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Abstract This work analyses two heuristic algorithms based on the genetic evolution
theory applied to direct sequence code division multiple access (DS/CDMA) com-
munication systems. For different phases of an evolutionary algorithm new biological
processes are analyzed, specially adapted to the multiuser detection (MuD) problem
in multipath fading channels. Monte Carlo simulation results show that the detection
based on evolutionary heuristic algorithms is a viable option when compared with the
optimum solution (ML - maximum likelihood), even for hostile channel conditions and
severe system operation. Additionally, a comparative table is presented considering the
relation between bit error rate (BER) and complexity as the main analyzed figure of
merit. Each algorithm complexity is determined and compared with others based on
the required number of computational operations to reach de optimum performance
and also the spent computational time.
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1 Introduction to Heuristic Algorithms

In the last five years the literature has collected many proposals of solutions

based on heuristic algorithms, particularly the evolutionary ones, for inherent

problems to the multiple access communication, among them can be detached:

the optimum detection problem (optimum performance) [Tan, 2001], [Yen and

Hanzo, 2001], [Abedi and Tafazolli, 2001], [Wu et al., 2003], [Lim et al., 2003],

[Lim and Venkatesh, 2004], [Abrão et al., 2004], [Yen and Hanzo, 2004], the se-

quences selection [Jeszensky and Stolfi, 1998], [Kuramoto et al., 2004], the pa-

rameters estimation, in special the channel coefficients estimation [Yen and

Hanzo, 2001], the power control problem and the rate allocation and throughput

optimization [Moustafa et al., 2004], in order to increase DS/CDMA communi-

cation systems capacity and performance. Evolutionary strategies are very effi-



cient in attaining near-optimum solutions and significantly faster than conven-

tional point-by-point exhaustive search techniques, especially in large solution

spaces.

1.1 The MuD Problem

In a DS/CDMA system the signal is received and detected by a matched filters

bank (MFB), which constitutes the conventional detector, Figure 1. This type of

receiver is unable to recover the signal in an optimum sense, independently if the

channel is additive white Gaussian noise (AWGN), flat or frequency selective,

because the DS/CDMA signal is affected by multiple access interference (MAI)

and by the near-far ratio (NFR), resulting in a capacity well beyond the channel

capacity. One of the manners to reduce these effects in order to increase capacity

is to use all signals information from all other users in the detection process of

the desired user. This strategy is known as MuD [Verdú, 1986], [Verdú, 1998].

In the last two decades, a great variety of multiuser detectors were proposed

in the literature with the intention of performance improving compared to the

conventional detection. The best possible performance is obtained with the op-

timum detector, however with a high computational complexity.

The optimum multiuser detector (OMuD) [Verdú, 1986], [Verdú, 1998] con-

sists of a bank of matched filters followed by a maximum likelihood sequence es-

timator, MLSE. The MLSE detector generates a maximum likelihood sequence

b̂ in relation to the transmitted sequence. The vector b is estimated in or-

der to maximize the sequence transmission probability given that r(t) was re-

ceived, where r(t) is extended for all message and considering all transmitted

messages with the same transmission probability. The OMuD has a computa-

tional complexity that is exponentially crescent with the number of users. Hence,

the OMuD is impractical to implement. Thereby, more research is necessary in

order to obtain sub-optimum multiuser detectors with high performance and

low complexity. Some alternatives to OMuD include the classic linear multiuser

detectors, as Decorrelator [Verdú, 1986], and MMSE [Poor and S.Verdú, 1997],

and the classic non-linear multiuser detectors, as Interference Cancellation (IC)

[P.Patel and Holtzman, 1994] and Zero-Forcing Decision Feedback [Duel-Hallen,

1995], and also the MuD based on Classic heuristics [Tan, 2001], Stochastic

[Lim et al., 2003] and Analog [Lim and Venkatesh, 2004], [Abrão et al., 2004],

[Yen and Hanzo, 2004].

In this work sub-optimum heuristic evolutionary solutions will be analyzed

for the MuD problem, evidencing the advantage of these solutions in contrast to

the OMuD solution. For most of the practical cases of engineering interest, MuD

based on heuristic techniques result in almost optimum performance, i.e., very

close to the performance reached by the OMuD, however with the advantage of



smaller computational cost and a smaller detection time, an attractive tradeoff

between convergence speed and complexity.

In the literature in spite of existence of several works using approximative

procedures for the sub-optimum MuD, most of investigations are restricted to

very simple channels for most of the communication systems, e.g., AWGN syn-

chronous channels [Wu et al., 2003]. For instance, very few works analyze the

detection problem in frequency selective channels [Abedi and Tafazolli, 2001],

[Yen and Hanzo, 2004].

The first GA-based multiuser detector (GA-MuD) was proposed by Juntti et

al. [Juntti et al., 1997], where the analysis was based on a synchronous CDMA

system communicating over an AWGN channel. It was found that good initial

guesses of the possible solutions are needed for the GA in order to obtain a high

performance. However, by incorporating an element of local search prior to the

GA-MuD, in [Yen and Hanzo, 2000] was showed that the performance of the GA-

MuD approaches the single-user bound performance with a significantly lower

computational complexity than that of the OMuD. Recently, the Evolutionary

Programming (EP) algorithm was used for the first time for the MuD problem

(EP-MuD) over AWGN synchronous channel [Lim et al., 2003]. Next, Abrão et

al. [Abrão et al., 2004] suggest a modified version for the EP-MuD algorithm

including cloning and adaptive mutation procedures for the same MuD problem.

In [Yen and Hanzo, 2004] Yen et al. extend the results of [Yen and Hanzo,

2001] to an asynchronous DS/CDMA system transmitting over 2-path Rayleigh

fading channels with equal energy paths based on GA-MuD. For detector com-

plexity reduction and to concomitantly decrease the detection time, the authors

applied the observed window truncation technique such that it encompasses at

most one complete symbol interval of all users in any detection window. Then,

both the “edge” bits as well as the desired bits within the truncated observation

window bits are tentatively estimated using GA strategy.

Differently of [Yen and Hanzo, 2004], this work uses one-shot evolutionary

MuD over all bits from all users in the same frame, considering multipath expo-

nential power-delay profile channels. Two evolutionary algorithms were analyzed,

GA-MuD and EP-MuD with a multipath diversity smaller or equal to the num-

ber of multipaths. Additionally, the Maximal Rate Combining (MRC) was used

in order to find the initial candidate bits.

The remainder of this work is organized as follows. Section 2 describes the

DS/CDMA mathematical model over multipath Rayleigh channel and also the

MuD problem to be optimized. Next in 3 the two algorithms pseudo-codes, based

on the theory of genetic evolution and used for the MuD problem, are described

and characterized. From numerical results, section 4 compares the algorithms

efficiency for signals detection and different system conditions. The evolution-

ary algorithms efficiency is expressed in a performance term, considering BER



versus computational complexity. The computational complexity is expressed

as the number of operations as well as computational time to reach the OMuD

performance (or very close to it). Section 5 shows the general expressions for

algorithms computational complexity, with the number of operations and com-

putational time for each detector as a function of specific parameters. Finally

section 6 synthesizes the main conclusions of this work.

2 System Model

In a DS/CDMA system with binary phase-shift keying modulation (BPSK)

shared by K asynchronous users, as illustrated in Figure 1, the k-th user trans-

mitted signal is given by:

xk(t) =
√

2Pk

∑

i

b
(i)
k sk(t− iTb)cos(ωct) (1)

where Pk = A2
k/2 represents the k-th user’ transmitted power; b

(i)
k is the i-th

BPSK symbol with period Tb; ωc is the carrier frequency; sk(t) corresponds to

the spreading sequence defined in the interval [0, Tb) and zero outside:

sk(t) =

N−1∑

n=0

p(t− nTc)sk,n (2)

where sk,n ∈ {−1; 1} is the n-th chip of the sequence with length N used by
the k-th user; Tc is the chip period and the spread spectrum processing gain, Tb

Tc
,

is equal to N (short codes); the pulse shaping p(t) is assumed rectangular with

unitary amplitude in the interval [0;Tc) and zero outside.

Assuming a frame with I bits for each user, propagating over L independent

slow Rayleigh fading paths, the baseband received signal1 in the base station is

r (t) =

I−1∑

i=0

K∑

k=1

L∑

ℓ=1

Akb
(i)
k sk (t− τk,ℓ) ∗ h(i)

k (t) + η (t) (3)

whereK is the number of active users, t ∈ [0, Tb], the amplitude Ak is assumed as

constant for all I transmitted bits, bk ∈ {−1,+1} is the transmitted information

bit, sk is a copy of the signature sequence assigned to the k-th user, with τk,ℓ

representing the random delay associated to the k-th user; this random delay

takes into account the asynchronous nature of the transmission, dk, as well as

the propagation delay, ∆k,ℓ for k-th user, ℓ-th path, resulting in τk,ℓ = ∆k,ℓ +dk;

η (t) represents the AWGN with bilateral power density equal to N0/2 and the

complex low-pass impulse response of the channel for the k-th user over the i-th

bit interval can be written as:

h
(i)
k (t) =

L∑

ℓ=1

c
(i)
k,ℓδ (t−∆k,ℓ) =

L∑

ℓ=1

β
(i)
k,ℓe

jφ
(i)
k,ℓδ (t−∆k,ℓ) (4)

1 Assuming ideal low-pass filtering.



where ck,ℓ is the complex channel coefficient for the k-th user, ℓ-th path; it is

assumed that the ck,ℓ phase has a uniform distribution over φk,ℓ ∈ [0, 2π) and

the channel coefficient’s amplitude βk,ℓ represents the small scale-fading envelope

following a Rayleigh distribution with probability density function (PDF):

f(β) =
2β

ς
e−

β2

ς (5)

where β is the coefficient’s module and ς the multipath’s component average

power ς = E
[
β2
]
. Additionally, it is assumed that the channel gain is normalized

for all users:

E

[
L∑

ℓ=1

|ck,ℓ|2
]

= 1, for k = 1, 2, . . . ,K (6)

Figure 1: Baseband DS/CDMA Block Diagram, detaching the asynchronous

transmission and the conventional receiver for frequency selective channels, used

for initial estimates of the heuristic algorithms (GA and EP).

Using vectorial notation, equation (3) can be stated as:

r (t) =

I−1∑

i=0

sT (t− iTb)ac
(i)b(i) + η (t) (7)

where: s(t) = [s1(t−τ1,1), s1(t−τ1,2), . . . , s1(t−τ1,L), . . . , sk(t−τk,ℓ), . . . , sK(t−
τK,L)]T is the users signature sequence vector, the diagonal matrix for the av-

erage received users’ amplitude including the path losses and shadowing effects

is a = diag
[√

P
′

1I,
√
P

′

2I, . . . ,
√
P

′

KI
]
, where IL×L is the identity matrix with

dimension L; c(i) = diag
[
c
(i)
1,1, . . . , c

(i)
1,L, c

(i)
2,1, . . . , c

(i)
2,L, . . . , c

(i)
K,L

]
is the diagonal

channel gain matrix, and the data vector is given by b(i) =
[
b

(i)
1 ,b

(i)
2 , . . . ,b

(i)
K

]T

with b
(i)
k representing the 1×L k-th user bit vector. For simplicity and without



loss of generality, it was assumed an ordering of the random delays, such that

0 ≤ τ1,1 ≤ τ1,2 ≤ · · · τ1,L ≤ τ2,1 ≤ · · · ≤ τK,L < Tb. For multipath fading chan-

nels, the conventional receiver (Rake) consists of a bank of KL filters matched

to the users signature sequence. The matched filter outputs with coherent recep-

tion for the k-th user corresponding to the ℓ-th multipath component (finger)

sampled at the end of the i-th bit interval can be expressed as

y
(i)
k,ℓ =

+∞∫

−∞

r (t) sk (t− iTb − τk,ℓ) dt =
√
P

′

kTbβ
(i)
k,ℓb

(i)
k + SI

(i)
k,ℓ + I

(i)
k,ℓ + n

(i)
k,ℓ (8)

where the first term corresponds to the desired signal, the second to the auto-

interference, the third to the MAI over the ℓ-th multipath component of k-th

user and the last to the filtered AWGN.

The output of the matched filter bank at the i-th symbol interval can be

written using vector notation as:

y(i) =
[
y
(i)
1,1, y

(i)
1,2, . . . , y

(i)
1,L, y

(i)
2,1, . . . , y

(i)
2,L, . . . , y

(i)
K,L

]T
(9)

= RT [1]ac(i+1)b(i+1) + R [0]ac(i)b(i) + R [1]ac(i−1)b(i−1) + n(i)

where the matrices R [0] and R [1] with LK ×LK dimension are defined by the

elements:

Rjk [0] =






1 , if j = k

Rjk (τjk, 0) , if j < k

Rkj (τjk, 0) , if j > k

and Rjk [1] =

{
0 , if j ≥ k

Rkj (τjk, 0) , if j < k

(10)

with the partial cross-correlation elements Rjk given by:

Rj,k(τ, i) =

∫ Tb

0

sj(t)sk(t+ iTb + τ)dt, with i = 0; (11)

and the filtered noise vector n(i) has autocorrelation matrix

E
[
n(i)n(j)T

]
=






0.5N0R
T [1] , if j = i+ 1;

0.5N0R [0] , if j = i;

0.5N0R [1] , if j = i− 1;

0 , otherwise.

(12)

The conventional detector for frequency selective channels consists in com-

bining the available MFB outputs of each user (fingers) in a coherent way and

weighting it by each channel gain [Proakis, 1989]. The MRC combines the D

correlators’ output signals, followed by an abrupt decision circuit:

z
(i)
k =

D∑

ℓ=1

Re
{
y
(i)
k,ℓ(s)β̂

(i)
k,ℓ

}
(13)



b̂
(i)
k = sign

(
z
(i)
k

)
(14)

where D ≤ L represents the number of correlators in the receiver for each user,

also named Rake diversity, which in a real system needs the estimation of the fol-

lowing parameters for all users: channel coefficients, β̂, power, P̂ ′ , delay, τ̂ , (and

therefore correlations, R̂), and phase, φ̂. The Rake receiver performance will be

degraded when the number of users increases (increasing the MAI) and/or when

the power of interference increases (near-far effect).

One possible solution is to adopt joint decision using multiuser strategies. The

best one from this class is the maximum likelihood sequence detector. Jointly

optimum decisions are obtained by the OMuD that selects the most likely se-

quence of transmitted bits given the observations at receiver. Note that for any

joint decision strategy made on the i-th bits of the K users has to take into

account at least the decisions on either the (i − 1)-th bit or the (i + 1)-th of

the each user. For the joint decision of all bits from all users it is adopted the

one-shot approach in asynchronous channels [Verdú, 1998]. In this context the

K-user, L-paths, I-frame and asynchronous channel scenario can be viewed as a

KLI-user synchronous channel scenario, and them the KLI-user vector B can

be written as:

B =
[
b(0)T

,b(1)T

,b(2)T

, . . . ,b(I−1)T
]T

(15)

The objective is to compute the KLI-vector B that maximizes [Verdú, 1998]

g {y (t) , t ∈ [0, (I − 1)Tb] | B} = exp

(
−
∫ (I−1)Tb

0

[y (t) − S (B)]
2
dt

)
(16)

where: S (B) =
I−1∑

i=0

K∑

k=1

L∑

ℓ=1

√
P

′

kb
(i)
k sk (t− τk,ℓ) (17)

Based on the matched filter observations, vector y(i) in (9), the maximization

of (16) is equivalent to select the vector B that maximizes the so-called log-

likelihood function (LLF) [Verdú, 1998]

Ω (B) = 2Re
{
BTCHAY

}
− BTCARACHB (18)

where the coefficients and amplitudes diagonal matrices, with dimension KLI,

are defined by C = diag
[
c(0), c(1), c(2), . . . , c(I−1)

]
and A = diag [a,a,a, . . . ,a],

respectively, Y =
[
y(0)T

,y(1)T

,y(2)T

, . . . ,y(I−1)T
]T

, the transposed hermitian

operator is (·)H
=
[
(·)∗
]T

and the block-tridiagonal, block-Toeplitz cross corre-

lation matrix R, with the same dimension, can be defined as [Verdú, 1998]:



R =





R [0] RT [1] 0 · · · 0 0

R [1] R [0] RT [1] · · · 0 0

0 R [1] R [0] · · · 0 0

· · · · · · · · · . . . · · · · · ·
0 0 0 · · · R [1] R [0]




(19)

Therefore, the complete frame with the estimated transmitted bits for all of

K users can be obtained with the optimization of (18), resulting:

b̂ = arg

{
max

B∈{+1,−1}IK
[Ω (B)]

}
(20)

The OMuD try to find the best vector of data bits in a set with all possibil-

ities, so is a NP-complete problem where the traditional algorithms are ineffi-

cient. Restricting the search space, all heuristic algorithms try to find a solution

following an objective function (fitness value), which is able to quantify the

improvement tendency for better solutions in the optimum solution direction.

For MuD in frequency selective channels the fitness value can be expressed as

(18). Therefore, each heuristic algorithm will maximize the LLF testing distinct

frames of candidate bits in each new iteration. These attempts try to maximize

the DS/CDMA mean performance, with K active users. Increasing the number

of attempts the performance reaches that of the OMuD.

In Figure 1, MFB followed by the heuristic algorithm compose the receiver.

For frequency selective channels the MFB should be extended in order to include

delayed versions of the original signal from each user due to the multipath effect.

In this work, for frequency selective channels, the adopted Rake combining rule

is the MRC, equation (13).

3 Evolutionary Heuristics

This section presents an evolutionary algorithms revision, specifically GA and

EP, describing its variants, focusing on the MuD for DS/CDMA communication

systems. These variants include the population initialization stage, evaluation,

reproduction (competition), genetic operators (mutation and crossover), the re-

placement stage and stop criteria for the algorithm.

For the MuD problem the total search universe is characterized by all possible

combination of data bits that users can be transmitting. Considering K active

users transmitting I bits through a multipath channel with L paths and with D

fingers in the receiver, the total search universe will be:

Θ (K, I,D) = 2K.I.D (21)



with D ≥ 1 and not necessarily D ≤ L. But obviously the search universe is

smaller than 2K.I.D, because each transmitted bit should be detected as the

same bit for all of the D processing branches:

b̂
(i)
k,1 = b̂

(i)
k,2 = ... = b̂

(i)
k,D ∈ {+1,−1} (22)

Which means that the search universe for the evolutionary algorithms for the

MuD problem is independent of the number of paths, resulting in Θ (K, I) =

2K.I . All candidate vectors that obey equation (22) form the universe of all

possible solutions. Other possibilities belong to a forbidden universe and will

not be tested by the algorithms. This procedure guarantees the final solution

quality allowing that a possible correct bit estimation for all paths can be done.

3.1 Population Size

For solutions via genetic algorithms, the population size choice is an important

factor for the computational cost and the solution quality determination. With

a small population the performance can be prejudiced because the population

covers only a small part of the total search universe. A great population usually

supplies a representative covering for the problem, besides preventing premature

convergences for local solutions instead of global ones. However, in order to work

with great populations, large computational resources are necessary or that the

algorithm works along a very long and unnecessary period of time.

The most appropriate population size for each type of optimization problem

seeking computational cost minimization is an interesting research topic that

has been studied since the pioneering work of Holland [Holland, 1975]. Recently,

Ahn and Ramakrishna [Ahn and Ramakrishna, 2002] extended the study accom-

plished in [Harik et al., 1999] finding a more flexible and easy general expression

for the population size, p, without signal and noise characteristics knowledge,

besides making possible its use in problems of variable sizes. This expression

needs only the basic information of the problem, as alphabet cardinality (χ),

order of the building block (k), with m = l
k
− 1 and l is the individual’s size,

α = 1−Pb is the failing probability of the genetic algorithm in the decision stage

and Pb is the success probability, being given by:

p = −χ
k

2
ln (α)

(
χk − 1

2

√
πm+ 1

)
(23)

This work uses equation (23) in order to find the size of the population

adapted for the DS/CDMA MuD problem because is versatile, can be calcu-

lated in the genetic algorithm initialization stage and maintained constant in all

generations. Rewriting equation (23) for the multiuser binary detection problem:

p = − ln (α)
(
0.5
√
π (K · I − 1) + 1

)
(24)



In this work Pb = 99.9% was considered as being the maximum success percent-

age and a population size entirely with multiplicity 10. Rewriting (24) results:

p = 10 ·
⌊
0.3454

(√
π (K · I − 1) + 2

)⌋
(25)

where the operator ⌊x⌋ returns the smallest integer contained in x. Figure 2

synthesizes the behavior of equation (24) for various values of Pb and K · I,
as also the population size obtained through (25). Note that (25) guarantees a

confidence greater than 99% for any value of K · I and between 99.8% to 99.9%

for K · I > 22.
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Figure 2: Equation (24) and the adopted population size.

3.2 Individual Initialization

For the MuD problem the estimates from the Rake receiver outputs is adopted

as an initial individual of the population and the other members of the first

population can be randomly generated or obtained from the initial individ-

ual with convenient perturbations (see section 3.5.2) [Yen and Hanzo, 2000],

[Wu et al., 2003], [Abrão et al., 2004], [Yen and Hanzo, 2004]. In the literature

is common to find works that use another type of detector as initial estimate for

the evolutionary algorithm. This strategy decreases the number of needed gener-

ations of the evolutionary algorithm to reach the global solution, but in compen-

sation, these detectors usually have a high complexity, not bringing gains in the

system global complexity reduction [Wu et al., 2003]. In this work the outputs

of the conventional detector are used as initial estimates:

B1 =
[
b̂(0)T

, b̂(1)T

, . . . , b̂(I−1)T
]T

(26)

where from (14) we have b̂(i) = sign
(
z(i)
)
. The other terms are obtained through

the initial individual (B1) with mutation operator, section 3.5.2.



3.3 Evaluation

It is necessary to find a value associated with each individual performance

through the fitness value (aptitude measure). The aptitude is an intrinsic charac-

teristic of each individual. At biological level it indicates the individual aptitude

to survive in touch with predators, pests and other obstacles for subsequent

reproduction. Transporting the concept to the mathematical algorithm it repre-

sents its aptitude in order to produce the best solution. In the MuD context this

aptitude is measured through the LLF function, equation (18), and it is directly

responsible for the death or life of individuals [Verdú, 1998].

3.4 Reproduction

The reproduction in an evolutionary algorithm is a process in which the individ-

uals, or candidate vectors, are copied in accordance with the associated fitness

values. Individuals with high fitness values have greater probability in order to

form the next generation. This operator is an artificial model for the natural

selection.

3.4.1 Mating Pool Size

The mating pool size (T ) controls the pressure in the competition process among

individuals. Certainly with a small value of T the best parents will be selected,

however, the search universe diversification will diminish and the chance for

a local solution increases. With a large value for T parents with smaller ap-

titude will be selected and their bad characteristics will be maintained in the

next generations, bringing slowness to the convergence [Yen and Hanzo, 2004],

[Mitchell, 1998]. The T value should be selected in order to guarantee the conver-

gence velocity and the quality of the final solution. The mating pool size should

be in the range 2 ≤ T ≤ p. For the MuD problem T = 0.1p was adopted.

3.4.2 Selection Method

The selection process determines how the parents will be chosen in order to form

the next generation and how many offsprings each parent will generate. The se-

lection strategy should be selected in a manner well adjusted to the mutation and

crossover operators in order to obtain an adequate balance between exploitation

and exploration. One of the more traditional selection processes used for the GA

algorithm, originally proposed by [Holland, 1975], selects the parents in direct

proportion with the fitness value, named Roulette Wheel sampling. Each indi-

vidual is assigned a slice of a circular “Roulette Wheel” and the size of the slice

being proportional to the individuals fitness. The wheel is spun T times. On each



spin, the individual under the wheel’s marker is selected to be a parent for the

next generation. The steps for this method are: a) sum the fitness values for all

population members, ΩT =
p∑

i=1

Ω (i); b) generate a random number x uniformly

distributed on [0, ΩT ]; c) select the k-th member that satisfies
k∑

i=1

Ω (i) ≥ x.

This method confers priority to individuals that have bigger fitness because

its selection probabilities are proportional to their aptitudes, corresponding to a

bigger area in the wheel.

The selection strategy for the EP algorithm is simpler than for the GA,

because in this case the best T individuals from the population p are selected

as the parents for the next generation [Fogel, 1994]. The T individuals with the

largest fitness scores are selected while the p − T individuals with low fitness

scores are removed for the next generation. In the sequel, this strategy will be

named as p-Sort selection.

A fair comparison between these two strategies, when applied to the MuD

problem is presented in section 4. The convergence results, shown in Figure 4

detach the p-Sort strategy superiority in comparison with the Roulette Wheel,

and therefore it will be adopted in the two algorithms analyzed in this work.

3.5 Genetic Operators

The genetic operators are necessary for the population diversification and also

in order to maintain the adaptation characteristics acquired in previous genera-

tions. The GA algorithm uses the crossover operator as its main genetic operator

with the objective of to obtain search variability but without loss of the acquired

characteristics. The mutation is not considered essential because in a real pop-

ulation the mutation rate is low, so it is only a secondary mechanism for the

genetic algorithm adaptation. For the EP algorithm the only genetic operator

(besides selection) is mutation, not existing crossover. This is one of the main

differences between algorithms GA and EP.

3.5.1 Crossover Operator

The crossover operator combines parts from the two parents in order to pro-

duce offsprings that present genetic material from both parents. The literature

presents numberless variations for the crossover operator implementation, among

them the single-point crossover, multi-point cross-over and uniform crossover are

the most known and used. In this work the uniform crossover was adopted.

The uniform crossover operator considers each gene (locus) as a potential

point for crossover occurrence, which is controlled by the crossover mask . The

crossover mask is a sequence consisting of a random binary string (“1” and



“0”) with the same length as the individuals, where each position in the mask

corresponds to one bit of the individuals. A change is done for all positions with

“1” in the mask and no change for “0” [Mitchell, 1998].

3.5.2 Mutation Operator

The mutation operator consists in a change in the individual’s characteristics.

These changes are necessary for introducing and maintaining genetic diver-

sity, changing arbitrarily one or more components of the selected structure.

One manner to implement the mutation is generating a perturbation (noise),

which will be added to each gene. For a bipolarized binary alphabet, −1 e +1,

the gene mutation will not occur if the perturbation is small [Lim et al., 2003],

[Abrão et al., 2004]. However, when the perturbation is large enough in order to

change the gene signal, mutation will occur. This noise can be selected following

some specific statistical distribution. In this work the Gaussian distribution was

adopted:

newindividual = sign
(
individual + N

(
0, σ2

))
(27)

where N
(
0, σ2

)
represents a Gaussian distribution with standard deviation σ

and zero expectation. The standard deviation is strongly related with the mean

rate mutation. For bipolarized binary alphabet the standard deviation will rep-

resent a mean rate mutation as shown in Figure 3.
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Figure 3: Bit change rate as a function of standard deviation.

This figure presents the average and maximum rate of mutation in relation

to the standard deviation. For each algorithm a standard deviation was chosen

that corresponded to a rate of adjusted average mutation. It is clear that the

mutation can occur in one or more points of the individual, or also none, due to

the stochastic nature of the process.



3.6 Replacement Strategy

Replacement strategies look for to establish a biological rule of composition of in-

dividuals being aimed at the next generation, determining the maximum number

of individuals supported in the physical space in real systems. In terms of math-

ematical description, replacement strategy corresponds to the determination of

the number of candidate vectors to be kept in the next generation.

The elitism strategy forces the evolutionary algorithms to retain some number

of the best individuals at each generation. Such individuals can be lost if they

are not selected to reproduce or if crossover or mutation destroys them. In this

strategy successive generations overlap to some degree, i.e., some portion of the

previous generation is retained in the new population [Mitchell, 1998]. This work

uses replacement strategy called global elitism, where only the best p individuals

from the joint population of parents and offsprings are maintained for the next

generation.

3.7 Termination Criteria

Basically three forms can be identified as termination criteria for evolutionary

algorithms. The most adequate termination criteria depends on the nature of

the problem. The search can be stopped after a fixed number of generations or

after it reaches a threshold or after a pre-fixed time interval. The most common

criterion found in the literature, for the MuD problem, is to stop the optimization

process after a fixed number of generations (G).

3.8 Convergence Generation Determination

A criterion for convergence generation determination of evolutionary algorithms

consists in to analyze carefully the absence of evolution in successive generations

by comparing the fitness value. When:

Ωg (B1) = Ωg+1 (B1) = . . . = ΩG (B1) (28)

with B1 representing the best candidate in that generation, g will indicate the

convergence generation of the algorithm. Another criterion considers the conver-

gence generation is that one that presents no significant gain based on the fitness

value when compared with previous generations. In this work was adopted the

more conservative criterion, equation (28).

Finally, the GA-MuD and EP-MuD algorithms are described in Table 1.

4 Numerical Results

In this section the performance of the algorithms, described in section 3, are

compared considering the BER as the main figure of merit. The convergence



of each algorithm is also considered. For the asynchronous DS/CDMA MuD

problem, over Rayleigh fading channels, the numerical results were obtained

based on the Monte Carlo simulation method; these results were obtained in

identical systems and channel conditions in order to be fair with the algorithms

comparison. Finally the GA-MuD and EP-MuD algorithms are analyzed in terms

of computational complexity, conducting to the construction of an effective figure

of merit.

GA-MuD EP-MuD

Input: p, B1, T , G Input: p, B1, T , G

Output: B1 Output: B1

begin begin

1. Initialize first population B; g = 0; 1. Initialize first population B; g = 0;

2. Evaluate the fitness(B); 2. Evaluate the fitness(B);

3. while g < G then; 3. while g < G then;

4. Bselected = Selection(B, T ); 4. Bselected = Selection(B, T );

5. Bcross = Crossover(Bselected); 5. Bnew = Mutation(Bselected);

6. Bnew = Mutation(Bcross); 6. Evaluate the fitness(Bnew);

7. Evaluate the fitness(Bnew); 7. B = Replacement(B ∪ Bnew);

8. B = Replacement(B ∪ Bnew); 8. end

9. end end

end

Table 1: GA-MuD and EP-MuD algorithms

Table 2 synthesizes the main parameters for the simulated system: the spread

sequences are selected as pseudo-noise (PN); the number of active asynchronous

users in the system is K; the processing gain is N , the system loading is U =

K/N ; 10 and 20 users were considered for the DS/CDMA system over single-

path (Flat), two-paths and three-paths (selective) slow Rayleigh channels. For

the performance determination with mobility, K users were considered with a

velocity uniformly distributed in the interval [0; vmax], resulting in a maximum

Doppler frequency of fm = vmax

λc
= 222.2Hz, for a carrier frequency of fc =

1
λc

= 2GHz; the maximal Rake diversity is D = 3 and all users are transmitting

with the same data rate, Rb.

Seqs N K U Channel Rb vmax fm D

PN 31 10; 20 0.32; 0.64 slow Rayl 384 kb/s 120 km/h 222 Hz ≤ 3

Table 2: Main System Parameters

Table 3 shows three exponential power-delay profiles that were adopted for

the performance analysis: three paths (PD-1), two paths (PD-2) and a Flat (PD-



3) Rayleigh channels. These profiles with reduced number of multipaths were

adopted in order to alleviate the simulation’s complexity and the processing time.

In order to accommodate L = 3 paths for all K = 10 users in the same [0;N ]Tc

time interval, a minimum number of samples by chip was fixed as Ns = 2, and

also for the case K = 20 and L = 2.

Another more realistic profile adopted in simulations relaxes the restriction

of paths time separation of Table 3. In this worst case scenario, despite that the

adopted inter-users delays are crescent in the interval [0; (N−1)Tc−∆ℓmax
], paths

overlapping from the same user is allowed (∆k,ℓ−∆k,L < Tc ) or still between the

last path of k-th user with the first path of (k+1)-th user, resulting, in the first

situation, in Rake diversity reduction, D < L, simulating non-discernable paths

in the receiver. Simulation results of this section show that the performance is

degraded in this situation.

ℓ ∆ℓ E
[
β2

ℓ

]
ℓ ∆ℓ E

[
β2

ℓ

]
ℓ ∆ℓ E

[
β2

ℓ

]

1 0 0.8047 1 0 0.8320 1 0 1

2 Tc 0.1625 2 Tc 0.1680 PD-3

3 2Tc 0.0328 PD-2

PD-1

Table 3: Tree power delay profile (PD) used in the simulations.

In all simulations it was assumed that the powers, phases, amplitudes, chan-

nel gains and random delays of all users are perfectly known in the receiver,

except at the end of this section, where the errors impact of channel coeffi-

cient estimates are analyzed. For the channel coefficients generation a modified

Gans model was adopted [Silva et al., 2004], with coefficients generated in the

frequency domain. Further, a perfect power control scenario (P
′

1 = P
′

2 = ... =

P
′

K) was assumed, as well as unbalanced received power scenarios with half of

user with NFR ∈ [−5;+15]dB for K = 10 users, and NFR ∈ [−5;+25]dB for

K = 20 users.

In all Monte Carlo simulations a minimum number of errors/point = 15 was

adopted for the region with high Eb/N0 and 100 errors/point for regions with

low and medium Eb/N0. The average Eb/N0 at the receiver input is given by

γ̄ =
∑L

ℓ=1 γ̄ℓ, where γ̄ℓ = Eb

N0
E
[
β2

ℓ

]
. For comparison purpose the performances

of the Rake receiver and the single user bound (a system without MAI) were

included. This analytical single user bound (SuB) for BER, considering BPSK

modulation, Rayleigh channel, a Rake receiver with MRC with diversity D = L,

and all paths with distinct mean-square values is given by [Proakis, 1989]:

BERBound =
1

2

D∑

ℓ=1






[
1 −

√
γ̄ℓ

γ̄ℓ + 1

] D∏

i, i 6=ℓ

γ̄ℓ

γ̄ℓ + γ̄i




 (29)



The adopted parameters values for the heuristic algorithms were obtained in

two steps: preliminary simulations with typical values found in the literature; ad-

ditional simulations in order to optimize these parameters, not in an exhaustive

form, however assuring a superior performance than those found in the prelim-

inary step. Table 4 synthesizes the main parameters used in the simulations.

These parameters are grouped in function of loading resulting in two systems,

S1 and S2. In all simulations the evolutionary receivers process and optimize one

frame with K.I.D bits each time, where K = 10 or 20 users, I = 7 bits/user,

D = 1 or 2 or 3 paths/user, for the same channel conditions, transmission and

initial estimates from the Rake receiver output.

Algorithm p pm pc T G p pm pc T G

GA-MuD 110 1.43% 50% 11 40 150 0.71% 50% 15 60

EP-MuD 110 5% − 11 40 150 5% − 15 60

K = 10 users, I = 7 bits K = 20 users, I = 7 bits

S1 S2

Table 4: Main Algorithms Parameters.

The selection process adopted for the GA-MuD algorithm was the p-Sort

selection; from the simulation results, synthesized in Figure 4, this selection

mode has better convergence performance than the Roulette Wheel. Thereby,

for all simulations of the GA-MuD and EP-MuD algorithms the p-Sort selection

was adopted. For the crossover operator the uniform type was adopted with the

crossover mask generated randomly (50%). For the mutation operator a Gaussian

distribution was adopted with N
(
0, σ2

m

)
, where σ2

m is analytically obtained from

the mutation probability shown in Figure 3. The replacement strategy adopted in

the two algorithms is the Global Elitism. The population p was chosen from the

population size analysis, equation (25). For the GA-MuD algorithm the mutation

percentage was adopted as pm = 100
K.I

, i.e., one mutation (one bit) by individual,

in average, which is a normal value found in the literature for this algorithm.

Looking for the algorithms convergence, the adopted number of generations was

increased from G = 40 to G = 60 when the loading was increased from U ≈ 0.32

to U ≈ 0.64.

Figure 4 show that the evolutionary algorithms EP-MuD and GA-MuD p-

Sort converge to the SuB performance after g ≈ 22 and 17 generations, re-

spectively, resulting in a huge performance gain in contrast to the conventional

receiver. For this type of channel, with low load U ≈ 0.32 and perfect power

control, the GA-MuD algorithm shows better convergence than the EP-MuD

algorithm because it uses the crossover and mutation strategies as its diversifi-

cation principle.

Figures 5 to 11 show the performance as a function of signal to noise ratio



(γ̄) or NFR as well as the generation where the convergence occurs, g, given by

equation (28), for the two algorithms in each performance point. In general, for

all of analyzed conditions and channels, the GA-MuD algorithm converges to the

SuB performance with a smaller g than the EP-MuD algorithm. The slower con-

vergence of EP-MuD algorithm is mainly due to its less efficient diversification

strategy and the absence of any intensification strategy. Note that not neces-

sarily greater convergence velocity results in smaller computational complexity.

The analysis presented in section 5 quantifies the additional complexity in the

crossover stage for the GA-MuD algorithm.
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Figure 4: Convergence velocity for EP-MuD and GA-MuD; two selection strate-

gies for the GA-MuD (p-Sort and Roulette Wheel); System S1; PD-3 profile;

γ̄1 = 15 dB and NFR = 0 dB.

Figure 5 synthesizes the excellent performance obtained with the GA-MuD

and EP-MuD algorithms for low loads and soft channel conditions. In this situ-

ation the algorithms need a small number of generations for medium and high γ̄

values, showing also the floor noise effects on the convergence velocity for small

values of γ̄.

The general behavior for the algorithms with 2 and 3 paths Rayleigh channel,

PD-2 and PD-3 profiles, respectively, is shown in Figures 6 and 7. Note that

the Rake diversity helps to maintain the excellent performance of evolutionary

algorithms when it has the total exploitation of diversity, D = L, resulting in a

smaller g than the single path case. Even not reaching the total convergence for

some points with low γ̄, as defined by equation (28), the performance obtained

for the GA-MuD and EP-MuD algorithms is very close to the SuB case. For



the sake of comparison, Figure 6 includes the performance result of the classic

decorrelator for frequency selective fading channel [Zvonar and Brady, 1996]. In

this case, the decorrelating matrix (R−1) has dimension K.I.D×K.I.D. When

the number of users, processed frame length or multipath diversity increases, the

inverse matrix calculation becomes impracticable. Further, we can verify from

the Figure 6 that the decorrelator performance is inferior to the found with the

evolutionary algorithms.
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However in more realistic selective channel scenarios, when occasionally some

paths from the same user can overlap, meaning loss of Rake diversity (non-

discernible paths,D < L), the performance degrades with conventional receivers.

Despite this unfavorable scenario the two evolutionary receivers reach a perfor-

mance that is better than the obtained with the Rake receiver, as indicated in

Figures 8 and 9. In these cases the performance is confined between the SuB lim-

its for D = L and D = 1, because occasionally will occur some non-discernible

paths.
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Figure 7: BER for the system S1, NFR = 0 dB, PD-1 profile and D = L = 3.

The performance illustrated in Figure 8 indicates that the performance of

GA-MuD and EP-MuD receivers converge to a limit where there is no way to

take advantage of the total Rake diversity. This performance limit reaches an

intermediate value between the performance in the absence of diversity (D = 1)

and the performance with maximal diversity (D = L), tending to the worst

case when the number of non-discernible paths increases. The same effect is

present in the performance shown in Figure 9 for the system S2. However, due

to the joint effects of high loading and non-discernible paths, the performance

degrades when confronted with the low loading case. A possible association of

the BER floor effect to the GA-MuD and EP-MuD algorithms performance

should be discarded, because the number of generations used in this condition

was insufficient in order to reach the convergence. Thus, with G > 60 the GA-

MuD and EP-MuD algorithms, for γ̄ = 15 dB, will have the same performance

behavior of Figure 8.

Even for high load in multipath channels the GA-MuD and EP-MuD de-

tection algorithms keep a high performance gain in comparison with the Rake

receiver. Figure 10 synthesizes the performance gain for a channel with PD-2



profile. The performances are very close to the SuB case, though the number of

generations has been insufficient.
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occasionally.
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occasionally.

In CDMA systems theNFR parameter expresses the power disparities among

users. Conventional CDMA systems are limited by interference; in this way, they

need complex and elaborated power control mechanisms in order to reach their



theoretical capacity. Receivers that are able to recover the user information de-

spite the adverse conditions imposed by power disparities can help for the sys-

tems implementation complexity reduction.
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In Figures 11.a and 11.b, the power ratio, on the NFR-axis, is the ratio of

the received power of the interfering users (P
′

1 = P
′

2 = . . . = P
′

K
2

) to the power of

desired users (P
′

K
2 +1

= . . . = P
′

K−1 = P
′

K). These results show that the GA-MuD

and EP-MuD algorithms have a high robustness to the near-far effect, in spite

of the number of generations for the EP-MuD algorithm has been insufficient in

order to reach the total convergence in the high load condition for the system

S2. On the other hand the Rake receiver performance is drastically reduced with

the power increase of interfering users, even with low loads for the system S1.

The performance degradation of the GA-MuD [Ciriaco and Jeszensky, 2005]

and EP-MuD algorithms was also analyzed considering errors in the channel

estimates (module and phase). The performance results (not shown here) indi-

cated that even with great errors in the module and phase estimates, about up

to 15%, the GA-MuD and EP-MuD algorithms reach better performances than

those obtained with the Rake detector in the absence of errors, evidencing the

enormous tolerance of these algorithms to errors in the channel estimates. The

two algorithms are equally more sensitive to phase than module errors.

5 Computational Complexity

A common form in order to compare algorithms complexity can be done through

the O notation, which means the order of magnitude of the algorithm complexity.



But comparing algorithms only with O can be insufficient, mainly when they are

similar or have the same order of magnitude. This work presents the algorithms

complexity using three figures of merit: the O notation, the number of computed

instructions and the comparison of the mean computational time required for a

specific optimization.
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D = L = 2.

In order to obtain the number of instructions computed by each algorithm,

the float point operations measurement concept was used [Higham, 1996]. This

measure considers as one instruction all those operations, done by a processor,

which show a relevant computational time, named here as main operations. In

this work the multiplication and division were considered as main operations

and addition and subtraction were neglected because their computational times

are irrelevant when compared with the formers.

In the MuD problem other main operations carried out by the algorithms are:

ordination, transposition, comparison, change, generation and selection. These

operations have a complexity proportional to operation order, vector’s size or

the number of elements in a matrix.

In order to express the complexity of the analyzed algorithms it is necessary

to determine which instructions are carried out and how many times they are

processed. For the fitness value calculation, equation (18), the set of operations

F1 = CHAY and F2 = CARACH can be obtained before the optimization loop

of each algorithm. For each test of a candidate solution F1B and BTF2B are com-

puted, which in terms of operations is equivalent to (K.I.D)
2
+2K.I.D multipli-

cations and one transposition of orderK.I.D. For the OMuD the number of oper-

ations increases exponentially with the number of users, i.e., O
(
2K.I(K.I.D)2

)
.



For a system in a fading channel, 2K.I bit generations of order K.I.D and 2K.I

calculations for the fitness value are necessary, for the simultaneous detection

of one frame with I bits for each of the K users. For an AWGN channel the

coefficients matrix is reduced to C = I; for synchronous channel the correlation

matrix dimension is reduced to K ×K.

For the EP-MuD algorithm the number of operations increases depending

of the relation O
(
p.g(K.I.D)2

)
, 2p.g + p − 1 bit generations of order K.I.D,

T.g selections of order K.I.D, p.g + p calculations of the fitness value and 3p.g

ordinations of order K.I.D are necessary. The GA-MuD algorithm computa-

tional complexity also increases depending of the relation O
(
p.g(K.I.D)2

)
, and

can be obtained adding the crossover operator complexity to the EP-MuD al-

gorithm complexity. This stage performs p.g generations of order K.I.D, p.g

comparisons of order K.I.D and p.g changes of bits of order K.I.D.

Considering that each instruction x will own a proper associated time t(x), a

program Prog, with a constant input, will process r1 times instructions of type

x1, r2 times instructions of type x2, until rm times instructions of type xm. In

this case the execution time for the program Prog will be given by:

Time (Prog) =
m∑

j=1

rjt (xj) (30)

In last analysis the study of the algorithm complexity could be solved through

the evaluation of (30). In order to simplify the computational time evaluation

for each instruction xj , j = 1, ...,m, consider t(x) = 1 for any instruction x.

This simplification is coherent with the use of O notation for computational

analysis, once the instructions duration ratios are obviously constant, which

would be irrelevant for the calculation of order of magnitude of complexity.

Another advantage in to adopt t(x) = 1 is that in this way the value of the

execution time of a program is equaled with the total number of computed

instructions, being respected the order of each instruction.

Instructions (Prog) =

m∑

j=1

rj (31)

Therefore the computational complexity of the EP-MuD, GA-MuD and Opt-

mum MuD receivers can be expressed, in terms of executed instructions, adding

the number of operations of each fitness value with all other operations multi-

plied by its orders, as indicated in Table 5.

Using numerical values from simulations for the variables g, K, I, D, T and

p is possible to express the computational complexity of each algorithm in terms

of the number of operations in order to reach the convergence. These numbers

for various simulated conditions are synthesized in Figures 12 and 13. Given the

excessive number of necessary operations for the OMuD the respective results

are indicated in Table 6.



Detector Number of Operations

OMuD 2KI
(
(KID)

2
+ 3KID

)

GA-MuD p (g + 1) (KID)
2

+ (g (11p+ T ) + 4p− 1) (KID)

EP-MuD p (g + 1) (KID)
2

+ (g (8p+ T ) + 4p− 1) (KID)

Table 5: MuD complexity in terms of operations

Complexity PD − 3 PD − 2 PD − 1 PD − 2

OMuD ≈ 6 × 1024 ≈ 2 × 1025 ≈ 5 × 1025 ≈ 1 × 1047

S1 S2

Table 6: Number of operations for the OMuD
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Figure 12: Number of executed operations for the system S1 in channels: a) PD-3

profile (Flat); b) PD-2 profile (2 paths); c) PD-1 profile (3 paths) and d) PD-2

profile with D ≤ L.

For the OMuD increasing the loading from the system S1 to S2 caused an

increase in the number of operations of 22 times in terms of order of magnitude,

making impracticable its implementation in a real scenario. Thus, in this case,

simulation results could not be obtained. On the other hand, the complexity

(in terms of number of operations) of the analyzed evolutionary receivers show

orders of magnitude of 108 for the system S1 and 109 for S2 (no shown here),

indicating a huge complexity reduction in comparison with the OMuD. Addi-



tionally, increasing the load from U ≈ 0.32 to U ≈ 0.64 caused, approximately

only one order of magnitude increase for the complexity of algorithms GA-MuD

and EP-MuD.

For the same system conditions, comparing the executed number of opera-

tions by the two evolutionary receivers, the difference has an order of magnitude

smaller than 1/2, even when the system load and NFR conditions increases.

When the channel selectivity and the receivers bandwidth allow an increase

in the number of processing paths for the EP-MuD and GA-MuD algorithms,

for example from D = 1 to 2 or 3, the systems will have a better performance

without a significant increase in the complexity. Figure 5 shows that for D = 1

and γ̄ = 15 dB the performance is ≈ 8 × 10−3, while from Figure 7, for D = 3,

and the same value of γ̄ the performance is ≈ 5.5× 10−4. In order to reach this

performance, the order of magnitude of complexity have increased by only one

order, Figures 12.a and 12.c, justifying the exploration of larger diversities in

evolutionary receivers.

Figure 13 shows that the computational cost for maintaining the near-far

robustness is almost constant for the EP-MuD and GA-MuD algorithms, because

the number of needed operations is of order 108 for the system S1 and 109 for the

system S2, being practically constant in all range of simulated power disparities

and also identical to the perfect power control scenario (NFR = 0).
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Figure 13: Number of executed operations versus NFR in PD-2 profile channels

and system: a) S1 with γ̄ = 15dB; b) S2 with γ̄ = 10dB.

Finally, the computational complexity of the algorithms can be also measured

through the computational time spent by each algorithm in order to conclude one

optimization. A model described in [Fitzpatrick and Grefenstette, 1988], estab-

lishes the computational time required by the evolutionary algorithms in order to

conclude one optimization and indicates that the necessary time depends on the

parameters g and p and the time constants involved in the processes described

in section 3:

Time(Prog) =
m∑

j=1

rjt (xj) = (µ.p+ ψ.p) .g (32)

where g is the number of generations for convergence and p is the population



size given by equation (25). The variable µ represents the fixed amount of evolu-

tionary algorithms overhead time per individual per generation, which includes

the costs of all process described in section 3, but excludes the cost of fitness

evaluations. The variable ψ represents the cost of a single fitness evaluation of

one individual. This model does ignore the cost of population initialization, but

this is reasonable as the runtime costs dominate.

In order to find the constants µ.p and ψ.p, the average time required by each

fitness value evaluation and the average execution time of other processes of

algorithms were measured, for some values of K.I.D. These time averages2 are

presented in Figure 14.

Note that the values of the constants µ and ψ depend on the size of individ-

ual, in this application, K.I.D. Already the population size is proportional only

to the factor K.I. Through these data the average execution time for each opti-

mization can be expressed. The same conclusions obtained with the complexity

analysis in terms of number of operations are now applicable to the analysis of

the computational time of Figures 15 to 16. Again, given the excessive number

of operations for the OMuD the respective results are indicated in Table 7.

0 50 100 150 200 250 300 350
10

0

10
1

10
2

10
3

K.I.D

T
im

e 
(m

s)

Fitness value costs
EP process costs
GA process costs

Figure 14: Average computational time (over 1000 trials) for the fitness value

and the processes of evolutionary algorithms, in milliseconds.

The GA-MuD algorithm needs a lightly smaller computational time than

the EP-MuD in the same simulated conditions and with total convergence for

both. This can be verified, for example, through Figure 15.b combined with the

convergence information of Figure 6, among others.
2 Results obtained with MatLab 7.0 platform for Windows XP in a Athlon 1.6GHz

processor with 512Mb RAM



Complexity PD − 3 PD − 2 PD − 1 PD − 2

OMuD ≈ 7.8 × 1021 ≈ 6.9 × 1022 ≈ 1.5 × 1023 ≈ 4.4 × 1044

S1 S2

Table 7: Average Computational Time for OMuD detector in [ms]

Again, when total convergence do not occur in G generations for both al-

gorithms, the EP-MuD intrinsically will have a smaller complexity considering

the computational time and a smaller number of operations than the GA-MuD

algorithm because the EP-MuD algorithm has a more simple search strategy.

If the number of generations are increased, assuring total convergence for both

algorithms in terms of equation (28) the EP-MuD algorithm complexity will

be greater than the GA-MuD in terms of the number of operations and also

computational time.
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Figure 15: Computational time for the system S1 in channels: a) PD-3 profile

(Flat); b) PD-2 profile (2 paths); c) PD-1 profile (3 paths); and d) PD-2 profile

with D ≤ L.

Since the optimum values for the parameters pm and T depend on the

DS/CDMA system characteristics, i.e., diversity, loading, signal to noise ratio

and NFR effects, it must be expected a reduction in the convergence generation

for both algorithms when these optimized parameters will be used. It should be

noted that the values of these parameters are fixed and only altered as a function

of loading, for the results of this section. Observe that for D = 1, γ̄ ≤ 10 dB

and low loading, Figure 15.a, the GA-MuD algorithm parameters are not opti-

mized, implying in a greater computational time than the EP-MuD algorithm in



the same conditions. Therefore, an additional parameters optimization analysis

should be carried out.

−5 0 5 10 15
10

3

10
4

10
5

C
om

pu
ta

ci
on

al
 T

im
e 

[m
s]

0 10 20
NFR

EP
GA

S
2

S
1

, D = 2

, D = 2

[dB]

b)a)

Figure 16: Computational time ×NFR in channels PD-2 profile and systems: a)

S1 with γ̄ = 15 dB; b) S2 with γ̄ = 10dB.

6 Summary

In this work two optimization techniques were analyzed: the GA-MuD and EP-

MuD evolutionary algorithms. These techniques were directly applied to the

optimum detection problem in DS/CDMA communications trying to increase

the system’s capacity. It should be highlighted that very few works deal with

the evolutionary algorithms for MuD in multipath Rayleigh channels. This work

established an efficient comparison, in terms of complexity versus performance,

among multiuser detectors based on the EP-MuD and GA-MuD algorithms in

realistic channels; the performance reduction due to diversity reduction was also

evaluated.

The algorithms comparison through the computational time and the number

of executed instructions has showed to be more adequate than the comparison

using the O notation, because the two analyzed algorithms have similar order

of magnitude of complexity. Therefore, using these two figures of merit it is

possible to compare more precisely the efficiency of the EP-MuD and GA-MuD

algorithms when applied to the MuD problem. The result of the convergence

analysis using these two figures of merit for the complexity shows a small su-

periority for the GA-MuD algorithm in confront with the EP-MuD algorithm

for the analyzed conditions of loading, NFR and when there are losses in the

utilization of multipath diversity.

The EP-MuD and GA-MuD multiuser detectors in Rayleigh fading channels,

flat and multipath, approaches the SuB limit in all analyzed conditions with

the advantage of a huge complexity reduction in comparison with the OMuD,

making feasible its implementation in base stations of cellular systems.

Both algorithms have a relative immunity against channel coefficient errors

and great robustness against NFR effects in low and high load conditions, despite



that the EP-MuD algorithm not to have converged with G = 60 interactions in

the high load condition.

Future works include the performance analysis in a scenario with estimation

errors for the main DS/CDMA parameters, such as delays, powers and so on.

Finally, as noted before, the set of the EP-MuD and GA-MuD parameters em-

ployed in this work is by no means optimum and further research will concentrate

on how to find other algorithms capable of adjusting these parameters.
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