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Abstract—This paper describes a system that detects onsets of
the bass drum, snare drum, and hi-hat cymbals in polyphonic
audio signals of popular songs. Our system is based on a tem-
plate-matching method that uses power spectrograms of drum
sounds as templates. This method calculates the distance between
a template and each spectrogram segment extracted from a song
spectrogram, using Goto’s distance measure originally designed
to detect the onsets in drums-only signals. However, there are two
main problems. The first problem is that appropriate templates
are unknown for each song. The second problem is that it is more
difficult to detect drum-sound onsets in sound mixtures including
various sounds other than drum sounds. To solve these problems,
we propose template-adaptation and harmonic-structure-suppres-
sion methods. First of all, an initial template of each drum sound,
called a seed template, is prepared. The former method adapts it
to actual drum-sound spectrograms appearing in the song spectro-
gram. To make our system robust to the overlapping of harmonic
sounds with drum sounds, the latter method suppresses harmonic
components in the song spectrogram before the adaptation and
matching. Experimental results with 70 popular songs showed
that our template-adaptation and harmonic-structure-suppression
methods improved the recognition accuracy and achieved 83%,
58%, and 46% in detecting onsets of the bass drum, snare drum,
and hi-hat cymbals, respectively.

Index Terms—Drum sound recognition, harmonic structure sup-
pression, polyphonic audio signal, spectrogram template, template
adaptation, template matching.

I. INTRODUCTION

T
HE importance of music content analysis for musical

audio signals has been increasing in the field of music

information retrieval (MIR). MIR aims at retrieving musical

pieces by executing a query about not only text information

such as artist names and music titles but also musical contents

such as rhythms and melodies. Although the amount of digitally

recorded music available over the Internet is rapidly increasing,

there are only a few ways of using text information to efficiently

Manuscript received February 1, 2005; revised December 19, 2005. This
work was supported in part by the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Grant-in-Aid for Scientific Research (A)
15200015 and by the COE Program of MEXT, Japan. The associate editor
coordinating the review of this manuscript and approving it for publication was
Dr. Michael Davies.

K. Yoshii and H. G. Okuno are with the Department of Intelligence Science
and Technology, Graduate School of Informatics, Kyoto University, Kyoto 606-
8501, Japan (e-mail: yoshii@kuis.kyoto-u.ac.jp; okuno@i.kyoto-u.ac.jp).

M. Goto is with the National Institute of Advanced Industrial Science and
Technology (AIST), Tsukuba 305-8568, Japan (e-mail: m.goto@aist.go.jp).

Digital Object Identifier 10.1109/TASL.2006.876754

find our desired musical pieces in a huge music database. Music

content analysis enables MIR systems to automatically under-

stand the contents of musical pieces and to deal with them even

if they do not have metadata about the artists and titles.

As the first step of achieving content-based MIR systems in

the future, we focus on detecting onset times of individual mu-

sical instruments. In this paper, we call this process recogni-

tion, which means simultaneous processing of both onset detec-

tion and identification of each sound. Although onset time in-

formation of each musical instrument is low-level musical con-

tent, the recognition results can be used as a basis for higher-

level music content analysis concerning the rhythm, melody,

and chord, such as beat tracking, melody detection, and chord

change detection.

In this paper, we propose a system of recognizing drum

sounds in polyphonic audio signals sampled from commercial

compact-disc (CD) recordings of popular music. We allow

various music styles for popular music, such as rock, dance,

house, hip-hop, eurobeat, soul, R&B, and folk. Our system

detects onset times of three drum instruments—bass drum,

snare drum, and hi-hat cymbals—while identifying them. For

a large class of popular music with drum sounds, these three

instruments play important roles as the rhythmic backbone

of music. We believe that accurate onset detection of drum

sounds is useful for describing temporal musical contents such

as rhythm, tempo, beat, and measure. Previous studies [1]–[4]

on describing those temporal contents, however, have focused

on the periodicity of time-frame-based acoustic features, and

have not tried to detect accurate onset times of drum sounds.

Previous studies [5], [6] on genre classification did not consider

onset times of drum sounds while such onset times could be

used for improving classification performances by identifying

drum patterns unique to musical genres. Some recent studies

[7], [8] reported the use of drum patterns for genre classification

while Ellis et al. [7] dealt with only MIDI signals. The results

of our system are useful for such genre classification with

higher-level content analysis of real-world audio signals.

The rest of this paper is organized as follows. In Section II,

we describe the current state of drum sound recognition tech-

niques. In Section III, we examine the problems and solutions of

recognizing drum sounds contained in commercial CD record-

ings. Sections IV and V describe the proposed solutions: tem-

plate-adaptation and template-matching methods, respectively.

Section VI describes a harmonic-structure-suppression method

to improve the performance of our system. Section VII shows

experimental results of evaluating these methods. Finally, Sec-

tion VIII summarizes this paper.

1558-7916/$20.00 © 2006 IEEE
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II. ART OF DRUM SOUND RECOGNITION

We start on describing the current state of the art of drum

sound recognition and related work motivating our approach.

A. Current State

Although there are many studies on onset detection or iden-

tification of drum sounds, a few of them have dealt with drum

sound recognition for polyphonic audio signals such as com-

mercial CD recordings. The drum sound recognition method by

Goto and Muraoka [9] was the earliest work that could deal with

drum-sound mixtures of solo performances with MIDI rock-

drums. Herrera et al. [10] compared conventional feature-based

classifiers in the experiments of identifying monophonic drum

sounds. To recognize drum sounds in drums-only audio sig-

nals, various modeling methods such as N-grams [11], proba-

bilistic models [12], and SVM [13] have been used. By using

a noise-space-projection method, Gillet and Richard [14] tried

to recognize drum sounds in polyphonic audio signals. These

studies, however, cannot fully deal with both the variation of

drum-sound features and their distortion caused by the overlap-

ping of other sounds.

The detection of bass and snare drum sounds in polyphonic

CD recordings was mentioned in Goto’s study on beat tracking

[15]. Since it roughly detected them to estimate a hierarchical

beat structure, the accurate drum detection was not investi-

gated. Gouyon et al. [16] proposed a method that classifies

mixed sounds extracted from polyphonic audio signals into two

categories of the bass and snare drums. As the former step of

the classification, they proposed a percussive onset detection

method. It was based on a unique idea of template adaptation

that can deal with drum-sound variations according to musical

pieces. Zils et al. [17] tried the extraction and resynthesis of

drum tracks from commercial CD recordings by extending

Gouyon’s method, and showed the promising results.

To recognize drum sounds in audio signals of drum tracks,

sound source separation methods have been focused. They made

various assumptions in decomposing a single music spectro-

gram into multiple spectrograms of musical instruments; in-

dependent subspace analysis (ISA) [18], [19] assumes the sta-

tistical independence of sources, non-negative matrix factor-

ization (NMF) [20] assumes their non-negativity, and sparse

coding combined with NMF [21] assumes their non-negativity

and sparseness. Further developments were made by FitzGerald

et al. [22], [23]. They proposed PSA (Prior Subspace Anal-

ysis) [22] that assumes prior frequency characteristics of drum

sounds, and applied it to recognize drum sounds in the presence

of harmonic sounds [23]. For the same purpose, Dittmar and

Uhle [24] adopted non-negative independent component anal-

ysis (ICA) that considers the non-negativity of sources. In these

studies, the recognition results depend not only on the separa-

tion quality but also on the reliability of estimating the number

of sources and classifying them. However, the estimation and

classification methods are not robust enough for the sake of

recognizing drum sounds in audio signals containing time-fre-

quency-varying various sounds.

Klapuri [25] reported a method of detecting onsets of all

sounds in polyphonic audio signals. Herrera et al. [26] used

Klapuri’s algorithm to estimate the amount of percussive on-

sets. However, drum sound identification was not evaluated. To

identify drum sounds extracted from polyphonic audio signals,

Sandvold et al. [27] proposed a method that adapts feature

models to those of drum sounds used in each musical piece, but

they used correct instrument labels for the adaptation.

B. Related Work

We explain two related methods in detail.

1) Drum Sound Recognition for Solo Drum Performances:

Goto and Muraoka [9] reported a template-matching method for

recognizing drum sounds contained in musical audio signals of

popular-music solo drum performances by a MIDI tone gener-

ator. Their method was designed in the time-frequency domain.

First, a fixed-time-length power spectrogram of each drum to be

recognized is prepared as a spectrogram template. There were

nine templates corresponding to nine drum instruments (bass

and snare drums, toms, and cymbals) in a drum set. Next, onset

times are detected by comparing the template with the power

spectrogram of the input audio signal, assuming that the input

signal is a polyphonic sound mixture of those templates. In the

template-matching stage, they proposed a distance measure (we

call this “Goto’s distance measure” in this paper), which is ro-

bust for the spectral overlapping of a drum sound corresponding

to the target template with other drum sounds.

Although their method achieved the high recognition accu-

racy, it has a limitation that the power spectrogram of each drum

used in the input audio signal must be registered with the recog-

nition system. In addition, it has difficulty recognizing drum

sounds included in polyphonic music because it does not as-

sume the spectral overlapping of harmonic sounds.

2) Drum Sound Resynthesis From CD Recordings: Zils et al.

[17] reported a template-adaptation method for recognizing bass

and snare drum sounds from polyphonic audio signals sampled

from popular-music CD recordings. Their method is defined in

the time domain. First, a fixed-time-length signal of each drum

is prepared as a waveform template, which is different from an

actual drum signal used in a target musical piece. Next, by cal-

culating the correlation between each template and the musical

audio signal, onset times at which the correlation is large are de-

tected. Finally, a drum sound is created (i.e., the signal template

is updated) by averaging fixed-time-length signals starting from

those detected onset times. These operations are repeated until

the template converges.

Although their time-domain analysis seems to be promising,

it has limitations in dealing with overlapping drum sounds in the

presence of other musical instrument sounds.

III. DRUM SOUND RECOGNITION PROBLEM

FOR POLYPHONIC AUDIO SIGNALS

First, we define the task of our drum sound recognition

system. Next, we describe the problems and solutions in recog-

nizing drum sounds in polyphonic audio signals.

A. Target

The purpose of our research is to detect onset times of three

kinds of drum instruments in a drum set: bass drum, snare drum,

and hi-hat cymbals. Our system takes polyphonic musical audio
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Fig. 1. Overview of drum sound recognition system: a drum-sound spectrogram
template (input) is adapted to actual drum-sound spectrograms appearing in the
song spectrogram (input) in which the harmonic structure is suppressed. The
adapted template iscomparedwith thesongspectrogramto detectonsets (output).

signals as input, which are sampled from popular-music CD

recordings and contain sounds of vocal parts and various mu-

sical instruments (e.g., piano, trumpet, and guitar) as well as

drum sounds. Drum sounds are performed by real drum sets

(e.g., popular/rock drums) or electronic instruments (e.g., MIDI

tone generators). Assuming the main target is popular rock-style

music, we focus on the basic playing style of drum performances

using normal sticks, and do not deal with special playing styles

(e.g., head-mute and brush).

B. Problems

In this paper, we develop a template-based recognition system

that defines a template as a fixed-time-length power spectrogram

of each drum: bass drum, snare drum, or hi-hat cymbals. There

are the following two problems, considering the discussion in

Section II-B.

1) Individual Difference Problem: Acoustic features of drum

sounds vary among musical pieces and the appropriate tem-

plates for recognizing drum sounds in each piece are usually

unknown in advance.

2) Mixed Sound Problem: It is difficult to accurately de-

tect drum sounds included in polyphonic audio signals because

acoustic features are distorted by the overlapping of other mu-

sical instrument sounds.

C. Approach

We propose an advanced template-adaptation method to solve

the individual difference problem described in Section III-B.

After performing the template adaptation, we detect onset times

of drum soundsusing an advanced template-matching method. In

addition, in order to solve the mixed sound problem, we propose

a harmonic-structure-suppression method that improves the

robustness of our adaptation and matching methods. Fig. 1 shows

an overview of our proposed drum sound recognition system.

1) Template Adaptation: The purpose of this adaptation is

to obtain a spectrogram template that is adapted to its corre-

sponding drum sound used in the polyphonic audio signal of

a target musical piece. Before the adaptation, we prepare in-

dividual spectral templates (we call seed-templates) for bass

drum, snare drum, and hi-hat cymbals; three templates in total.

To adapt the seed-templates to the actual drum sounds, we ex-

tended Zils’ method to the time-frequency domain.

2) Template Matching: The purpose is to detect all the onset

times of drum sounds in the polyphonic audio signal of the

target piece, even if other musical instrument sounds overlap the

drum sounds. By using Goto’s distance measure considering the

spectral overlapping, we compare the adapted template with the

spectrogram of the audio signal. We present an improved spec-

tral weighting algorithm based on Goto’s algorithm for use in

calculating the matching distance.

3) Harmonic Structure Suppression: The purpose is to sup-

press harmonic components of other instrument sounds in the

audio signal when recognizing sounds of bass and snare drums.

In the recognition of hi-hat cymbal sounds, this processing is

not performed under the assumption that harmonic components

are weak enough at a high-frequency band.

We use two different distance measures between the template

adaptation and matching stages. In the adaptation stage, it is

desirable to detect only semi-pure drum sounds that have little

overlap with other sounds. Those drum sounds tend to result

in a good adapted template that includes little spectral compo-

nents of other sounds. Because it is not necessary to detect all

the onset times of a target drum instrument, a distance measure

used in this stage does not care about the spectral overlapping

of other sounds. In the matching stage, on the other hand, we

used the Goto’s distance measure because it is necessary to ex-

haustively detect all the onset times even if target drum sounds

are overlapped by other sounds.

The recognition of bass drum, snare drum, and hi-hat cymbal

sounds is performed separately. In the following sections, the

term “drum” means one of these three drum instruments.

IV. TEMPLATE ADAPTATION

A drum sound template is a power spectrogram in the

time-frequency domain. Our template-adaptation method uses

a single initial template, called a “seed template,” for each kind

of drum instruments. To recognize the sounds of the bass drum,

snare drum and hi-hat cymbals, for example, we require just

three seed templates, each of which is individually adapted by

using the method.

Our method is based on an iterative adaptation algorithm.

An overview of the method is shown in Fig. 2. First, Onset-

Candidate-Detection stage roughly detects onset candidates in

the input audio signal of a musical piece. Starting from each

onset candidate, a spectrogram segment whose time-length is

fixed is extracted from the power spectrogram of the input audio

signal. Then, by using the seed template and all the spectro-

gram segments, the iterative algorithm successively applies two

stages—Segment Selection and Template Updating—to obtain

the adapted template.

1) The Segment-Selection stage estimates the reliability that

each spectrogram segment includes the drum sound spec-

trogram. The spectrogram segments with high reliabilities

are then selected: this selection is based on a fixed ratio to

the number of all the spectrogram segments.

2) The Template-Updating stage then reconstructs an updated

template by estimating the power that is defined, at each

frame and each frequency, as the median power among

the selected spectrogram segments. The template is thus

adapted to the current piece and used for the next adaptive

iteration.
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Fig. 2. Overview of template-adaptation method: each template is represented
as a fixed-time-length power spectrogram in the time-frequency domain. This
method adapts a single seed template corresponding to each drum instrument to
actual drum sounds appearing in a target musical piece. The method is based on
an iterative adaptation algorithm, which successively applies two stages—Seg-

ment Selection and Template Updating—to obtain the adapted template.

A. Onset Candidate Detection

To reduce the computational cost of the template matching,

the Onset-Candidate-Detection stage detects possible onset

times of drum sounds as candidates: the template matching

is performed only at these onset candidates. For the purpose

of detecting onset times, Klapuri’s method [25] is often used,

but we adopted an easy peak-picking method [9] to detect

onset candidate times. The reason is that it is important to

minimize the detection failure (miss) of actual drum-sound

onsets; the high recall rate is preferred even if there are many

false alarms. Note that each detected onset candidate does

not necessarily correspond to an actual drum-sound onset.

The template-matching method judges whether each onset

candidate is an actual drum-sound onset.

The time at which the power takes a local maximum value is

detected as an onset candidate. Let denote the power at

frame and frequency bin , and be its time differen-

tial. At every frame (441 points), is calculated by ap-

plying the short-time Fourier transformation (STFT) with Han-

ning windows (4096 points) to the signal sampled at 44.1 kHz.

In this paper, we use log scale [dB] as the power unit. The onset

candidate times are then detected as follows:

1) If is satisfied for three consecutive frames

, is defined as

(1)

Otherwise, .

2) At every frame , the weighted summation of

is calculated by

(2)

Fig. 3. Lowpass filter functions F , F which represent typical frequency
characteristics of bass and snare drum sounds, and highpass filter functionF
which represents that of hi-hat cymbal sounds.

where is a lowpass or highpass

filter function, as is shown in Fig. 3. We assume that it rep-

resents the typical frequency characteristics of bass drum

sounds (BD), snare drum sounds (SD) or hi-hat cymbal

sounds (HH).

3) Each onset time is given by the time found by peak-picking

in . is smoothed by Savitzky and Golay’s

smoothing method [28] before its peak time is calculated.

B. Preparing Seed Templates and Spectrogram Segments

1) Seed Template Construction: Seed template (the sub-

script means seed) is an average power spectrogram prepared

for each drum type to be recognized. The time-length (frames)

of seed template is fixed. is represented as a time-fre-

quency matrix whose element is denoted as (

frames , bins ).

To create seed template , it is necessary to prepare multiple

drum sounds each of which contains a solo tone of the drum

sound. We used drum-sound samples taken from “RWC Music

Database: Musical Instrument Sound” (RWC-MDB-I-2001).

They were performed in a normal style on six different real

drum sets. By applying the onset candidate detection method,

an onset time in each sample is detected. Starting from each

time, a power spectrogram whose size is the same as the seed

template, is calculated by executing STFT. Therefore, multiple

power spectrograms of monophonic drum sounds are obtained,

each of which is denoted as , where

means the number of the extracted power spectrograms (the

number of the prepared drum sounds).

Because there are timbre variations of drum sounds, we used

multiple drum-sound spectrograms in constructing seed tem-

plate . Therefore, in this paper, seed template is calculated

by collecting the maximum power of the power spectrograms

at each frame and each frequency bin

(3)

In the iterative adaptation algorithm, let denote a template

being adapted after th iteration. Because is the first tem-

plate, is set to . We also obtain power spectrogram

weighted by filter function

(4)
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2) Spectrogram Segment Extraction: The th spectrogram

segment is a power spectrogram via STFT

starting from an onset candidate time [ms] in the audio signal

of a target musical piece, where is the number of the onset

candidates. The size of each spectrogram segment is the same

with that of seed template , and thus it is also represented as

a time-frequency matrix. We also obtain power spectrogram

weighted by filter function

(5)

C. Segment Selection

The reliability that spectrogram segment includes the

spectral components of the target drum sound is estimated, and

then spectrogram segments are selected in descending order

with respect to the reliabilities . The ratio

of the number of the selected segments to the number of all the

spectrogram segments (the number of the onset candidates: )

is fixed. In this paper, the ratio is empirically set to 0.1 (i.e., the

number of the selected segments is ).

We define the reliability as the reciprocal of the distance

between template and spectrogram segment

(6)

The distance measure used in calculating the distance is re-

quired to satisfy that, if the reliability that spectrogram segment

includes the drum sound spectrogram becomes large, the dis-

tance becomes small. We describe the individual distance

measurement for each drum sound recognition.

1) In Recognition of Bass and Snare Drum Sounds: In the

first adaptive iteration, typical spectral distance measures (e.g.,

Euclidean distance measure) cannot be applied to calculate the

distance because those measures inappropriately make the

distance large even if spectrogram segment includes the

target drum sound spectrogram. In general, the power spectro-

gram of bass or snare drum sounds has salient spectral peaks

that depend on the kind of drum instrument. Because seed tem-

plate has never been adapted, the spectral peak positions of

are different from those of the target drum sound spectro-

gram, which makes the distance large. On the other hand,

if spectral peaks of other musical instruments in a spectrogram

segment happen to overlap the salient peaks of seed template

, the distance becomes small, which results in selecting

inappropriate spectrogram segments.

To solve this problem, we perform spectral smoothing in a

lower time-frequency resolution for seed template and each

spectrogram segment . In this paper, the time resolution is 2

[frames] and the frequency resolution is 5 [bins] in the spectral

smoothing, shown in Fig. 4. This processing allows for differ-

ences in the spectral peak positions between seed template

and each spectrogram segment and inhibits the undesirable

increase of the distance when a spectrogram segment in-

cludes the drum sound spectrogram.

Let and denote the smoothed seed template and a

smoothed spectrogram segment. in a time-frequency

Fig. 4. Spectral smoothing at a lower time-frequency resolution in the Seg-

ment-Selection stage in bass and snare drum sound recognition: this inhibits the
undesirable increase of distance between seed template and spectrogram seg-
ment which includes a drum sound spectrogram.

range ,

is calculated by

(7)

is calculated in the same way. This operation means

the averaging and reallocation of the power, shown in Fig. 4.

First, the time-frequency domain is separated into rectangular

sectors. The size of each sector is 2 [frames] 5 [bins]. Next, the

average power in each sector is calculated, and then reallocated

to each bin in that sector.

The spectral distance between seed template and

spectrogram segment in the first iteration is defined as

(8)

After the first iteration, we can use the Euclidean distance

measure without the spectral smoothing because the spectral

peak positions of template are adapted to those of

the drum sound used in the audio signal. The spectral distance

between template and spectrogram segment

in the th adaptive iteration is defined as

(9)

To focus on the precise characteristic peak positions of the drum

sound used in the musical performance, we do not use the spec-

tral smoothing in the equation (9). Because those positions are

useful for selecting appropriate spectrogram segments, it is de-

sirable that the equation (9) reflects the differences of the spec-

tral peak positions between the template and a spectrogram seg-

ment to the distance.

2) In Recognition of Hi-Hat Cymbal Sounds: The spectral

distance in any adaptive iteration is always calculated after

the spectral smoothing for template and spectrogram seg-

ment . In this paper, the time resolution is 2 [frames] and the

frequency resolution is 20 [bins] in the spectral smoothing. A
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smoothed template and a smoothed spectrogram seg-

ment are obtained in the similar way of smoothing the

spectrogram of bass and snare drum sounds. Using these spec-

trograms, the spectral distance between template and

spectrogram segment is defined as

(10)

In general, the power spectrogram of hi-hat cymbal sounds

seems not to have salient spectral peaks such as those of bass and

snare drum sounds. We think it is more appropriate to focus on

the shape of the spectral envelope than the fine spectral structure.

To ignore the large variation of the local spectral component in

a small time-frequency range and extract the spectral envelope,

the spectral smoothing is necessary.

D. Template Updating

An updated template is constructed by collecting the median

power at each frame and each frequency bin among all the se-

lected spectrogram segments. The updated template is used as

the template in the next adaptive iteration. We describe updating

algorithms for the template of each drum sound.

1) In Recognition of Bass and Snare Drum Sounds: The up-

dated template which is weighted by filter function is

obtained by

(11)

where are the spectrogram segments se-

lected in the Segment-Selection stage. is the number of the

selected spectrogram segments, which is in this paper.

We pick out the median power at each frame and each fre-

quency bin because we can suppress spectral components that

do not belong to the target drum sound spectrogram (Fig. 5).

A spectral structure of the target drum sound spectrogram (e.g.,

salient spectral peaks) can be expected to appear as the same

spectral shape in most selected spectrogram segments. On the

other hand, spectral components of other musical instrument

sounds appear at different frequencies among spectrogram seg-

ments. In other words, the local power at the same frame and

the same frequency in many spectrogram segments is exposed

as the power of the pure drum sound spectrogram. By picking

out the median of the local power, unnecessary spectral compo-

nents of other musical instrument sounds become outliers and

are not picked out. We can thus obtain a template which is close

to the solo drum sound spectrogram even if various instrument

sounds are included in the musical audio signal.

2) In Recognition of Hi-Hat Cymbal Sounds: The updated

and smoothed template that is weighted by filter function

is obtained by

(12)

Fig. 5. Updating template by collecting the median power at each frame and
each frequency bin among selected spectrogram segments: harmonic compo-
nents are suppressed in the updated template.

Fig. 6. Overview of template-matching method: each spectrogram segment is
compared with the adapted template by using Goto’s distance measure to detect
actual onset times. This distance measure can appropriately determine whether
the adapted template is included in a spectrogram segment even if there are other
simultaneous sounds.

If spectrogram segments are not smoothed, the stable me-

dian power cannot be obtained because the local power in the

spectrogram of hi-hat cymbal sounds varies among onsets. By

smoothing the spectrogram segments, the median power is de-

termined as a stable value because the shape of the spectral en-

velope obtained by the spectral smoothing is stable in the spec-

trogram of hi-hat cymbal sounds.

V. TEMPLATE MATCHING

To find actual onset times, this method judges whether the

drum sound actually occurs at each onset candidate time,

shown in Fig. 6. This alternative determination is difficult

because other various sounds often overlap the drum sounds.

If we use a general distance measure, the distance between

the adapted template and a spectrogram segment including the

target drum sound spectrogram becomes large when there are

many other sounds that are simultaneously performed with

the drum sound. In other words, the overlapping of the other

instrument sounds makes the distance large even if the target

drum sound spectrogram is included in a spectrogram segment.
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Fig. 7. Power adjustment of spectrogram segments: if a spectrogram segment
includes the drum sound spectrogram, the power adjustment value is large (top).
Otherwise, the power adjustment value is small (bottom).

To solve this problem, we adopt a distance measure proposed

by Goto et al. [9]. Because Goto’s distance measure focuses

on whether the adapted template is included in a spectrogram

segment, it can calculate an appropriate distance even if the

drum sound is overlapped by other musical instrument sounds.

We present an improved method for selecting characteristic fre-

quencies. In addition, we propose a thresholding method that

automatically determines appropriate thresholds for each mu-

sical piece.

An overview of our method is shown in Fig. 6. First, Weight-

Function-Preparation stage generates a weight function which

represents spectral saliency of each spectral component in the

adapted template. This function is used for selecting charac-

teristic frequency bins in the template. Next, Power-Adjustment

stage calculates the power difference between the template and

each spectrogram segment by focusing on the local power dif-

ference at each characteristic frequency bin (Fig. 7). If the power

difference is larger than a threshold, it judges that the drum

sound spectrogram does not appear in that segment, and does

not execute the subsequent processing. Otherwise, the power of

that segment is adjusted to compensate for the power difference.

Finally, Distance-Calculation stage calculates the distance be-

tween the adapted template and each adjusted spectrogram seg-

ment. If the distance is smaller than a threshold, it judges that

the drum sound spectrogram is included.

In this section, we describe a template-matching algorithm

for bass and snare drum sound recognition. In hi-hat cymbal

sound recognition, the adapted template is obtained as the

smoothed spectrogram. Therefore, a template-matching al-

gorithm for hi-hat cymbal sound recognition is obtained by

replacing with in each expression (e.g., , ).

A. Weight Function Preparation

A weight function represents the spectral saliency at each

frame and frequency bin in the adapted template. The weight

function is defined as

(13)

where represents the adapted template which is weighted by

filter function .

Fig. 8. Examples of adapted templates of bass drum (left), snare drum
(center) and hi-hat cymbals (right): these spectrograms show that characteristic
frequency bins are different among three drum instruments.

B. Power Adjustment of Spectrogram Segments

The power of each spectrogram segment is adjusted to match

with that of the adapted template by assuming that the drum

sound spectrogram is included in that spectrogram segment.

This adjustment is necessary to correctly determine that the

adapted template is included in a spectrogram segment even if

the power of the drum sound spectrogram included in that spec-

trogram segment is smaller than that of the template. On the

other hand, if the drum sound spectrogram is not actually in-

cluded in a spectrogram segment, the power difference is ex-

pected to be large. Therefore, if the power difference is larger

than a threshold, we determine that the drum sound spectrogram

is not included in that spectrogram segment.

To calculate the power difference between each spectrogram

segment and template , we focus on the local power dif-

ferences at spectral characteristic frequency bins of in the

time-frequency domain. The algorithm of the power adjustment

is described as follows:

1) Selecting Characteristic Frequency Bins in Adapted Tem-

plate: Let be the characteristic frequency

bins in the adapted template, where

is the number of characteristic frequency bins at each frame.

In this paper, , , . Fig. 8

shows the differences of characteristic frequency bins among

three drum instruments. is determined at each frame .

is selected as a frequency bin where is the th largest

among which satisfies the following conditions:

(14)

(15)

(16)

where is a constant, which is set to 0.5 in this paper. These

three conditions (14), (15), and (16) mean that should

be peaked along the frequency direction.

2) Calculating Power Difference: The local power difference

at frame and characteristic frequency bin is cal-

culated as

(17)

The local-time power difference at frame is determined

as the first quartile of

first-quartile (18)

arg-first-quartile (19)
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where is when is the first quartile. If the

number of frames where is satisfied is larger than

a threshold , we determine that the template is not included

in that spectrogram segment, where is a threshold auto-

matically determined in Section V-D and is set to 5 [frames]

in this paper.

We pick out not the minimum but the first quartile among

the power differences because the

latter value is more robust for outliers included in them. The

power difference at a characteristic frequency bin may become

large when harmonic components of other musical instrument

sounds accidentally exist at that frequency. Picking out the first

quartile ignores the accidental large power difference and ex-

tracts the essential power difference derived from whether the

template is included in a spectrogram segment or not.

3) Adjusting Power of Spectrogram Segments: The total

power difference is calculated by integrating the local-time

power difference which satisfies , weighted

by weight function

(20)

If is satisfied, we are able to determine that the tem-

plate is not included in that spectrogram segment, where is

a threshold automatically determined in Section V-D.

Let denote an adjusted spectrogram segment after the

power adjustment, obtained by

(21)

C. Distance Calculation

To calculate the distance between adapted template and

an adjusted spectrogram segment , we adopt Goto’s distance

measure [9]. It is useful for judging whether the adapted tem-

plate is included in each spectrogram segment or not (the answer

is “yes” or “no”). Goto’s distance measure does not make the

distance large even if the spectral components of the target drum

sound are overlapped with those of other sounds. If is

larger than , Goto’s distance measure regards

as a mixture of spectral components not only of the drum sound

but also of other musical instrument sounds. In other words,

when we identify that includes , then the local

distance at frame and frequency bin is minimized. There-

fore, the local distance measure is defined as

otherwise
(22)

where is the local distance at frame and frequency bin

. The negative constant makes this

distance measure robust for the small variation of local spectral

components. If is larger than about ,

becomes zero. In this paper, dB ,

dB .

The total distance is calculated by integrating the local

distance in the time-frequency domain, weighted by weight

function

(23)

To determine whether the targeted drum sound occurred at a

time corresponding to the spectrogram segment , the distance

is compared with a threshold . If is satisfied,

we conclude that the targeted drum sound occurred. is also

automatically determined in Section V-D.

D. Automatic Thresholding

To determine 12 thresholds ( ,

and ) that are optimized for each musical piece, we use a

threshold selection method proposed by Otsu [29]. It is better to

dynamically change the thresholds to yield the best recognition

results for each piece.

By using Otsu’s method, we determine each optimized

threshold ( , or ) which classifies a set of

values ( , or

) into two classes: the one class contains

values which are less than the threshold, the other contains

the rest of values. We define a threshold which maximizes

the between-class variance (i.e., minimizes the within-class

variance).

Finally, to balance the recall rate with the precision rate (these

rates are defined in Section VII-A), we adjust thresholds and

which are determined by Otsu’s method

(24)

where and are empirically determined scaling (bal-

ancing) factors, which are described in Section VII-B.

VI. HARMONIC STRUCTURE SUPPRESSION

Our proposed method of suppressing harmonic compo-

nents improves the robustness of the template-adaptation and

template-matching methods for the spectral overlapping of har-

monic instrument sounds. Real-world CD recordings usually

include many harmonic instrument sounds. If the combined

power of various harmonic components is much larger than that

of the drum sound spectrogram in a spectrogram segment, it is

often difficult to correctly detect the drum sound. Therefore, the

recognition accuracy is expected to be improved by suppressing

those unnecessary harmonic components.

To suppress harmonic components in a musical audio

signal, we sequentially perform three operations for each

spectrogram segment: estimating F0 of harmonic structure,

verifying harmonic components, and suppressing harmonic

components. These operations are enabled in bass and snare

drum sound recognition. In hi-hat cymbal sound recognition,

the harmonic-structure-suppression method is not necessary

because most influential harmonic components are expected to

be suppressed by the highpass filter function .
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A. F0 Estimation of Harmonic Structure

The F0 is estimated at each frame by using a comb-filter-like

spectral analysis [30], which is effective in roughly estimating

predominant harmonic structures in polyphonic audio signals.

The basic idea is to evaluate the reliability that the

frequency is the F0 at each frame and each frequency .

The reliability is defined as the summation of the

local amplitude weighted by a comb-filter

(25)

where the frequency unit of and is [cent],1 and each in-

crement of is 100 [cent] in the summation. is the

local amplitude at frame and frequency [cent] in a spectro-

gram segment . denotes a comb-filter-like function

which passes only harmonic components which form the har-

monic structure of the F0

(26)

(27)

where is the number of harmonic components considered and

is an amplitude attenuation factor. The spectral spreading of

each harmonic component is represented by . is a

Gaussian distribution, where is the mean and is the standard

deviation. In this paper, , , cent .

Frequencies of the F0 are determined by finding fre-

quencies that satisfy the following condition:

(28)

where is a constant, which is set to 0.7 in this paper. The F0

is searched from 2000 [cent] (51.9 [Hz]) to 7000 [cent] (932 Hz)

by shifting every 100 [cent].

B. Harmonic Component Verification

It is necessary to verify that each harmonic component esti-

mated in Section VI-A is actually derived from only harmonic

instrument sounds. To suppress all the estimated harmonic com-

ponents without this verification is not appropriate because a

characteristic frequency of drum sounds may be erroneously es-

timated as a harmonic frequency if the power of drum sounds

is much larger than that of harmonic instrument sounds. In an-

other case, a characteristic frequency of drum sounds may be

accidentally equal to a harmonic frequency. The verification of

each harmonic component prevents characteristic spectral com-

ponents of drum sounds from being suppressed.

We focus on the general fact that spectral peaks of harmonic

components are much more peaked than characteristic spectral

peaks of drum sounds. First, the spectral kurtosis at

1Frequency f in hertz is converted to frequency fcent in cents: fcent =
1200 log (f =(440� 2 )).

Fig. 9. Suppressing hth harmonic component of the F0 F (t) by linearly
interpolating between the minimum power on both sides of spectral peak.

frame in the neighborhood of a th harmonic component of the

F0 (from cent to cent in our implementation)

is calculated. Second, we determine that the th harmonic com-

ponent of the F0 at frame is actually derived from only har-

monic instrument sounds if is larger than a threshold,

which is set to 2.0 in this paper (c.f., the kurtosis of the Gaussian

distribution is 3.0).

C. Harmonic Component Suppression

We suppress harmonic components that are identified

as being actually derived from only harmonic instrument

sounds. An overview is shown in Fig. 9. First, we find the

two frequencies of the local minimum power adjacent to the

spectral peak corresponding to each harmonic component at

cent . Second, we linearly interpolate the

power between them along the frequency axis while preserving

the original phase.

VII. EXPERIMENTS AND RESULTS

We performed experiments of recognizing the bass drums,

snare drums, and hi-hat cymbals for polyphonic audio signals.

A. Experimental Conditions

We tested our methods on seventy songs sampled from

the popular music database “RWC Music Database: Popular

Music” (RWC-MDB-P-2001) developed by Goto et al. [31].

Those songs contain sounds of vocals and various instruments

as songs in commercial CDs do. Seed templates were created

from solo tones included in “RWC Music Database: Musical

Instrument Sound” (RWC-MDB-I-2001) [32]: a seed template

of each drum is created from multiple sound files each of

which contains a sole tone of the drum sound by normal-style

performance. All original data were sampled at 44.1 kHz with

16 bits, stereo. We converted them to monaural recordings.

We evaluated the experimental results by the recall rate, pre-

cision rate and f-measure

recall rate
correctly detected onsets

actual onsets

rate
correctly detected onsets

detected onsets

f-measure
recall rate precision rate

recall rate precision rate

To prepare actual onset times (correct answers), we extracted

onset times (note-on events) of the bass drums, snare drums,
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TABLE I
NUMBER OF ACTUAL ONSETS IN 70 MUSICAL PIECES

TABLE II
SETTING OF COMPARATIVE EXPERIMENTS

and hi-hat cymbals from the standard MIDI files of the sev-

enty songs, which are distributed with the music database, and

aligned them to the corresponding audio signals by hand. The

number of actual onsets of each drum sound included in seventy

songs is shown in Table I (about 100 000 onsets in total). If the

difference between a detected onset time and an actual onset

time was less than 25 [ms], we judged that the detected onset

time is correct.

B. Experimental Results

To evaluate our proposed three methods: template-matching

method ( -method), template-adaptation method ( -method),

and harmonic-structure-suppression method ( -method), we

performed comparative experiments by enabling each method

one by one: we tested three procedures shown in Table II,

-procedure, -procedure, and -procedure. The

-procedure was not tested for recognizing hi-hat cymbal

sounds because the -method is enabled only for recognizing

bass or snare drum sounds. The -procedure used a seed tem-

plate instead of the adapted template for the template-matching.

The balancing factors and were determined for each

experiment as shown in Table III.

For convenience, we evaluated three procedures by dividing

70 musical pieces into three groups: group I, II, and III. First,

70 pieces were sorted in descending order with respect to the

f-measure by the fully-enabled procedure (i.e., -procedure

in bass and snare drum sound recognition, -procedure in

hi-hat cymbal sound recognition). Second, the first 20 pieces

were put in group I, and the next 25 pieces were put in group II,

and the remaining 25 pieces were put in group III.

The average recall and precision rates of onset candidate de-

tection was 88%/22% (bass drum sound recognition), 77%/18%

(snare drum sound recognition), and 87%/36% (hi-hat cymbal

sound recognition). This means the chance rates of onset de-

tection by the coin-toss decision were 29%, 25%, and 39%, re-

spectively. Table III shows the experimental results obtained by

each procedure. Table IV shows the recognition error reduc-

tion rates which represent the f-measure improvement obtained

by enabling the -method added to the -procedure, and that

obtained by enabling the -method added to the -proce-

dure. Table V shows a complete list of musical pieces sorted

in descending order with respect to f-measure of each drum in-

strument recognition. Fig. 10 shows f-measure curves along the

sorted musical pieces in recognizing each drum instrument.

C. Discussion

The experimental results show the effectiveness of our

methods. In general, the fully-enabled -procedures

yielded the best performance in bass and snare drum sound

recognition. In these case, the average f-measure was 82.924%

and 58.288%, respectively. In hi-hat cymbal sound recognition

by the -procedure, the average f-measure was 46.249%. In

total, the f-measure averaged over those three drum instruments

was about 62%. In our observation, the effectiveness of the

A-method and S-method was almost independent to specific

playing styles. If harmonic sounds which mainly distribute in

a low frequency band (e.g., spectral components of bass line)

are more dominant, the suppression method tends to be more

effective. We discuss in detail in the following sections.

1) Bass Drum Sound Recognition: The f-measure in bass

drum sound recognition (82.92% in total) was highest among

the results of recognizing three drum instruments. Table IV

showed that both the -method and the -method were very ef-

fective, especially in group I. It also showed that the -method

in recognizing bass drum sounds was more effective, compared

to snare drum sound recognition. The -method could suppress

undesirable harmonic components of the bass line which has

the large power in a low frequency band.

2) Snare Drum Sound Recognition: In group I, the f-measure

was drastically improved from 65.33% to 87.63% by enabling

both the -method and the -method. Table IV showed that the

-method in recognizing snare drum sounds was less effective

than the -method.

In group II, on the other hand, the -method was more effec-

tive than the -method. These results suggest that the template-

adaptation became to work correctly after suppressing harmonic

components in some pieces. In other words, the -method and

the -method helped each other in improving the f-measure, and

thus it is important to use both methods.

In group III, however, the f-measure was slightly degraded by

enabling the -method because the template-adaptation failed

in some pieces. In these pieces, the seed template was erro-

neously adapted to harmonic components. The -method was

not effective enough to recover from such erroneous adaptation.

These facts suggest that acoustic features of snare drum sounds

in these pieces are too different from those of the seed template.

To overcome these problems, we plan to incorporate multiple

templates for each drum instrument.

3) Hi-Hat Cymbal Sound Recognition: The f-measure in

hi-hat cymbal sound recognition (46.25% in total) was lowest

among the experimental results in recognizing three drum

instruments. The performance without the -method and the

-method indicates that this is the most difficult task in our

experiments. Unfortunately, the -method was not effective

enough for hi-hat cymbals, while it reduced some errors as

shown in Table IV. This is because there are three major playing

styles for hi-hat cymbals, closed, open, and half-open, and they

are used in a mixed way in an actual musical piece. Since our

method used just a single template, the template could not

cover all spectral variations by those playing styles and was

not appropriately adapted to those sounds in the piece even

by the -method. We plan to incorporate multiple templates
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TABLE III
DRUM SOUND RECOGNITION RATES

Note: 70 musical pieces were sorted in descending order with respect to the f-measure by the fully-enabled procedure (i.e., SAM -procedure in bass and

snare drum sound recognition, AM -procedure in hi-hat cymbal sound recognition). The first 20 pieces were put in group I, and the next 25 ones were put

in group II, and the last 25 ones were put in group III.

TABLE IV
RECOGNITION ERROR REDUCTION RATES

Note: The definition of group I, II and III is described in Table III. This shows the recognition error reduction rates which represent the f-measure improvement

obtained by enabling the A-method added to theM -procedure, and that obtained by enabling the S-method added to the AM -procedure.

TABLE V
LIST OF MUSICAL PIECES SORTED IN DESCENDING ORDER WITH RESPECT TO f-MEASURE

Fig. 10. (a), (b): f-measure curves by three procedures in (a) bass drum sound recognition and (b) snare drum sound recognition along sorted musical pieces in
descending order with respect to f-measure by SAM -procedure. (c): f-measure curves by two procedures in hi-hat cymbal sound recognition along sorted musical
pieces in descending order with respect to f-measure by AM -procedure.

as discussed above to deal with this difficulty while another

problem of identifying the playing styles of hi-hat cymbals will

still remain an open question.

VIII. CONCLUSION

In this paper, we have presented a drum sound recognition

system that can detect onset times of drum sounds and iden-

tify them. Our system used template-adaptation and template-

matching methods to individually detect onset times of three

drum instruments, the bass drum, snare drum, and hi-hat cym-

bals. Since a drum-sound spectrogram prepared as a seed tem-

plate is different from one used in a musical piece, our tem-

plate-adaptation method adapts the template to the piece. By

using the adapted template, our template-matching method then

detects their onset times even if drum sounds are overlapped

by other musical instrument sounds. In addition, to improve

the performance of the adaptation and matching, we proposed

a harmonic-structure-suppression method that suppresses har-

monic components of other musical instrument sounds by using

comb-filter-like spectral analysis.



344 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 15, NO. 1, JANUARY 2007

To evaluate our system, we performed reliable experiments

with popular-music CD recordings, which are the largest

experiments for drum sounds as far as we know. The exper-

imental results showed that both of the template-adaptation

and harmonic-structure-suppression methods improved the

f-measure of recognizing each drum. The average f-measures

were 82.924%, 58.288%, and 46.249% in recognizing bass

drum sounds, snare drum sounds, and hi-hat cymbal sounds,

respectively. Our system, called AdaMast [33], in which the

harmonic-structure-suppression method was disabled won the

first prize of Audio Drum Detection Contest in MIREX2005.

We expect that these results could be used as a benchmark.

In the future, we plan to use multiple seed templates for each

kind of the drums to improve the coverage of the timbre varia-

tion of drum sounds. A study on timbre variation of drum sounds

[34] seems to be helpful. The improvement of the template-

matching method is also necessary to deal with the spectral vari-

ation among onsets. In addition, we will apply our system to

rhythm-related content description for building a content-based

MIR system.
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