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We use a model Density Functional, based on the White-Bear version of Fundamental Measure
theory, to test recent predictions, due to Evans and co-workers, that capillary condensation in
a capped capillary-slit is a continuous interfacial critical phenomenal related to the complete
wetting transition. Using a model with a square-well intermolecular fluid-fluid attraction we
first determine accurately the location of the first-order capillary evaporation transition in
an infinite (open) hard-wall capillary slit. Extending the density functional model to allow
for a two dimensional order-parameter profile, we then study the adsorption as the chemical
potential is reduced to capillary evaporation but now in a capillary-slit that is capped at
one end. The equilibrium density profiles obtained show that, sufficiently close to the phase
boundary, a meniscus separating liquid-like and vapour-like phases forms near the capped end,
and that as capillary evaporation is approached, continuously unbinds from the capped end.
Our numerical results indicate that the divergence of the adsorption due to the unbinding of
the meniscus is logarithmic and is the same as for the complete wetting transition in systems
with short-ranged forces.

1. Introduction

In 1979 Bob Evans wrote a pioneering review article [1] on the application of classi-
cal density functional theory (DFT) to the statistical mechanics of inhomogeneous
fluids and, with exceptional clarity, explained how free-energies, density profiles
and correlation functions can all be calculated from a model functional. It is no
exaggeration to say that this brought “calculation to the masses” paving the way
for the development of ever more sophisticated model microscopic functionals [2–
7] together with their application to phase transitions such as wetting, layering
and capillary condensation [8–12]. Together with effective interfacial Hamiltonian
models and computer simulations, DFT is part of the triumvirate of powerful tools
theoreticians have used to revolutionise our understanding of interfacial phenom-
ena, which has grown enormously since the 1980s. Interest in the last decade has
been further renewed by technological developments which allow one to pattern
and sculpt solid surfaces on the nanometre and micrometre scale. Thus as well
as considering adsorption at flat substrates and in capillary slits and pores one
can consider corrugated surfaces and wedges/grooves of different cross-section [13–
17], and also heterogeneous surfaces patterned into domains with different wetting
properties. As well as being of huge practical importance this is of fundamental in-
terest to statistical mechanics since different substrate geometry can induce novel
types of interfacial phase transition which lie “between” wetting and capillary-
condensation. For example there has been a great deal of interest in the physics of
filling transitions for fluids adsorbed in linear wedges which can exhibit very large
interfacial fluctuation effects compared to wetting at flat substrates [18, 19]. It has
also been noticed, from studies based primarily on effective interfacial Hamilto-
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nian models, that there appear to be precise connections between absorptions in
different geometries and between apparently different phase transitions [20, 21].
The purpose of the present article is to test some of these predictions using more
microscopic density functional models. By doing so we follow in spirit an approach
pioneered by Bob Evans.
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Figure 1. The geometry of an infinite slit (a) of two parallel hard walls which are separated by the width
L and of a capped capillary (b) with width L. In case (b) the length D of the capillary is assumed to be
infinite.

Capillary-condensation refers to the shift of the liquid-vapour coexistence curve
when a fluid is confined in a capillary slit or pore. Thus vapour confined in a slit of
width L, as shown in Fig. 1(a), will condense to a liquid-like phase, at a pressure
pC(L, T ), which is different to the value psat(T ) at bulk coexistence, given by the
macroscopic Kelvin equation

psat(T ) − pC(T,L) =
2σ cos θ

L
+ · · · (1)

where σ is the liquid-vapour surface tension and θ is the contact angle. Thus
pC(L, T ) < psat(T ) for contacts angles 0 ≤ θ < π/2 corresponding to capillary con-
densation, while pC(L, T ) > psat(T ) for contact angles π/2 < θ ≤ π corresponding
to capillary evaporation. The vast majority of studies of capillary condensation
based on Landau-like square gradient models and density-functional theories, as-
sume that the walls are of infinite area and the density is translationally invariant
parallel to them. Thus the equilibrium one-body density profile ρ(r) = ρ(x) where
x is the co-ordinate perpendicular to the wall(s). In this case capillary condensation
is certainly a first-order phase transitions and mean-field treatments of it display
adsorption isotherms with a van der Waals loop. However capping the capillary
at one end [see Fig. 1(b)] may have a profound effect on this transition. Building
on earlier numerical studies, Parry, Rascon, Wilding and Evans [22], pointed out
that the presence of the capped end necessarily induces the formation of a menis-
cus, separating liquid-like and vapour-like phases. For walls that are completely
wet by liquid interfacial Hamiltonian models indicate that the meniscus is bound
near to the capped end for pressures p < pC(T,L). As the pressure is increased
to pC(T,L) the meniscus continuously unbinds from the capped end thus contin-
uously filling the capillary with liquid and is directly analogous to the complete
wetting transition occurring at flat walls. However instead of the unbinding of a
liquid-vapour interface as bulk coexistence is approached, the unbinding is that of a
meniscus as the shifted phase boundary (corresponding to capillary condensation)
is approached. Thus condensation in a capped capillary is actually a second-order
interfacial phase transition. For systems with short-ranged forces, and in the ab-
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sence of fluctuation effects, this implies that the adsorption in the capped capillary
should diverge as Γ ≈ − ln |p − pC(T,L)|.

We wish to test this prediction with a microscopic DFT model. This is a non-
trivial numerical task of course because the equilibrium density profile ρ(r) =
ρ(x, z) is no longer translationally invariant (parallel to the walls) and depends
explicitly on z the distance from the capped end. We choose a model fluid with
a square-well intermolecular potential and a capillary-slit with purely hard walls.
These are completely wet by the vapour phase so our attention is on the capillary
evaporation which occurs as the pressure is reduced to pC(T,L). In this case the
meniscus separates vapour (towards the capped end) from liquid but otherwise the
phenomenology is identical. We begin with a brief recap of the density functional
method before accurately determining the location of the capillary-evaporation
pressure in an infinite slit with open ends (no cap). This precision is necessary in
order to test the logarithmic growth predicted for the capped system. Our numeri-
cal results for the two dimensional DFT corresponding to the capped capillary are
then presented and discussed.

2. Density Functional Theory

Within the framework of density functional theory for classical systems [1, 23] there
exists the grand canonical potential functional of the form

Ω[ρ] = F [ρ] +

∫

d3r ρ(r)(Vext(r) − µ), (2)

where F [ρ] is the functional of the intrinsic Helmholtz free energy, Vext(r) is the
external and µ the chemical potential. It can be proven that the functional Ω[ρ]
possesses the property that it is minimal for the equilibrium density distribution
ρo(r), for which it reduces to the grand potential Ω = Ω[ρ0] of the system. It follows
that the equilibrium density distribution can be obtained from the variational
principle

δΩ[ρ]

δρ(r))

∣

∣

∣

∣

ρ(r)=ρ0(r)

= 0. (3)

Once ρ0(r), i.e. the inhomogeneous structure, is known the thermodynamics is
accessible through the grand potential Ω.

The functional of the intrinsic Helmholtz free energy

F [ρ] = Fid[ρ] + Fex[ρ] (4)

can be split into an exactly known ideal gas part Fid[ρ] and an excess (over the ideal
gas) free energy Fex[ρ], which for most systems of interest is known only approxi-
mately. The excess free energy contains all the information about the inter-particle
interactions. Here we wish to study a simple fluid with short-ranged interactions,
that can phase separate into a liquid and a vapour phase. A well studied case is
the square-well fluid [24, 25] with the inter-particle interaction given by

βVsw(r) =







∞ r < 2R
−βε 2R < r < 2Rsw

0 otherwise.
(5)
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As usual β = 1/(kBT ), with the Boltzmann constant kB and the absolute tempera-
ture T . Within DFT we treat the square-well interaction by a hard-sphere reference
system, described by the White-Bear version [5–7] of fundamental-measure theory
[4, 26], and a square-well attraction as a perturbation:

Fex[ρ] = FHS
ex [ρ] +

1

2

∫

d3r ρ(r)

∫

d3r′ ρ(r′) φsw(|r − r′|). (6)

The perturbation term of this form underestimates the correlation in the system.
To compensate this effect, one usually introduces an empirical modified square-well
potential

βφsw(r) =

{

−βε r < 2Rsw

0 otherwise,
(7)

where the attraction is extended into the core, i.e. to r → 0.
In the absence of any external field, Vext(r) = 0, the density profile of the fluid

reduces to the constant bulk density ρ(r) = ρ and the density functional provides
simple expressions for the chemical potential µ(ρ, T ) and the pressure p(ρ, T ) of
the fluid. It is straightforward to construct the fluid phase diagram by demanding
mechanical- and chemical-equilibrium between two fluid phases with densities ρI

and ρII , respectively, i.e.

µ(ρI , T ) = µ(ρII , T ) and p(ρI , T ) = p(ρII , T ). (8)

In the following we chose the range of the square-well attraction to be Rsw = 3σ,
where σ is the hard-sphere diameter. The resulting phase diagram of a square-well
bulk fluid is shown in Fig. 2 in the (dimensionless) density-temperature represen-
tation, where η = ρ(4π/3)R3 is the packing fraction of the bulk fluid. Note that
for a confined fluid, as studied in the following the packing fraction is a measure
for the density in the particle reservoir. The DFT calculations presented here are
performed at a fixed temperature, corresponding to βε = 1.1, as indicated by the
dotted line in Fig. 2. The dashed line in Fig. 2 denotes the Fisher-Widom line [27],
which separates region in the phase diagram in which the bulk correlation function
decays monotonic from those in which it decays oscillatory. Within the framework
of DFT Bob Evans and co-workers could show [28–32] that the character of the
bulk correlations, i.e. monotonic or oscillatory decay, is also reflected by inhomo-
geneous density distributions. It is this insight that made us calculate and plot the
Fisher-Widom line for our system in Fig. 2. The fluid state points we consider are
clearly on the oscillatory side of the Fisher-Widom line.

Before studying the square-well fluid confined by a capped capillary, for which the
density profile ρ(r) = ρ(x, z) depends on two coordinates, it is of great importance
to establish the accuracy and internal consistency of the implementation of the
DFT in order to ensure that the numerical results are reliable. For our study
we require consistency between the structure of the fluid, i.e. the density profile
ρ(r), and thermodynamic quantities that can be derived from the grand potential
Ω = Ω[ρ(r)]. To this end we verify that our numerical results at a single planar hard
wall satisfy the contact theorem and Gibbs’ adsorption theorem. Note that we have
employed the two-dimensional DFT implementation even at a single planar wall,
although the problem could be reduced to an effectively one-dimensional problem.
Furthermore, we have verified that our implementation satisfies Gibbs’ adsorption
theorem in a slit geometry and in a capped capillary. Using the two dimensional
implementation with 10 grid points per hard-sphere radius we have established at
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Figure 2. Bulk phase diagram of a square-well fluid with well depth ε and square-well range Rsw = 3σ.
The dashed line is the Fisher-Widom line that separates the phase diagram into a region in which the
bulk correlation function decays monotonic and one in which it decays oscillatory. We perform our DFT
calculations at a fixed temperature, corresponding to βε = 1.1, as indicated by the dotted line, i.e. in the
oscillatory region of the phase diagram. For this temperature and the employed slit width, L = 19.6R,
capillary evaporation occurs at ηCE(T, L) = 0.360641 (marked by the circle), well away from bulk phase
coexistence. The full line indicates the path in the phase diagram taken for our calculations in the capped
capillary.

the fixed temperature shown in Fig. 2 for various densities that the relative error
of the sum rules is less than 10−5.

3. Infinite Slit

It is well known and studied that for all values of T between the critical tempera-
ture Tc and the triple point temperature Tt at a single planar hard wall complete
drying occurs for a square-well liquid as bulk coexistence with the vapour phase is
approached, i.e. as the chemical potential µ → µsat(T ) approaches from above its
value at coexistence, µsat(T ), a macroscopically thick vapour film wets the inter-
face between the bulk liquid and the planar hard wall. It is also well established
that a square-well liquid off coexistence, µ > µsat(T ), confined by two parallel
planar hard wall (slit) at separation L undergoes the phase transition of capillary
evaporation (CE) as the chemical potential µ → µCE(T,L) approaches the value
µCE(T,L) > µsat(T ) from above [12]. At µ = µCE(T,L) a high density liquid and
a low density vapour, that is meta-stable in the bulk, can coexist in a slit of width
L.

The slit enters our DFT calculation via the external field

βV slit
ext (x) =

{

∞ |x| > L
2

0 otherwise.
(9)

In order to determine the location of the capillary evaporation we perform a series
of DFT calculations for a fixed temperature, which corresponds to a dimension-
less square-well depth of βε = 1.1, as indicated by the dotted line in Fig. 2. For
practical reasons we fix the slit width to L = 19.6R and vary the chemical po-
tential, or equivalently η the reservoir packing fraction of the liquid. For values of

Page 5 of 13

URL: http://mc.manuscriptcentral.com/tandf/tmph

Molecular Physics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For P
eer R

eview
 O

nly

November 15, 2010 14:43 Molecular Physics cc

6

µ > µCE(T,L) we observe a high density liquid in the slit, while for µ < µCE(T,L)
the density profile jumps from a high density liquid profile to a low density vapour
one [12]. However, the jump in the density profile is not sufficient to locate the
capillary evaporation phase transition, because of hysteresis effects [12]. Within
DFT it is possible to calculate the grand potential of the system in addition to
the density profile. In Fig. 3 we show the grand potential Ω = Ω[ρ(x)] as a func-
tion of the reservoir packing fraction obtained from DFT for a square-well fluid
in a slit with fixed width. As can be seen, there are two distinct branches, one
corresponding to a liquid (squares, full line) and one corresponding to a vapour
(circles, dashed line). The grand potential of the liquid depends much stronger on
the reservoir packing fraction than that of the vapour. The two branches of the
grand potential intersect at the capillary evaporation phase transition, which can
be described by ηCE(T,L) or equivalently µCE(T,L). We find for our choice of
parameters the capillary evaporation to correspond to a reservoir packing fraction
of ηCE(T,L) = 0.360641, which is marked by the circle in Fig. 2.

0.35 0.355 0.36 0.365 0.37 0.375 0.38

η

-0.6

-0.4

-0.2

β 
Ω

 R
2  / 

A

-0.0515

-0.051

-0.0505

Figure 3. Grand potential per unit area Ω of a square-well fluid in an infinite slit. The temperature is
chosen so that βε = 1.1 (see dotted line in Fig. 2). The grand potential of the liquid branch (squares)
and that of the vapour branch (circles) intersect at the point of capillary evaporation, corresponding to a
reservoir packing fraction of ηCE(T, L) = 0.360641 (circle in Fig. 2).

In the inset of Fig. 3 the grand potential of both the liquid and the vapour
branch is shown in the vicinity of capillary evaporation. It is clear that there are
hysteresis effects and meta-stable liquids or vapours can be observed in the slit,
as is typical for a first order phase transition. Note that the accurate location of
capillary evaporation can only be determined, if the theory describes the structure
(density profiles) and thermodynamics (grand potential) of the system consistently.
It is for this reason that we have verified that the contact theorem at a single wall
and the Gibbs adsorption theorem at a single wall and in the slit are satisfied.

For a reservoir packing fraction of η = ηCE(T,L) = 0.360641 a liquid and a
vapour can coexist in the slit for the given parameters, L = 19.6 and βε = 1.1.
We plot he corresponding density profiles of the coexisting phases in Fig. 4. The
density profile of the liquid possesses an oscillatory high density part in the middle
of the slit, reflecting the fact that its state point is located in the oscillatory region
of the phase diagram (see Fig. 2), and has a contact value at the walls, |x| = L/2,
which is significantly lower than the reservoir density [24].
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Figure 4. Density profiles of a square-well fluid in an infinite slit at the coexisting reservoir packing fraction
of η = ηCE(T, L) = 0.360641. The difference between the liquid and the vapour profile is well pronounced.
Note that the state point of the high density liquid lies on the oscillatory side of the Fisher-Widom line,
while that of the low density vapour is located on the monotonic side. In agreement with this observation
we find an oscillatory structure only in the liquid profile. As the capillary evaporation is crossed the stable
state of the fluid in the slit jumps between these two profiles.

Since we have chosen a temperature well below the critical temperature the
difference between the high density liquid and the low density gas at the same
chemical potential is large. As a consequence, the change in the density profile as
the point of capillary evaporation is crossed is big.

4. Capped Capillary

In order to study the behaviour of the square-well fluid in a capped capillary we
change the external potential from the slit potential, Eq. (9), to that of a capped
capillary

βV cap
ext (x, z) =

{

∞ |x| > L
2 or z < 0

0 otherwise.
(10)

The geometry of the capped capillary is shown in Fig. 1(b). The length of the
capillary, D is assumed to be infinite. Clearly, the resulting density profiles are now
functions of x and z. The reservoir packing fractions considered here correspond
to chemical potentials that are larger than its value at capillary evaporation, i.e.
µ = µCE(T,L) + δµ with δµ > 0. This choice is denoted by the full line at fixed
temperature in Fig. 2, which ends at the location of capillary evaporation, marked
by the circle.

A typical example of the two dimensional density profile of a square well fluid
with a reservoir packing fraction of η = 0.38 in the capped capillary is shown
in Fig. 5. The chemical potential for the liquid at η = 0.38 is clearly away from
capillary evaporation, as is measured by βδµ = 0.3719.

For z → ∞, the profile recovers that of an infinite slit with a low contact value
at the walls, |x| = L/2, and an oscillatory high liquid density part in the middle of
the capillary. The oscillations represent packing effects in the liquid.

For z → 0 the influence of the third wall becomes apparent. The density in the
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Figure 5. Density profile of a square-well fluid in a capped capillary. The packing fraction is η = 0.380.
Corresponding to this packing fraction βδµ = 0.3719.

wedges at z = 0 and |x| = L/2 is the smallest, as expected, but for the density
used for Fig. 5 the wedges are still separated by a region along the third wall at
z = 0 with higher density.

As we decrease the reservoir packing fraction η or the corresponding distance in
chemical potential δµ from capillary evaporation, the density profile ρ(x, z) changes
considerably. The first important change takes place at the third wall at z = 0.
The low density regions at the wedges at |x| = L/2 connect to each other, as can
be seen in Fig. 6(a)-(b). At the same time the oscillatory structure in the middle of
the slit for z → ∞ becomes weaker. Note that also the contact value of the liquid
at the walls at |x| = L/2 for z → ∞ decreases, but not nearly as fast as the contact
value at z = 0 and x = 0. In Fig. 6(a) and (b) we show density profiles for reservoir
packing fractions of η = 0.375 and 0.370, which corresponds to βδµ = 0.2659 and
0.1670, respectively.

As we further approach the location of capillary evaporation, one can observe
that a vapour film wets the third wall at z = 0 [22], as is shown in Fig. 6(c) and
(d), for reservoir packing fractions of η = 0.365 and 0.36067. The corresponding
values of βδµ are 0.0749 and 0.00049, respectively.

While it is very interesting to get an impression of the behaviour of the den-
sity profile as capillary evaporation is approached, it is important to quantify this
phenomena by thermodynamic quantities. Here we consider

Ωex = Ω[ρ(x, z)] + pV, (11)

the excess (over a bulk liquid) grand potential. The grand potential of the corre-
sponding bulk system is simply Ωbulk = −pV , which assumes as a reference system
a liquid with constant density that occupies a volume V . Note that while the total
grand potential of the system is well defined and unique, the excess grand potential
is not because the volume V is not uniquely defined. Here we use the volume that
is accessible to the centrers of fluid spheres.

Strictly speaking, the thermodynamic limit of Eq. (11), in which the system size
becomes infinite, is problematic because both Ω and Ωex are infinite in this limit.
Since we are using a fixed, and finite system size in our DFT calculations, we do
not face this problem in practice. The finite system considered here is extended
by the behaviour of the liquid in an infinite slit, i.e. we make use of the fact that
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Figure 6. Density profiles of a square-well fluid in a capped capillary. The packing fractions are (a) η =
0.375, (b) 0.370, (c) 0.365, and (d) 0.36067, respectively. These values of η correspond to (a) βδµ = 0.2659,
(b) 0.1670, (c) 0.0749, and (d) 0.00049, respectively.
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Figure 7. The excess Grand potential Ω + pV of a square-well fluid in a capped capillary as a function of
δµ = µ − µCE . The line is a guide to the eye.

ρ(x, z → ∞) → ρslit(x), where ρslit(x) is the density profile of the liquid at the
same state point in a slit geometry. We have chosen the system size sufficiently
large that this asymptotic behaviour is realised.

In order to isolate the effects of the third wall at z = 0 it would be cleaner to
subtract from Ω the grand potential of a liquid confined by a slit of volume V ,
rather than that of a bulk liquid. However, the influence of the parallel walls for
z → ∞ is rather small and for the following discussion of no importance so that
we can stick to the definition of the excess grand potential given in Eq. (11).
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Figure 8. The excess adsorption Γ of a square-well fluid in a capped capillary as a function of δµ = µ−µCE .
The line is a guide to the eye. Γ diverges for δµ → 0 like ln δµ.

Related to the excess grand potential is the excess adsorption defined by

Γ =

∫

V
d3r (ρ(r) − ρ) = −

(

∂Ωex

∂µ

)∣

∣

∣

∣

T,V

(12)

which quantifies the excess (over a bulk system) amount of liquid found in the
capped capillary. As indicated in Eq. (12) the excess adsorption can be either cal-
culated from the inhomogeneous density profile ρ(x, z), or using Gibbs’ adsorption
theorem as a derivative of the excess grand potential, Eq. (11), w.r.t. the chemical
potential µ. We have verified that for our results both routes are equivalent.

Since the excess grand potential and the excess adsorption are related via Gibbs’
adsorption theorem, the same remarks about the thermodynamic limit and the
reference system apply.

We show the DFT results for Ωex as a function of δµ in Fig. 7. The excess
grand potential of the liquid in a capped capillary decreases as the limit δµ → 0 is
approached. In the inset of Fig. 7 we show Ωex for very small values of δµ. In the
whole range we considered the excess grand potential is well behaved.

The situation is clearly different for the excess adsorption, shown in Fig. 8. Γ
is negative and decreases in the limit δµ → 0, however, in contrast to the excess
grand potential, the decrease in Γ becomes stronger with smaller values of δµ. In
fact for δµ → 0 one can observe a divergence of the excess adsorption. This is
highlighted in the inset of Fig. 8. In order to better understand the divergence
we fit the DFT data. Clearly, a polynomial in δµ is not sufficient to capture the
behaviour of Γ in the range of δµ shown in Fig. 8. However, we find, in accordance
with the prediction by Rascon and Parry [13, 22], that the excess adsorption can
very nicely be fitted by a polynomial in δµ plus a logarithmic term, i.e. in the limit
δµ → 0 we find that Γ ∝ − ln δµ. The corresponding term in the excess grand
potential in the same limit is given by Ωex ∝ δµ ln δµ, which is non-analytic but
remains finite.

It is also interesting to consider cuts ρ(x = 0, z) of the two-dimensional density
profiles at the middle of the capped capillary. The predictions of Rascon and Parry
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[13, 22] suggest that these cuts should essentially behave like wetting (or drying)
profiles of the fluid at a single planar wall, when bulk coexistence is approach as
δµ → 0. Some cuts are shown in Fig. 9.

0 2 4 6 8 10 12 14

z / R

0
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0.04

0.06

0.08

0.1

ρ(
x=

0,
z)

 R
3

η = 0.365

η = 0.364

η = 0.363

η = 0.362

η = 0.361

η = 0.36067

Figure 9. The density ρ(x = 0, z) in the middle of the capped capillary, as capillary evaporation is
approached with δµ = µ−µCE(T, L) → 0. These profiles behave essentially like those of a fluid at a single
planar wall, as bulk coexistence is approach with δµ = µ − µsat(T ) → 0.

Due to the close connection between the excess grand potential and the excess
adsorption, we can test the consistency of the fits. The fit parameters for the excess
adsorption can be used, up to a constant, to describe the data for the excess grand
potential, including the non-analytic contribution.

It is important to realise that the fact that the divergence in the excess adsorption
is (numerically) observed at δµ = 0 is a consequence of the high level of consistency
between the structure and thermodynamic quantities in our implementation of
DFT. Any slight discrepancy could result in an apparent shift of the divergence.

5. Discussion

In this paper we have used the White-Bear version of fundamental measure DFT
to investigate the nature of capillary evaporation in a capped hard-wall capillary
slit. Our numerically results support the prediction made using effective interfacial
Hamiltonian models predict that in this geometry capillary evaporation is a second-
order transition related to complete wetting. This is perhaps most clearly seen in
our final diagram (Fig. 9) which shows various density profiles (measured at the
mid-point between the walls) as a function of the distance from the capped end
on approaching capillary evaporation. These profiles resemble, qualitatively, those
for drying films at a planar wall and show the growth of a thick “drying” layer as
“coexistence” is approached. However in this case the “wall” is the capped end,
coexistence refers to capillary evaporation, the unbinding “interface” is actually
a cross-section of the meniscus, and the coexisting phases are the “liquid-like”
and “vapour-like” phases of the shifted bulk coexistence curve. Using an accurate
and independently determined value for µCE , we have shown that the growth and
divergence of the thickness of the vapour-like phase (the distance of the meniscus
to the cap) as δµ = µ − µCE is − ln δµ – the same as for complete wetting with
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short-ranged forces in accordance with the predictions of Evans and co-workers.
Our present model DFT calculation is of course only mean-field like and does not

include interfacial fluctuation effects. For the present case of systems with short-
ranged forces these could be large and eventually lead to cross-over behaviour
in which the adsorption changes from its mean-field expression Γ ∝ − ln δµ to
Γ ∝ δµ−1/3. The latter is the universal result for complete wetting (in bulk two
dimensions). Such cross-over behaviour would be very interesting to study as a
function of the slit width. Our intuition is that the wider the slit, the narrower the
true asymptotic regime and the broader the regime when the mean-field calculation
is valid. Unfortunately none of this is as yet possible using DFT and one must still
resort to coarse-grained interfacial models and simulation studies.

However there are still many interesting questions one can ask using the present
DFT and substrate geometry. For example it would be interesting, and relatively
simple, to add an attractive potential to the wall-fluid interaction in order to alter
the contact angle. Indeed one may use a different material to cap the capillary so
that the interaction potential with the side walls and cap is different. By doing
this we might be able to alter the manner in which the meniscus unbinds from the
capped end similar to studies of tri-criticality filling transitions in linear wedges.
Similarly it would be interesting to see what happens as one moves along the
capillary-evaporation line towards the capillary-critical point. In this case we can
expect cross-over to critical-adsorption-like behaviour in which the decay of the
profile from the capped end follows a slow algebraic power law. Finally we hope that
our present work serves to encourage further density functional model studies of
adsorption on structured surfaces including more complex fluids and their mixtures.
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