is shown in Table S2. A higher ε 436 

generates molecules with larger diversity but low desirability compared to a lower ε in 437 

both multi-target and target-specific cases. In addition, an appropriate ε guarantees the 438 

model generates molecules which have a more similar distribution of important 439 

substructures with the desired ligands in the LIGAND set. With the WS scheme, the 440 

model generates molecules with a high desirability, but the diversity is lower than the 441 

desired ligands in the training set. On the contrary, the PF scheme helped the model 442 

generate molecules with a larger diversity than the ligands in the training set, but the 443 

desirability was not as high as in the WS rewarding scheme. Moreover, the generated 444 

molecules in the PF scheme have more similar distribution of substructures to the 445 

LIGAND set than in the WS scheme.  446 



 447 

Table 2: Comparison of validity, desirability, uniqueness and substructure distributions of 448 

SMILES generated by four different methods in the multi-target case with PF and WS 449 

rewarding schemes, respectively. For the validity, desirability and uniqueness, the largest data is 450 

bold, while for the distribution of substructures, the bold data are labeled as the most closed to the 451 

values in the LIGAND set.  452 

Rewarding 

Scheme 
Dataset Validity Desirability Uniqueness Diversity 

Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

 LIGAND 100.00% 12.40% 100.00% 0.66 21.30% 35.44% 79.24% 

PF 

DrugEx v1 98.28% 43.27% 88.96% 0.71 17.37% 41.05% 80.95% 

DrugEx v2 99.57% 80.81% 87.29% 0.7 13.97% 32.01% 80.26% 

ORGANIC 98.84% 66.01% 82.67% 0.65 17.27% 56.38% 68.87% 

REINVENT 99.54% 57.43% 98.84% 0.77 0.64% 40.38% 92.05% 

WS 

DrugEx v1 97.76% 38.44% 93.44% 0.71 10.76% 36.42% 86.99% 

DrugEx v2 99.80% 97.45% 89.08% 0.49 3.63% 21.06% 96.18% 

ORGANIC 99.08% 61.10% 77.65% 0.68 9.08% 70.99% 83.91% 

REINVENT 99.54% 70.98% 99.11% 0.71 0.04% 23.23% 96.28% 

 453 

In the multi-target case, these four methods with different rewarding schemes show 454 

similar performance, i.e. the WS scheme can help models improve the desirability while 455 

the PF scheme assists models to achieve better diversity and distribution of 456 

substructures (Table 2). Here, REINVENT with the PF scheme achieved the largest 457 

diversity, whereas DrugEx v1 had the most similar substructure distribution to the 458 

molecules in the LIGAND set, and DrugEx v2 achieved the best desirability with both 459 

PR and WS schemes compared to the three other algorithms. The diversity and 460 

distribution of substructures were also most similar to the best results. In addition, in 461 

the target-specific case results were similar to the multi-target case, (Table 3), and for 462 

the distribution of purine and furan rings, DrugEx v2 surpassed v1 to be most similar 463 

to the LIGAND set. When investigating the SA and QED scores, we observed that PF 464 

scheme helped all of generated molecules being more drug-like because of higher QED 465 

scores than WS scheme in both multi-target case (Fig. 6A-D) and target-specific case 466 

(Fig. 6E-H). In comparison of these methods, the molecules generated by REINVENT 467 

were supposedly easier to be synthesized and more drug-like than others, but the 468 



molecules of DrugEx v1 had more similar distributions with the molecules in the 469 

LIGAND set.  470 

 471 

Table 3: Comparison of validity, desirability, uniqueness and substructure distributions of 472 

SMILES generated by four different methods in the target-specific case with PF and WS 473 

rewarding schemes, respectively. For the validity, desirability and uniqueness, the largest data is 474 

bold, while for the distribution of substructures, the bold data are labeled as the most closed to the 475 

values in the LIGAND set. 476 

Rewarding 

Scheme 
Dataset Validity Desirability Uniqueness Diversity 

Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

 LIGAND 100.00% 14.63% 100.00% 0.67 28.27% 50.61% 71.84% 

PF 

DrugEx v1 98.07% 48.42% 87.32% 0.73 29.65% 61.61% 70.99% 

DrugEx v2 99.53% 89.49% 90.55% 0.73 23.73% 56.23% 67.40% 

ORGANIC 98.29% 86.98% 80.30% 0.64 10.60% 89.27% 65.28% 

REINVENT 99.59% 70.66% 99.33% 0.79 3.85% 33.82% 92.53% 

WS 

DrugEx v1 97.61% 44.96% 95.89% 0.68 78.92% 80.21% 68.02% 

DrugEx v2 99.62% 97.86% 90.54% 0.31 19.58% 98.56% 51.87% 

ORGANIC 98.97% 88.14% 84.13% 0.49 9.68%% 96.66% 71.48% 

REINVENT 99.55% 81.27% 98.87% 0.34 25.13% 97.52% 74.61% 

 477 

 478 

Fig. 5: the distribution of SA score and QED score of desired ligands in the LIGAND set and 479 

of molecules generated by four different methods with PR (A, B, E and F) and WS (C, D, G 480 

and H) rewarding schemes in the multi-target case (A-D) and target-specific case (E-H). The 481 



molecules from the LIGAND set were shown as color of orange, and the molecules generated by 482 

DrugEx v1, v2, ORGANIC and REINVENT were represented with colors of blue, green, red, and 483 

purple, respectively. Overall DrugEx v1 and v2 are better able to emulate the observed distributions 484 

in the training set compared to ORGANIC and REINVENT. 485 

 486 

With respect to chemical space, we employed t-SNE with the ECFP6 descriptors of all 487 

molecules for both multi-target (Fig. 6A-H) and target-specific cases (Fig. 6I-P). In the 488 

multi-target case, most of desired ligands in the LIGAND set were distributed in the 489 

margin and PR scheme could guide all of the generators to search more regions than 490 

WS scheme. In the target-specific case, the desired ligands in the LIGAND set were 491 

distributed more dispersed in both of the margin and the center regions. However, PF 492 

scheme was not shown the similar results as in the target-specific case to improve the 493 

coverage compared with WS scheme except for DrugEx v2. For both of these two cases, 494 

only part of the region occupied by desired ligands in the LIGAND set were overlapped 495 

with REINVENT and ORGANIC, but almost all of it is covered by DrugEx v1 and v2. 496 

Especially, in contrast to WS scheme DrugEx v2 had a significant improvement of 497 

chemical space coverage with PF scheme. A possible reason is that the molecules 498 

generated by DrugEx v1 and v2 offer a more similar distribution of substructures to 499 

desired ligands in the LIGAND set than REINVENT and ORGANIC.  500 

 501 



 502 

Fig. 6: Comparison of the chemical space of ligands in the LIGAND set (orange for all 503 

molecules and black for desired molecules) and of generated molecules by DrugEx v1 (A, E, I, 504 

M, blue), v2 (B, F, J, N, red), ORGANIC (C, G, K, O, green) and REINVENT (D, H, L, P, 505 

purple), for the multi-target case (A-H) and target specific case (I-P). Chemical space is 506 

represented by the first two components in t-SNE with ECFP6 descriptors of molecules. The first 507 

and third rows were obtained with PF rewarding scheme, and the second and fourth rows were 508 

obtained with WS rewarding scheme. Similar to our previous work it can be seen that DrugEx better 509 

covers the whole chemical space of the input data. In particular in the multi-target case with a pareto 510 

optimization based scoring function (E-H) the improved coverage in all sections, including isolated 511 

active ligands, becomes clear.   512 

 513 



 514 

As an example, 16 possible antagonists (without ribose moiety and molecular weight < 515 

500) generated by DrugEx v2 with PR scheme were selected as candidates for both 516 

multi-target cases and target specific case, respectively. These molecules were ordered 517 

by the selectivity which was calculated as the difference of pXs between two different 518 

protein targets. In the multi-target cases (Fig. 7A), because the desired ligands prefer 519 

A1AR and A2AAR to hERG, the row and column is the selectivity of A2AAR and A1AR 520 

against hERG, respectively, while the generated molecules are required to bind only 521 

A2AAR rather than A1AR and hERG in the target-specific case (Fig. 7B), selectivity of 522 

A2AAR against A1AR and hERG were represented as the row and column, respectively.  523 

 524 

525 



 526 

Fig. 7: Some candidate molecules were selected from molecules generated by DrugEx v2 with 527 

PR scheme for both multi-target case and target-specific case. In multi-target case (A), these 528 

molecules were ordered by the selectivity of A1AR and A2AAR against hERG as x-axis 529 

and y-axis, respectively. In target-specific case (B), these molecules were ordered by 530 

the selectivity of A2AAR against A1AR and hERG as x and y-axis, respectively. 531 

 532 

In order to prove the effectiveness of our proposed method, we tested it with 20 goal-533 

directed molecule generation tasks on the GuacaMol benchmark platform [38]. These 534 

tasks contain different requirements, including similarity, physicochemical properties, 535 

isomerism, scaffold matching, etc. The detailed description of these tasks is provided 536 

in ref [38] and our results are shown in Table S3. We pre-trained our model with the 537 

dataset provided by the GuacaMol platform, in which all molecules from the ChEMBL 538 

database are included and similar molecules to the target ligands in the tasks were 539 

removed. Then we choose the top 1024 molecules in the training set to fine-tune our 540 

model for each task, before reinforcement learning was started. Our method scores the 541 



best in 12 out of 20 tasks compared with the baseline models provided by the GuacaMol 542 

platform, leading to an overall second place. Moreover, the performance between the 543 

LSTM benchmark method and our methods were similar in these tasks, possibly 544 

because they have similar architectures of neural networks. All in all, this benchmark 545 

demonstrated that our proposed method has improved generality for drug de novo 546 

design tasks. It is worth being mentioned that our method is not effective enough yet 547 

for some tasks of contradictory objectives in the narrow chemical space. The main 548 

reason is that our method emphasizes to obtain a large number of feasible molecules to 549 

occupy the diverse chemical space rather than small number of optimal molecules to 550 

achieve the highest score. For example, in the Sitagliptin MPO task, the aim is finding 551 

molecules which are dissimilar to sitagliptin but have a similar molecular formula to 552 

sitagliptin, and our method was not as good as Graph GA, which is a graph-based 553 

genetic algorithm.  554 

 555 

Conclusion and Future Prospects 556 

In this work, we proposed a Pareto-based multi-objective learning algorithm for drug 557 

de novo design towards multiple targets based on different requirements of affinity 558 

scores for multiple targets. We transferred the concept of an evolutionary algorithm 559 

(including mutation and crossover operations) into RL to update DrugEx for multi-560 

objective optimization. In addition, Pareto ranking algorithms were also integrated into 561 

our model to handle the contradictory objectives common in drug discovery and enlarge 562 

the chemical diversity. In order to prove effectiveness, we tested the performance of 563 

DrugEx v2 in both multi-target and target-specific cases. We found that a large 564 

percentage of generated SMILES were valid and desired molecules without many 565 

duplications. Moreover, the generated molecules were also similar to known ligands 566 

and covered almost every corner of the chemical space that known ligands occupy, 567 

which could not be repeated by tested competing methods. In future work, we will try 568 

the generality of our proposed methods with different molecular representations, such 569 

as graphs or fragments [29]. We will also integrate more objectives (e.g. stability, 570 



synthesizability), especially when these objectives are contradictory, such that the 571 

model allows user-defined weights for each objective to generate more reliable 572 

candidate ligands and better steer the generative process.  573 
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Table S1: All tokens in vocabulary for SMILES sequence construction with RNN model.  689 

Atoms Bonds Controls 

Common Atoms Aromatic Atoms -- Rings Branchs On-Off 

B [Ag-3] [CH-] [N] [SH2] [b-] [se+] - 1 ( GO 

C [As+] [CH2] [O+] [SH] [c+] [se] = 2 ) EOS 

F [As] [CH] [O-] [Se+] [c-] [te+] # 3 

  

I [B-] [I+] [OH+] [SeH] [cH-] [te] 

 

4 

  

L [BH-] [IH2] [O] [Se] [n+] b 

 

5 

  

N [BH2-] [N+] [P+] [SiH2] [n-] c   6 

  

O [BH3-] [N-] [PH] [SiH] [nH+] n   7 

  

P [B] [NH+] [S+] [Si] [nH] o   8 

  

R [C+] [NH-] [S-] [Te] [o+] p   9 

  

S [C-] [NH2+] [SH+] 

 

[s+] s   

   

Considering that the sterochemical information of molecules and ionic bonds were ignored, we removed 690 

the “@”, “\”, “/”, “.”.  691 



Table S2: Comparison of validity, desirability, uniqueness and substructures distributions of 692 

SMILES generated by DrugEx v2 with different ε in the multi-target and target-specific cases 693 

by using PF and WS rewarding schemes, respectively. For the validity, desirability and 694 

uniqueness, the largest data is bold, while for the distribution of substructures, the bold data are 695 

labeled as the most closed to the values in the LIGAND set. 696 

 697 

Case Reward 

Scheme 

Dataset 

/ ε 

Validity Desirability Uniqueness Diversity Purine 

Ring 

Furan 

Ring 

Benzene 

Ring 

Multi-

Target 

Case 

 

LIGAND 100.00% 14.63% 100.00% 0.67 21.30% 35.44% 79.24% 

PF 

10-2 99.39% 71.37% 90.47% 0.72 12.39% 34.69% 82.05% 

10-3 99.57% 80.81% 88.96% 0.71 13.97% 32.01% 80.26% 

10-4 99.72% 83.86% 87.19% 0.71 12.45% 30.58% 84.04% 

0 99.47% 73.76% 84.41% 0.70 13.35% 35.71% 81.89% 

WS 

10-2 99.54% 87.56% 93.08% 0.60 9.66% 28.83% 92.19% 

10-3 99.80% 97.45% 93.44% 0.49 3.63% 21.06% 96.18% 

10-4 99.79% 98.15% 93.56% 0.53 2.89% 24.95% 91.46% 

0 99.78% 98.00% 90.19% 0.49 5.02% 16.45% 96.77% 

Target-

Specific 

Case 

 LIGAND 100.00% 12.40% 100.00% 0.66 28.27% 50.61% 71.84% 

PF 

10-2 99.48% 88.76% 91.98% 0.77 18.31% 47.50% 68.95% 

10-3 99.53% 89.49% 87.32% 0.72 23.73% 56.23% 67.40% 

10-4 99.55% 91.84% 88.31% 0.74 26.86% 39.68% 74.36% 

0 99.54% 91.47% 88.94% 0.75 22.95% 43.08% 71.50% 

WS 

10-2 99.16% 86.45% 93.97% 0.42 42.84% 97.26% 72.45% 

10-3 99.62% 97.86% 95.89% 0.31 60.81% 98.56% 51.87% 

10-4 99.67% 96.82% 94.56% 0.34 55.14% 93.69% 45.40% 

0 99.33% 96.28% 92.60% 0.35 42.86% 98.34% 63.47% 



698 

Table S3: Results of the Goal-Directed tasks for our proposed method DrugEx v2 and other baseline 699 

models on GuacaMol Benchmark. GucacaMol platform contains 20 tasks with different requirements, 700 

including smilarity, physicochemical properties, isomerism, scaffold matching, etc.. The results for 701 

baseline models were cited from ref [38]. The bold data are shown as the best result for each task 702 

achieved by different methods. 703 

Benchmark Best of 

Dataset 

SMILES 

GA 

Graph 

MCTS 

Graph GA SMILES 

LSTM 

DrugEx 

v2 

Celecoxib rediscovery 0.505 0.732 0.355 1 1 1 

Troglitazone rediscovery 0.419 0.515 0.311 1 1 1 

Thiothixene rediscovery 0.456 0.598 0.311 1 1 1 

Aripiprazole similarity 0.595 0.834 0.38 1 1 1 

Albuterol similarity 0.719 0.907 0.749 1 1 1 

Mestranol similarity 0.629 0.79 0.402 1 1 1 

C11H24 0.684 0.829 0.41 0.971 0.993 0.993 

C9H10N2O2PF2Cl 0.747 0.889 0.631 0.982 0.879 1 

Median molecules 1 0.334 0.334 0.225 0.406 0.438 0.418 

Median molecules 2 0.351 0.38 0.17 0.432 0.422 0.435 

Osimertinib MPO 0.839 0.886 0.784 0.953 0.907 0.967 

Fexofenadine MPO 0.817 0.931 0.695 0.998 0.959 0.942 

Ranolazine MPO 0.792 0.881 0.616 0.92 0.855 0.909 

Perindopril MPO 0.575 0.661 0.385 0.792 0.808 0.812 

Amlodipine MPO 0.696 0.722 0.533 0.894 0.894 0.898 

Sitagliptin MPO 0.509 0.689 0.458 0.891 0.545 0.517 

Zaleplon MPO 0.547 0.413 0.488 0.754 0.669 0.693 

Valsartan SMARTS 0.259 0.552 0.04 0.99 0.978 0.978 

Scaffold Hop 0.933 0.97 0.59 1 0.996 0.989 

Deco Hop 0.738 0.885 0.478 1 0.998 0.986 

Total 12.144 14.398 9.011 17.983 17.341 17.537 

  704 



 705 

Fig. S1: the distribution of SA score and QED score of desired ligand in the LIGAND set and 706 

molecules generated by DrugEx v2 with different ε in the multi-target case (A-D) and target-707 

specific case (E-H) by using PR (A, B, E and F) and WS (C, D, G and H) rewarding schemes. 708 

 709 


